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I. INTRODUCTION
1-6

The development of the gquantum inverse method has provided new insight
into the structure of solvable models in quantum field theory and statis-
tical mechanics. It places the theory of completely integrable gquantum
systems in a unified framework and provides a powerful method for studying
these systems. In this series of lectures, I will review some of these
developnents with particular emphasis on the study of Green's functions for
integrable field theories. The approach to Green's functions which I will
describe has been developed in collaboration with Dennis Creamer and David
Wilkinsof’:-f9 So far it haslonly been applied to the case of the nonlinear
Schrodinger model, but it is reasonable to suspect that similar techniques

can be applied to other modsls.

I'11l begin in Section II by reviewing the direct scattezr:’.nt_:;_t:l::-.u1sform'1-5
by which a certain set of "scattering data™ operators are defined as
functionals of the local fields. I'1ll describe the connection between the
direct transform and the more traditional Bethe's ansatz methods and
briefly mention the relationship with transfer matrices in lattice statis-
tical models. The treatment of Green's functions is built upon the inverse
{Gel'fand-Levitan) transform by which the local fields are written as
operator functionals of the scattering data. In Section III I'll review
the derivation of the quantum Gel'fand-Levitan transforn?for the nonlinear
Schrodinger model and discuss some of its properties., Section IV sets up
the general formalism for studying Green's functions via the Gel'fand-
Levitan transform? In Section V we'll use this formalism to study the

strong coupling (¢ *«} limit of the two-point function. Finally, in

Section VI I review the analysis of the ¢ = « two-point function by Jimbo,
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. 12
Miwa, Mori, and Sato and show that the first two terms in a strong coupling
(1/c) expansion can be expressed in closed form in terms of Painleve

functions?’iz

II. BETHE'S ANSATZ AND THE DIRECT SCATTERING TRANSFORM

The Nonlinear Schréﬂinger Model

The case we'll be considering is the nonlinear Schradinger nodel,

defined by the Hamiltonian

2672
H = f aiaj +c¢*¢*¢¢:| ax (2.1)

where &¢(x) is a nonrelativistic boson field with equal time commutation

relations
(o), 6 (0] = §(x - y) i (2.2)

The second term in H corresponds to a two-body delta-function potential.
We'll consider the repulsive case ¢ > 0, for which the problem of interest
is to determine the spectrum and Green's functions for a finite density
ground state <¢*¢> # 0, This is analogous to the problem faced in
relativistic models like sine Gordon/massive Thirring, where the physical
vacuum is a many-body Bethe'’s ansatz state.

Before introducing the quantum inverse method, I'll review the Bethe

ansatz approach to {2.1}. In this approach we write down many-body states

[T> = u/”dxl...dewtxl...xN)¢*(xl)...¢*(xN)|O> {2.3)
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and try to choose the wave function { so that |?> is an exact eigenstate of
H. The correct wave functions ¥ have the characteristic Bethe ansatz form

which I'1ll now describe. Consider first the two-particle state,

Llkyxy+hoxy) * *
k2)> = dxldxze {G(xl - xz) + S(kzl)e(xz - xl}} ¢ (X1)¢ (xz) IO>
(2.4)
where kzl = kz - kl and
k - ic
8(k) kK + ic (2.5)

is the two-body phase shift. The fact that (2.4) is an eigenstate of H may
be shown directly by applying the operator H and using integration by parts
toe bring the kinetic energy derivative —Bz/axz onto the two-body wave

function. This gives

2

1 )> - (2'6}

. 2
H[W(kl, kp)> = (k)" + kY kg, K

2
In the derivation of this result, there is a leftover term proportional to
5(21 - x&) coming from kinetic energy derivatives acting on the step
functions in (2.4). This term is exactly cancelled by the 6~function
interaction term. We can also write the two-body state in a different form

by changing the normalization

1

ic
]@(klkzp ( 1+ E—;I ) |‘¥(klk2)>

L

ik, x, +k_x.) .
lxi 272 ic * *
ulﬁdxldx2e { 1 - ;;I-E(le)}-¢ (xl)¢ (x2)|0>

(2.7)
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whera le =X, - xl.

1
The Bethe ansatz 33‘.’0:: this model consists of a generalization of (2.4)

to an arbitrary number of particles N such that

N

2
Bk = [ > k7] Yok o @
\ i=1

Just as in the two-body case (2.4) the wavefunction can be written as a sum

over N! worderings of the coordinates x > x Z eee ?x where
Pl P2 PN

(¢,, P,, ..., P} is some permutation of (1, 2, ..., N},
1 2 N

. .
I‘z”(kl...kN)> = fdxl...deexp (i _EL: kixi) z 6(xpl 2 el > xPN)

P sN |
* ts -
X H 3("?_? ) ¢ (xl}...¢’-'(xN)lo>_ (2.9a)
e s i3
i'<j
B, >P,

The unnormalized eigenstates analogous to {(2.7) are written

[ Q(kl L okn)> =

N
dxX, eeedx exp iz k.x T 1 - "'_ic_ E(x -x.) ¢*(x )o- . 4)*(}: ) 0> |
f 1 N - i™1 i'<j ki kj - B 1 N ! | (2.9b)

Spectral properties of finite density states

The finite density system is traditionally studied by placing an N-
body system in a periodic box of length L and letting N> @ with

N/L = density fixed. The wave function

Pltge.oxy) = <o|¢(xl)...¢(xN)[¢(k1...kN)> (2.10)
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is required to satisfy periodic boundary conditions (PBC's)

$O-L/2, %5000 = P(L/2, Xye e oK) C (2.1Y)

which gives

1
e = |1 Stkyy) . (2.12)
Jj#i

It is convenient to take the log of the PBC's

kL = z Ok = ki) + 2my (2.13)
j#i )

where
6(k) = - i log S(k) . . {2.14)

The choice of ni's in (2.13) is related to the choice of branch for the log
in (2.14). The physical phase shift has a discontinuity of 27 at k = O.
This phase shift vanishes as ¢ + 0 and the description of the ground state
of the system is bosonic, i.e. n, = 0 for all i. 1Instead it is convenient
and conventional to choose the phase shift which is continuous at k = 0 for
finite ¢ and becomes a step function as ¢ * 0. For this choice, the ground
state has a fermionic description, n, -n, =1,

i+l 1

By subtracting adjacent PBC's in the ground sState we obtain
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= X - - 2r
ki+1 ki = 1 z [e(kj ki+1, -etkj ki)] + - . (2.15)
3 )
As I, » ©, N > o, N/L fixed

plk,y = S -+ continuous function = plk) (2.16)
i L{k., v~ k.)
i+l ti
and the PBC's (2.15) reduce to an integral equation for the ground state

density function

k
F
2rp(k) = 1 + -I~ Ak - k")p(k')dk! {2.17)
’kF
where
_ 99(k) - 2c
k™ + ¢

The ground state is a Fermi sea of closely packed modes between —kF and kF.
Excited states are formed by removing modes from the sea and placing them
above the surface, forming particle-hole pairs. ‘The par;icle-hole
spectrum was first worked out by Lieb?3 In the formulation of Yang
and Yan§%4the gspectrum is given by a single function g(k) which satisfies a
linear integfal equation

2 “r Ak
glk) = k“ - p+ f Ak - k'}e(k") ﬁ (2.19)

..kF
where U is fixed by the requirement £(* kF} = 0. The excitation enerqy of

is given by

a particle at kP and a hole at kh
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- - . 2.20
E E (kp) elk,) ( )

In the Yang and Yang formulation, there is a similar excitation function

e{k) at finite temperature, which satisfies a nonlinear equation

e(k) = k2 -y - %-.lﬁé(k - k') log (1 + e BE(K'), gg% (2.21)

where u= chemical potential and B = 1/kT. This reduces to. {2.19) for
B + =, The function e{k} also determines the equilibrium thermodynamics,

e€.g. the pressure of a gas as a function of 8 and y is

I S - 8e (k) 2.22
P 8 ‘Iﬂ oy 109 (1 + e ) . (2.22)
The function gfk) is of central importance in the model. {Similar

functions can be constructed for other models, e.g. massive Thirring/sine

Gordon.) It will reappear in the theory of Green's functions.

Quantum Inverse Method

1536

In the classical inverse scattering method, we solve the initial value
problem for a nonlinear field equation by considering a linear "Lax pair™:
5 ' ‘
— ¥x, T) = i, (x, L)¥(x, T) . (2.23)

oxM

In the simplest applications, Qu(x, L) is a 2 x 2 matrix which depends on
the local field ¢(x, t}, and on an eigenvalue {. If we think of the spatial

component of the Lax pair as a time independent eigenvalue (scattering)
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problem; the local field ¢ (x) plays the role of a scattering potential, and
{2.23) defines a one-to-one mapping between the field ¢(x) at a fixed time
t and the scattering data associated with the linear eigenvalue problem,
The key point is that, by judicious choice of the matrices QM(X' L) we may
interpret the original nonlinear equation of motion as the consistency
{integrability) condition obtained by cross-differentiation of the Lax

pair, which gives

FUV = anh - apQU + i[}h, QQ] = 0 . {2.24)

With the particular choice

k2 * :
5 -ch veikg + 1qx}\\
0, = , (2.25)
- Eke" ~ 19 ") £ s’y
X /e
Ql = {2.26)
V=Y -

then Fhu = 0 becomes the nonlinear Schrodinger equation

18,0 = - 9,% + c[o[% . (2.27)

From this result it follows that the scattering data a(k), b{k) ({(where
1/a = transmission coefficient and b/a = reflection coefficient) have a

trivial time dependence
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atk, t}

a(k, 0) (2.28a)

—ik2e
bk, t) e * bk, 0) . (2.28b)

The inverse method solves the initial value problem much like Fouriler
transformation is used to solve a linear problem. The direct transform
waps §(x) + a(k), b(k) at time t = 0. The time evolution of a and b from
t = 0 to some later time t is given by (2.28). At time t we must perform an
inverse transform which maps a(k, t), b(k, t) back into the field con-
figuration ¢{x, t). This last step is accomplished by the Gel'fand-Levitan
eguation.

In this section 1'l1l discuss the quantum generalization of the d;rect
transform, the significance of a(k) and b(k) as quantum operators, and the
relationship with Bethe's ansatz. In the following section, I'll discuss
the generalization of the Gel'fand-Levitan (inverse) transform, which is
the centerpiece for the treatment of Green's functions in the remaiﬁing
sections.

The quantum inverse method for the nonlinear Schrddinger model is
based on a normal ordered operator version of the Zakharov-Shabat eigen-

value problem {2.23)
2 ¥i{x, k} = i : Q. (x, K)¥(x, k} : {2.29)
ox f TR ' *

A particular solution is specified by choosing a boundary condition,

Requiring ?(xo, k) = I = identity matrix, we can write the solution to

{2.29) formally as a path ordered exponential,
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X
Y(x, k) = 1 Pexpi f Ql(hh k}dy s . (2.30)
*o
The solution ¥(x, k) is a nonlocal string functional of the field

operator &(x)}. If ¢(x) + 0 weakly as |x] + *wwe see that

¥(x, k} ~——sr V{x, k) x {constant matrix) (2.31)
[
where
eik x/2 0
vix, k} = . ik x/2 . (2.32)

The scattering data operators are defined by the asymptotic form of ¥:

Ty = lim v i(x, k)¥(x, KIV(xgs k)
prae
R roo
*
a{k) b (k)
- . (2.33)
b (k) a” (k)

for real k. The central result of the quantum inverse method is a set of
commutation relations among the scattering data operators. This is most

elegantly derived by the method of Sklyanin? which is patterned after

1

earlier work of Ba:':t:t-:-r.7 One uses the Zakharov-Shabat equation to derive

4 x 4 matrix eguations for the direct products

Hy,(x) = Y(x, kl) @ ¥Y(x, kz} and Hzl(x) = ¥(x, kz) @ Y(x, kl)' We get

2 H = i:7T

= Byo (2.34)

122 ¢
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i T (2.35)

x T 218y ¢

where

I, = Qe 1 + 1 ®Q(k-ico” ® o7 . (2.36)

The key observation is that the matrices F12 and 151 are equivalent under a

c-number similarity transformation

T, = 9?1‘12.9?“1 _ (2.37)
where
1 0 0 0
% - 0 B o © (2.38)
0 o B o
6 0o 0 1
with
k., - k
N - k, 2 ic B = K —-;: - ic - (239
This leads to the result that the direct products of the solutions are

themselves related by

¥, ®¥ = RlY,® ‘PZ]R-]' (2.40)
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where ﬁhe subscript denotes the eigenvalue.

Equation (2.40) gives a set of commutation relations among the
elements of the solution matrices. At this point there are two
somewhat different approaches we may follow to further investigate the
nodel., Let me refer to these two possibilities as the finite wvolume

approach and the infinite volume approach. In the finite volume approach

we define the scattering data operators in a box by choosing Xq = -L/2 in
{(2.29) and defining
A(k) C{k)
Y(L/2, k) = ( ) = é?L(k) (2.41)
B(k) D(k)
with the commutation relations
['gr.”‘z’ ® -9'L(k1)].% = R [9'[.(1«1) ® .?L(kz)] (2.42)

where J?-is given by (2.38). By carefully taking the L > « limit, we

obtain a scmewhat simpler infinite volume algebra

[ﬁ’(kz) ® Q'(kli\g?m = Q?w[g'(kl) ® Q’(kz)] (2.43)
where
1 0 0 0
0 0 Yy O
R, = (2.44)
0 ¢ 0 O
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. k k k, - k., + ic¢
1 2 1 2
a = B = = . (2.45)
kl - kz - ic kl kZ
In particular, we fingd
a(k)b(k‘) = ( 1 ~ E___’?‘%‘_T ) b(k')a(k) (2-463)
% ic *
a (k)b{k'y = 1+ b(k*)a (k) {2.46Db}
k - k
* (k - k)% + c? * *
b (k)b{k') = 2 b{k")b (k) + 2nma (k)a(k)§(k - k*}) {(2.46¢)

(k - k')

[a, 2] = fa, al = [b,b) = 0 (il4ed)

The commutators of a and b with the Hamiltonian may also be worked out,

i
o

[B, atk) ] (2.47)

(8, b(k) ]

x2b (k) (2.48)

which is the quantum analog of (2.28). All of these results may be

verified order by order using the normal ordered series expansions for a(k)

and b(k):

: ik(xl-yl) i
a(k) =1+ cfdxldyle(x1< yl)e ¢*(xl)¢(yl) + e, ! {2.49)

{ ikxl ik(x1+ xz- yl)
—= b(k) =fdx e dr(x_ ) + c.fdxldx dy B(xl< y,< xz)e
Ve 1 1 271 1

X ¢*(x1)¢*(x2)¢(yl) Foeee (2.50)
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From (2.48} we see that the states

d(k....k,})> = b(k,)...b(k,)|0> (2.51)
1 N N

1)
are exact eigenstates of H. From (2.50) it can be shown that the states
(2.51} are precisely the unnormalized Bethe ansatz states (2.9b). The
operator a(k) is diagonal on these states for all k and is the generator of
an infinite number of conservation laws, In the infinite volume formalism,

a particularly useful operator is the quantized reflection coefficient
-1 "
R(k} = b(k)a (k) . {2.52)

This operator and its conjugate obey a simple algebra

R(k)R(k') = S(k' - k)R(k')R(k) {2.53)
R(KIR (k') = S(k - kIR (k")R(k) + 218 (k ~ k") (2.54)

where
S(k - k') = %—E—E%—i—%g = 2-body S-matrix . (2.55)

States created by R+'s are also eigenstates of H but with a Qifferent
normalization. They are in fact the properly normalized states
IW(k,...kN)> defined in(2.9b). The R operators are of central importance

in the theory of the inverse problem and Green's functions.
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In the finite volume formalism it is also possible to construct
Bethe's ansatz states, but this time the B-states diagonalize not A(k) but

the trace of the monodromy matrix {2.41)

T{k) = Tr 9]'_{):) = A(k} + D(k) . (2.56)

This quantity is precisely analogous to the transfer matrix in two—
dimensional lattice statistics models. The states created by B's are not
automatically eigenstates of T(k) as they are in the infinite volume case.
Instead, a state B(kl)...B(kN}|0> is an eigenstate of T(k} only if
kl,...,kN satisfy periodic boundary conditions. 1In this approach, the
PBC's follow directly from the algebra of the operators &, B, C, and D: Oh
the other hand, in the finite volume formalism the R-operators do not have
nice properties,- and the Gel'fand-Levitan transform has not yet been
constructed. For the remainder of these lectures we will use the infinite
volure approach to study Green's functions, This will result in no loss of
generality, since, as we will see, all the finite density results of Lieb
and Liniger and Yang and Yang can be @derived in this approach by studying
finite temperature Green's functions.

Let me conclude this section with some remarks on the quantum inverse
nethod for lattice models and its deep connection with Baxter's method for
solving the eight-vertex model. This connection has been extensively
developed by Faddeev and ccworkeré?’lslt leads to an elegant and general
formulation of quantum integrability based on the "Yang-Baxter relation,”
which is a generalization of the similarity relation (2.37). Essentially,

-one views the Jost solutions as strings of vertices of the form
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‘i’m(k) = Ll(k)Lz(k)...Lm(k} (2.57)

where Lj(k) is a matrix of local operators defined on lattice site j.
Equation (2.57) is precisely analogous to the path-ordered exponential

solution of the Zakharov-Shabat equation, Eg. (2.30). The Yang-Baxter

relation is

Q[Ln(k) ® Ln(k')] = [Ln(k'} Q Ln(k)]g? . (2.58)

For the nonlinear Schrodinger case, Ln is a 2 x 2 matrix of field operators
and A is just (2.38). Equation (2.58) leads directly to the results
(2.40) and (2.42). For further discussions of the Yang-Baxter relatidh and
how it arises in various models I refer you to the literature and to the

paper of Kulish and Sklyanin in these proceedings.

III. THE OPERATOR GEL'FAND-LEVITAN EQUATION
The Gel'fand-Levitan equation is a dispersion relation for a Jost

solution to the Zakharov-Shabat eigenvalue problem,

(1-£{-+%§)‘P1 = —fE‘i'zcb (3.1a)
(13—%-—%1;)?2 = VabY . (3.1b)

Consider two column vector solutions to (3.1} defined by the boundary

conditions
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1 ;
1l el{,x/2 (3'2}
¢2 x—>-\ 0
X 0 ,
1 —_— e“ll_',x/z (3.3)
2 x>t} 1

From these boundary conditions it is easily shown that both ¢ and X admit
analytic continuation into the lower half {-plane. Here analyticity of an
operator is taken to bz egquivalent to analyticity of all its physical
matrix elements. We will also need the conjugate solutions
| E * * *
~ Yy (%, L) ~ Xy (% 0)
Go(x, ) = T . X = N . {3.4)
Yoxe 5 Xy (%0 g) -
which are analytic in the upper-half { -plane. The Gel'fand-Levitan
equation is a dispersion relation for an analytic function ${x, { ) which is
constructed from these Jost solutions.

Classical case:

In the classical theory, for { = k = real the Jost solution | can be

L]
written as a linear combination of ¥ andy,
q“ = a.k'i' bx, (3'5}

where a and b are the scattering coefficients defined previously. Eguation
{3.5) may be verified by taking the Wronskian of both sides with X and X and

using

1]

tL-lxz - Lple a (3.6)
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o
Thus, along the real axis, the function X which is analytic in the lower

half-plane is related to the function ¢a—l which is analytic in the upper

half-plane by
pa~l = ¥ - iNGRX (3.8)

(Note: a has no zerces in the lower half-plane for repulsive coupling

¢ > 0.} Eguation (3.8) suggests that we define a function

[}

2x, ) = X (x,0)e 5%2 for Img > O (3.92)

i

Yz, tra e %2 for mr < o (3.9b)
L

This function has a discontinuity proportional to the reflection coeffi-

cient
Discd = NER*Xeflgx/z (3.40)
Also, from the Zakharov-Shabat equation we have

@1 as { - (3.14)

Thus, @ can be reconstructed from its discontinuity,

1 * ~ikx/2
Bx, L) = +525ﬂfdk Bl Ble (3.12)
0 B
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Evaluating just above the real axis, we obtain a coupled pair of integral

equations,

22 .
Y s, e-ikez [ 1) aE f g BUENX(x, k1 IK/2
r - 2m k' - k - ie

(3.13)
guantum case:

In the qguantum theory, the equation (3.8) which motivated the choice
(3.9) for the @ function is not a valid operator relation. Instead we

define a function
gix, k) = ¥ (x, k) - WER (K)X (x, k) (3.14)

and study the analytic continuation of g into the lower half-plane. From

the Zakharov-Shabat equation, we find that g satisfies

2,1 NE (3.
5
(g7 -3K) g, = wEs's) - iclR (0, ¢ alx, (3.16)

Note that the last term in (3.16) arises from quantum ordering. Without it

we would conclude that g = ¢a-1 as in the classical case. But the
* * . * -1 )

conmutator [R (k), ¢ (x)] can be evaluated by writing R = ha and using

Wronskian relations for b and a L. This gives

i

[R" (k) , ¢*(x)] (SZ2 - i\lén*xz)lb 2a"l (3.17)

-1
9£P2a
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- g
Thus, the %-5 equation becomes a differential equation for g = (gé)

with coefficients which are analytic in the lower half k plane. The

asymptotic form of g also has simple analytic properties. For x = ®© we

have
[, 7
a(k) .
glx, k) —> o tK¥/2 (3.18)
0
where
T(k) = a (k) - cR (K)a (K)R(Kk) | (3.19)

g(k) is diagonal on the Bethe ansatz states, and we may verify that it is
analytic in the lower half k-~plane by studying its eigenvalues. On a one

particle state we get

Ak) k> = [1 + ﬁLCTIE - 2mcd(k - kl}] | k,>
1
ic
= SO .J._ S— >
[1 TR ie] [k, (3.20)

More generally, the § -function terms in the eigenvalue of gtk) simply

change the signs of all the i€'s,

N

" _ r— ic

a{k)l kl...kN> = I [l t Ty T kg - ie] lkl'”kN} (3.21)
1

Thus, a function
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e(x, L) = Q(X. ;)e-iéx/Z ImL{> 0 {3.22)
= g(x, )e—i?;sz Imi>0 (3.23)
is analytic in the full cut { -plane with
Disc @ = inBR X (3.24)
and
&1+ o(-;—) as oo (3.25)

This gives a pair of coupled integral equations for the operator Jost

*
solutions Xl and Xz :

© * ~ik /2

Yix, kye ik®2 +£ dk* R (k"X (x, k')e

X2 ’ 2w k" ~k = ie

7 (3.26a)

® * ik*x/2

i X, (x, kK')R(k"e
Xy (e ke - %J“f: ak' -2 KP-Kk + i€ (3.26b)
o

*
Solving these integral eqguations (e.g. by iteration) gives Xl and X2 as

*
coperator functionals of R and R :

ik X
, dk 0
ikx/2  _ _ 0 e
X txe k)e T TNe {f 2w k- kg - 1e "o

i(kgtk =p)x
i cfdpl dk, dk, e R¥(p) )R (k)R (k)

27 2w 27 (k-ko—lE} (Pl—ko—iE) (Pl"' kl" iE)

.. } (3.27)
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X *(x 'k)e—ikx/z = 1 -¢ dpl dk1
2 ! 2w 2w (pl—k—ie)(pl—kl—ic)

1(kl~pl)x

R (p)) R{k,}{3.28)
+ .

The final step in the Gel'fand-Levitan procedure is to recover the local

field operator § (x) by taking the k—® 1limit of the Jost solution,

ikx/2 _ ., _ '—‘% G(x) + 0(1/k2} (3.29)

Xy (%, ke
k>

The field is thus written as an infinite series,

[=+]
bx) = 2 6™ (x) (3.30)
n=
where
n n
ik ~-Zp.)x
n n 1 1 '
(n) I — 9P — 9Ky e O !
¢ T (x) = (-c) T = T —
. 0 ﬁ [(pi-ki“l— ie) (pi—ki-iE)]
i=1
XR¥p )} . .R¥ (P IR(k ) .. .RUk) (3.34)

The asymptotic expression for the other component of the Jost solution Xz
*
yields a series for the charge density dptx) = ¢ () (x).

Gel'fand-Levitan series as a generalized Jordan-Wigner transformation

The Gel'fand-Levitan transform {3.31) has a wvery interesting struc-

ture which can be studied term by term. Perhaps I should say at the outset
that I'm not entirely satisfied with the style of analysis that I'll
outline in this and subsequent sections. It would be nice if there were a

more elegant way of studying Green's functions than term-by-term analysis
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of series expansions. My general feeling is that a better approach would
make more direct use of the Gel“fand-Levitan integral equation and the
Jost solutions, but such an approach has not yet been devised. The
situation 1is reminiscent of the direct problem, where the properties of
the 2 and b operators were first discovered by studylng their series
expansions and then subsequently derived by more elegant means. I hope
that this history will repeat itself for the inverse problem, but for now
I must rely on the term-by-term approach.

The lowest order term in (3.30) is just the Fourler transform of the

reflection coefficient
dk ik x - - .
o9 (0 =f-——0-e 0 R(ky) = R(x). (3.32)
The second term is

—_a Te

dp, dk, dk (k. -p,¥x (~c)R*(p,)R{(k,)IR(k,.)
o1 =f_l 01 01 "1 1 1 0 (3.33)

Hereafter, momentum denominators will be understood to have infinitesimal

negative imaginary parts. By writing the denominator in (3.33) as

1 1 1 1
Y - - = — -— _ » (3-34)
(py= kgl (py= k) Ky [Pl kg Py k1]

making the charge of varilables kl“ ko in the first term and using the

comuutation relation (2.53) we can replace the integrand in (3.33) by

(=c) N (=2c) (1)
(k) (p k) (py= k(e ok 1e)  py-k

. [S(klo) - 11. {3.35)
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Equation {3.33) can then be written very simply in coordinate space

P
o ¢y =f dz [R*(2)R(x)R(z) - R*(z)R(z2)R(x)]. (3.36)
X
To understand the general term ¢(n) you should think of (3.36) as being
obtained from ¢(0)(x) [i.e., E{x)] by inserting the operators ﬁ%(z) and
R(z) in two different ways and then I1ntegrating over z. The first term
in (3.36) is an "outside" insertion and appears with a plus sign, while
the second term 1s an "inside" insertion and has a minus sign. This
pattern repeats itself in a stralightforward way for the higher terms in
the serjes, with each term ¢(n) being obtained from the previous
term ¢(n—l) by an "outside minus inside" insertion of ﬁ%(zn) and ﬁtzn),

with z, integrated from z. 1 to . For example, the next term 1s

)

62 (x) L”dzlj:dzz{[ﬁ'*(zz)ﬁ'*(zl)E(x)ﬁ“(zl)ﬁ(zz)

1
f{*(zl)ﬁk(zz)ﬁ’czz)ﬂx)ﬁ(zln (3.37)

[B%(z,)R* (2 )R(z  R(x)R(z) - Rx(zIR*(2,)R(z,)R(z )R(x)12,

where the first two terms In (3.37) are obtained from the first term in
(3.36) and the second two terms of (3.37) are obtained from the second

term in (3.36). The general term can be written most easily in momentunm

space,

dp, n dk_ ik .x
(n) —_— i—""1 0
¢ (x) = f ’]! "‘“—‘“T e fdzl...dzne(x < 24 Coea® zn)

n
Snl--.s S 1)

n,n-1

x R*(Pl)---R*(pn)R(kn)--.R(ko), (3-38)
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wnere st = Spy;) and 8,2 S0, )). The factors (SS...5-1) in (3.38) are

ij i

the momentum space version of '"outside minus inside" insertions. I will
not give a complete derivation of (3.38) here. The only derivation I
know 1involves a rather 1lengthy combinatorial analysis which is ﬁost
easily handled by graphical technlques. It turns out that the Gel’fand-
Levitan series for ¢(x) can be glvea a convenient graphical interpre-
tation in terms of "factorized graphs," which were developed for this
model several years ago.l9 This graphical formalism is very useful for
handling the comblnatorics involved in deriving formulas likg {3-.38), but
it would take us too far afield to describe it here.

The form of the Gel fand-Levitan series provided by Eq. (3.38) is
particularly well suited to studying Green’s functions in the st;ong
coupling (e+*) limit. In fact, in the limit c+», the Gel’fand-Levitan
transformr reduces to the more familiar Jordan-Wigner transformation.’
For c¢+=, §>1, and Eg. (3.38) reduces to

¢(n)(x) = -(—_I?I-%E NR [fwdz E*(z)ﬁ(z)] E(X); (3.39)
v X
where Np specifies normal ordering with respect to the R operators. Note
that the algebra of R operators (2.53)-(2.54) reduces to canonical anti~
commutation relations, and thus ﬁ'(x) is a local fermion fiela. The
transform {(3.30) reduces to

9(x) = Nypexp [-2_[ R“*(z)'i(z)dz] R(x) (3.40)

X

which may also be written

dx) = exp [i?rf E*(z)g(z)dz] E(x). (3.41)
x
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This can be recognized as the standard form of a Jordan-Wigner fermion-
to-boson transformation. The Jordan-Wigner transformation is also used
in the solution of other models (e.g.,.the 2-D Ising model and the X-Y
spin chaln) which have the algebralc structure of a free fermion
theory. These free fermlon models can be regarded as special cases of
more general Bethe’s ansatz models (e.g., the Ising mwodel and XY spin
chain are special cases of the Baxter model and the XYZ spin chain
respectively). Whereas the theory of Green’s functions for Bethe’s
ansatz models is not very well understood, the speclal free-fermion cases
are rather well-studied. The Green’s functions for the c¢=% non-
linear Schrgﬂinger model were first discussed by Schultz?0 and Lenard,21
who related the 2n-point functions to the nth Fredholm minor associ;ted-
with an integral kermel K(x,y) = sin(x-y)/(x-y). 1I°11 come back to this
result in Section V, where I shall discuss the large ¢ expansion of the
Green’s functions. Recently, in an elegant series of developments by

22 the Green’s functions for the free—fermion

Sato, Miwa, and Jimbo,
models were found to be deeply related to the theory of i1somonodronic
deformations of linear differential equations, whose mathematical origins
g0 béck to the early part of this century. In particular, this con-
nection allowed SMJ to express the two—point functions for these models

in closed form in terms of Painlevé functions. 1”11 review some of these

developments in the last lecture.
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IV. GREEN’S FUNCTIONS-GENERAL FORMALISM

I want to consider the two-point equal time correlation function
<P (x) d(y)>q where <...>q represents either a ground state expectation
value or a thermal average, depending on whether we’re_discussing the
zero or finite-temperature Green’s functions. The basic idea of the
quantum inverse approach to Green’s functions 1s to express &*(x) and
¢(y) in terms of R* and R operators and use this expression to coﬁpute
expectation values. In order to do this we need two .theorems, a

reordering theorem and a trace theorem. The reordering theorem tells how

to write the operator product ¢*(x) ¢(y) as a normal ordered functional

of R* and R. The trace theorem tells how to compute the thermal average

of a normal product of R*“s and R’s.

Reordering Theorem

Beginning with the Gel®fand Levitan Series

N dp '
oy) = ): f 2,, ]0| 2,, 8y (pyokysy)

R*(p;)e--R*(p) R(ky)e--R(kp) (4.1)
it N 4dp N dk
* — i pr— i * .
$ (x) = Ngo f JJ CT [1| T Bk Py %)
R*(po)...R*(pN) R(kN)...R(kl), {4.2)

we can form the operator product ¢*(x) ¢(y) which must be rearranged into

normal ordered form. For the present discussion, the integrand gy may be
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taken fgom either (3.31) or (3.38). Recall that in the derivation of the
quantum Gel’fand-Levitan equation we made essential use of the fact that
the commutator [R*(k), d¢*(x)], Eg. (3.17), could bde analytlically contin-
ued into the lower half-plane. This same analyticity property can be
used to derive a reordering theorem for o*(x) ¢{(y). For definiteness,
consider the case x > y. Write ¢*(x) as a GL seriles but leave ¢(y),
glving

= N dp, N dk,
= E -_— —_— k,,p.:
o (x) $(y) =0 f ,OI 2n p 2m gy (kyspyix)

R*(pg)e s R¥(pIR(c) e o ROe ) oCY) . (4.3)

For x > y, the analyticity of [R(k), ¢(y)] Iin the upper half-plane allows
us to move &é(y) to the left past all the R(k)“s. All the coammutator
terms vanish, since for each ky gN*(ki,pi) is also analytic in the upper
half-plane and the integrand + 0 asymptotically. Thus ¢{y) can be placed
between the R*’s and the R’s in (4.3) and then expanded, yielding a nor-
pal ordered series for ¢*(x) ¢{y):

. @ N dp, N dk
ACK I 7 T Py

R*(po)oooR*(pN)R(kN)ootR(ko), (4-4)

where
N

*
FN(pi,ki;x,y) = ;O gﬂ(ko"'kﬂ—l;po‘.-pﬂ;x) gn-—i(PHI...pN;kl".kﬂ;y)

(4.5)
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Temperature Green’s Functioms: Trace Theorem

As I discussed in Section II, the theory of Green’s functions is
being developed here in the infinite volume formalism, where the R
operators have simple commutation relations {2.53)-{2.54) and also

commute simply with the Hamiltonian
[H,R*(k)] = kZR* (k). (4-6)

With these algebralc properties, the two~§oint function can be computed
term by term from the seriles {(4.4). Of course, in tﬁe infinite wvolume
formalism we must be careful to define the correct prescription for hand-
ling the infrared singularities which arise from Integrations over an
infinite volume. The subtleties assocclated with these Infrared singular-
ities and their relevance to the formulation of statistical mechanics
without a box were dilscussed somz time age in the language of factorized
graphs. (See the second paper in Ref. 19.} The procedure which I %ill
outline below evolved from these graphical studies.

We will consider the finite temperature Green’s function

[Tr ¢ (x) ¢(Y)e_BQ]_

G (K“Y)"-“ — >
Tre B2

B,u

(4e7)

where @ = H-iN., In computing the trace in the numerator of (4.7) we must
consider diagonal matrix elements of the operator in square brackets. 1In
the calculation of these matrix elements, we encounter two basic types of
infrared divergence. One type arises from the presence of disconnected

graphs in the trace, which leads to momentum space delta-functions with

vanishing argument (i.e., 8(0) factors). These disconnected graphs may
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be easily removed by dividing out a factor of Tre B 45 in (4.7). The
other type of infrared divergence is more subtle. It arises in the con-

nected part of a matrix element, e.g.,

<py-eepy 1870 00 e P e, (4.8)

when we try to take the forward limit Py * kj+ Imagine computing the
matrix element (4.8) from the many-body coordinate space wave func-—
tions. This involves integrating over the coordinates ZisseeyZy of the N
particles. The forward singularities arise from the asymptotic parts of
this integration which become undamped in the limit Py * ki (i.e., terms
1(p;~ky)z; .
which behave like e as z; * t ). If we considered a limit of
{4.8) wvhere some but not all of the P;“s are set equal to the k;’s, then
these singularities are really there and the limlt does not exist because
of divergences of the form (pi-—-ki + 15)'1. However, te compute a trace
we need the dlagonal (forward) matrix element, which is obtained by set-
ting all momentum differences (pi-ki) to zero simultaneously with fixed
ratio. For the connected part of the matrix element (4.8) this forward
limit is finite, because each singular denomintor (pi—ki + 1¢) 1s muleci-
plied by a vanishing factor of the form [ei(e"e')-ll, where O is a sum of
Bethe”s aansatz phase shifts depending on the relative momenta kij in the
initial state, and ©° is the corresponding sum of phase shifts for the
pij’s in the final state. In the forward limit the phase shifts in the
initial and final states match up, f.e. 0% + @, rendering this limit
finite. Pursuing this argument, it is now easy to see the correct pro-
cedure for calculating the forward matrix elements needed to compute the

trace in (4.7). Consider the effect of any reasonable sort of cutoff on
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the coordinate space integrations, e.g., a sharp cutoff {(a box of length
1) or an adiabatic cutoff (i.e., keeping the 1e’s finite in the singular
denominators). This simply regularizes the singular denominators without
affecting the wvanlshing numeratoers [ei(e-e’)—ll. So the correct pre-
scription is to set to zero all terms in the matrix element which have

singular factors of the form

[ei(0‘9'3~1]
pi—ki + 1€

. (4.9)

The connected forward watrix element is given by the remaining terms
which have no singular ratios and hence have an unambiguous forwqrd
limit.

I will now introduce the basic device that will be used to correctly
regularize the infrared singularitles and compﬁte the temperature Green’s
function (4.7). I will call this device the ‘"infinitesimal boost

nethod." Define the Galilean boost generator
K =fx¢*(x) §{x) dx. {(4.10)
The R operators have a simple behavior under boosts:
eld¥p (kye~19K = R(k + q). (4.11)

The basic assertion of the infinitesimal boost method is that the Green’s

function (4.7) is given by the formula

Gg ,(x=y) = lim Tr [¢*(x) o(y) e-Bne-qu] . (4.12)
> q_)o
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From the previous discussion it is easy to see why this methed works. A
forward N-body matrix elewment of the operator in square brackets in
(4.12) will be of the form (4.8), where the ki's are shifted from the
p;’s by a small momentum q, i.e., ky = pj-q. This does two things.
First is eliminates disconnected graphs, since a disconnected subgraph is
essantlally an integrated matrix element of e B% petween states
<pys+e+>pgl and lpy~q,...,pg~g> which vaunishes by momentum conserva-—
tion. (In fact we could have divided (4.12) by a factor Tr(e'Bge"qu),
which 1s unity because 1t only receives a contribution from the zero
particle state.) The fully connected graphs do not vanish because the
operator ¢*(x) ¢(y) is there to absorb the momentum Ng. In addition to
eliminating disconnected graphs,'formula (4.12) also sets factors like
(4.9) in the singular comnnected graphs to zero (which, as I have argued,

is the correct thing to do). This happens because the phase shifts O and

@ in the numerator depend only on the relative momenta kyq and pij which
are not affected by a Galilean boost. Thus the numerator 1is identically
zero even for finite q.

Using the equation (4.12) along with the series (4.4) and the alge-
braic properties of the R-operators, we may compute the Green’s function
term by term in the series. To do this we will use a convenient theorem
for evaluating traces of the form TI{R*(pO)..-R*(pN)R(kN)-..R(ko)e_sa

e'qu}. Consider first the simplest case N=0,
Tr{R*{p) R(k) e~B% o~1aK}, (4.13)

Using the properties
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2
R(k) e~ B = o=Blk%-u) -8R p oy (4.14)
R(k) e~1aK o o~1qK pep 4 4 (4.15)

R(k) R*(p)

]

2m8(p - k) + S(k - p) R*(p) R(k), (4.16)

and the cyclic property of the trace, we generate a fugaclty series for
(4.13) in the limit q + O:

2

Q o198y — -7 )" R <knqlp> {140(q)},
n=1

Te R*(p)R(K) e ©
(4.17)
where z = eBu = fugacity. By an inductive argument, this result can be

generalized to the following trace theorem:

Tr {R* (p ).« R¥(p) R(ky)« - R (k) o~BR ~igKy

2
o N n, -n, Bk
- (=Y ¥ m [(-z) te it ] (4-18)
no,nl,---,n N=1 i=0
<k0 + noq,---,kN + l'LNq,PO-c-pN> X {1 + 0 (q)},
where
lpo.p-pN> = R*(po)tolR*(pN)l O>o (4. 19)

In normal ordered GL series, such as (4.1) or (4.4), the integrands

gy or Fy are not uniquely specified. This is clear, for exanmple, fron
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the equivalence of expressions (3.31) and (3.38). Wnhat 1s uniquely
specified is the "R-symmetrized" function gN(S) or FN(S) which {is
obtalned by symmetrizing over the p“s and over the ks and using the

commutation relations of the R-operators. Thus, for example

() - 1 — —
’ i<j i<j
P3P Q,>Q,

(4.20)

Any two functions which lead to the same R~symmetrized function will give
equivalent operator expressions. Using the trace theorem (4.18) and the
GL series (4.4), and writing the inner product of R~states in (4.18) as
sums of products of §-functions and S-matrices we get the result for the -

Green’s function,

2
b N N n, —fa,p, dp, .
Gy ) = Um T Y (-I)Nf T [(—-z) N .2._{@.] x
! q"*ﬂ N=0 no,---nN=l i=0
(4.21)
x FN(S)(p,p - 04} X,¥)-

In order to proceed further, we must derive some properties of the
functions FN(S)' These are obtained from (4.5) and (4.20). Note that
the integrands g, in the GL series for ¢(x) can be written in many
different ways (only the R-symmetrized function has meaning), in

particular, as 4in (3.31) or (3.38). Let us first consider the n;
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dependence of FN(S)(p,p—nq; X, ¥)e Since the denominators 1in (3.31)
involve only single momentum differences (Pi'kj)’ we coaclude that
(s) HN(RO’...HN; Pr%>Y)

Fy (@pmaqs x,5) g I v (4.22)

where Hy 1s a homogeneous (N+1)th order multinomial in ng,-..,ny which is
symmetric under simultanecus permutation of pi’s and ni's. (The
finiteness of FNCS) in the q + 0 limit follows from the inductive argu-

ment outlined below.) Thus each term in HN is of the form

ng My eeemy x function of (p,x,¥), ({.23)

where

=z

hi = N -+ 1- (4-24)

e
It

0

Let us pick out the "nonsingular" (i.e., ng independent) term in (4.22)

by writing

B (ngeeomy; P>X,¥) = mgnyeeemy fN(p;x,Y) + ﬁﬁ(no---nﬂ;p,x,y),
(4.25)

where ﬁh contains only terms where one or more of the li's is zero. The
point of making this separation is that now ﬁﬁ may be obtainedAby symme-
try in the ny’s from its value with one of the n;’s set equal to zero,
e.ge, ﬁklnN -~ o+ The function ﬁhlnN = ¢ 18 determined by the residue of

the pole In Fﬁ(s)(p,k;x,y) at py = ky which can be related to the lower

order function FN-I(S)' This 1s the essential inductive step which
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allows us to sum up all the nj;-dependent terms In (4.21) and express the
Green’s function entirely in terms of the functions fy in (4.25). To
study the residue of the pole in FN(S) at py = ky» it is convenlent to

use (4.20) with an unsymmetrized function Fy which 1s obtained from

{3.38):
ikoy—pox N

FN(p,k;x,y) = g ggs Jr dzl...dzN B(y<zl<...<z£<x<z£+1<...<zN)
N i(k.-p.)z
— L R 14 2-1,2

x [i!:!l a } (310“1)..‘(8208 S‘Qlaoos Sz’iwl-l) (4-26)
0, &1 L, 041 _ on N-1,N _

x (S S 41,008 Spe1, g "1)res (87 Syg.ees Syon-1"1)*

From this expression 1t is easy to show that the residue at py-ky is

given by

N-1
(5) (-i) Lyl (s)
F — S(p,—p,.) S(p. - k.} =L} F
Sy By - K 1’=Io 1Py N Fi N-1

(4.27)

- N-1 (s)
— — > {(—) n,Ap,.-p, )¢ F. 5.
ki =Py~ n,q n i)——;ﬂ i 1 N N~1

vhere A(k) is given in (2.18). The relation (4.27) allows us to sum up
the n; dependent terms in (4.21). To understand the result, it is
instructive to first consider the result of summing only the nonsingular
(ni—independent) terns in Fh(s) (i.e., keeping only the first term in

{4.25). This would give
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]z

s

N

1 dpy
2 77 fN(p;x,y). (4.28)
B(z:'l ~})

0 i=0 .
e + 1

Using the induction (4.27), it can be shown that the sole effect of the
Blp{ -1 -1 Be(py) -1

singular terms 1s to replace |e + 1 by | e + 1 where

g(p) dis the excitation energy function of Yang and Yang, Fq. (2.21).

Thus, the full Green’s function is reduced to

J(x=y) = f f 'NT [5(pi) ;—i-] fFa(psx,sy), (4.29)
N=0 £=0
where
plp) = —-B-;@-;-——-———-- (4.30)
e + 1

We have now isolated all the B and ¥ dependence of Gﬂ’u(x—y) in terws of

a single particle distribution function P(p). The familiar thermodyna-
mics of Yang and Yang can be recovered from (4.29) in the limit (x-y)

+ 0. In this case the polynomial HN in (4.25) can be shown to have an
N

overall factor of X n, e This fact allows us to determine fy as well
i=0
as H from the induction (4.27), giving

X dp;q M-I
) = f [p(p ) -—] Mp.=p. ) (4.31)
1 N~ Jﬂ 2w PAN i “itl



38 FERMILAB-Conf-81/47-THY

This can be recognized as the expansion of the Yang and Yang integral

equation for the density function p(k)

L) Ly +f512-9 Ak - q) p(q)- (4.32)
B(k) !

Thus, the zerc separation Green’s fuanction, which is just <¢*(0)¢(0)>R =

particle density, is given by

GBU(O) --fdk plk), (4.33)

where p(k) is defined by (4.32), (4.30), and (2.21). From the density as
a function of B and U, other thermodynamic quantities may be derived.
Finally, let me note for later reference that the Green’s function

expression (4.29) has a simple zero temperature limit

o k

F }_I._dpi
G(x-y) = lim GB, l](:Ac--y) = z f T fN(p;x,y)- (4.34)
pre v=o *p O

To summarize, we compute the Green’s functions as follows: Begin with
the functions FN(S), the R-symmetrized GL integrands for ¢*(x)é(y) de-
fined by (4.20) with some suitable unsymmetrized integrands FN’ e.g., Eq.
(4-26). Then calculate the functions fN(p;x,y) by Egqs. (4.22) and
(4.25). The zero-temperature and finite temperature Green’s functions
are given by (4.34) a2nd (4.29) respectively.

It would be nice to write the Green”s function in closed form, but
so far this has not been done. But recently it was shown that the first

two terms In a strong coupling (large c¢) expansion of G(x~y) may be

expressed in closed form in terms of Painleve functions. The large
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coupling-results and their connection with the work of Sate, Miwa, and

Jimbo will be discussed in the last two lectures.

V. LARGE ¢ EXPANSION OF THE TWO-POINT FUNCTION

The Green’s functions for impenetrable bosons (c=%) were extensively
studied, first by Schultz and Lenard and more recently by Jimbo et al.
To make contact with these results we will consider a large ¢ expansion

of the two-polint funection
¢ =6 +eth) 4 6@ 4, (5.1).

where 6™ {s of order (1/¢)®. The form of the GL integrands FN‘given in
(4.26) 1s well-suited for studying the ¢+ lipit. Note that the z, in-
tegrations are ordered, z1 < z, < aes < Zys and that £ of the inte-

grations are "trapped" between y and x, and ¥-4 of them are "untrapped"

between x and = With each trapped z-integration iIs associlated a factor
{odd number of 8°s - 1), (5.2)

while each untrapped z-integration has a factor

/

{even number of §°s - 1l). (5.3) 7

In the limic ¢+, S(pij) + =1. and the factors (5.2} and (5.3) become -2
and 0 respectively. Thus, only the terms in (4.26) with all =z-

integratidns trapped contribute at ¢ = «. (The Jordan-Wigner "tails" in

.\I
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(3.41) cancel exactly outside the interval y < z < x.) This gives

I(k,-p,;)=z
e T 1T 5.4

—

N
FN(p,k;x,y} = {-2) fdzl...dzNB(y < z)<eend z < x) 1'=1

Since the R-operators anticommute for ¢ = ®, we may symmetrize (5.4) over
sizultanecus permutations of pi's and ki's, allowing us to make the

replacement

FN(P:k’x,Y) * N! dzN e - (5'5)

(=2)% f" f" B Alky-pydzy
y y 1

1

Note that because there are no untrapped integrations, there are no poles

at Py= k, and we may set g = 0 from the start. Since § = ~1, the R~

i

symmetrized function FN(S) involves a determinant. In this way we get
the expression for the ¢ = « Green’s function

co N N dp X X
0, .\ . C2) 1750y —= :
Gg, ) N):o T f['d plpy) zﬂ]j; dz, L dzy  §(Xs¥3%:D), (5.6)

where @ i 1s an (¥+1) x (N+1) determinant of exponentials, e.g,

Do =1 (5.7a)
-ipy(x-y)  ~ipy(x-z)) TN
91 = ¢ ¢ (5'7b) }
_ipl(zl"'Y) . /
e 1 : _ !
|
E-—ipo (x~y) e—:i.p0 (x-z 1) e-ip 1 (x724) !
@, = ehipl(sz 1 e—ipltzl-z?’) (5.7c)
2 .
—ip, (z,~y) ~1p, (2,5-2)

e e 1
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etc.

By carrying out the p; integrations in (5.6) we may write

K(x:Y) K(x’zl)

K(z,Y) K(zl’zl)

(0) 1 *
G ’u(x-y) -3 AK(x,¥) -j; dz1
(5.8)

where A = 2/7, and the kernel K is the Fourier transform of a Fermi-Dirac

distribution,

KGoy) =3 [PV 56y o (5-9)

82w, 4oL

with po(p) = [e . At zero temperature the kernel reduces to

k

F
K(x-y) =—§- _I; eIy o 9—%%11)- (5.10)

(Hereafter, I will set kg 1.)
The ¢ = = Green’s function (5.8) is essentially a Fredholm minor
associated with the integral kernel K(x,y). Let me remind you how an

integral equation is solved by Fredholm determinants. Consider the

integral equation for a function R{x,y),

b
CR{x,y) = XK(x,y) + A] dz K{x,z) R(z,y)- {5.11Y)
a
By a continuum version of Kramer’s rule, R(xX,y) may be written as a ratio
of determinants,

DI(X,Y;a,b)

R(x,¥) =W' (5.12)
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wheare Dl is the Fredholm minor

b
Dl(x=Y;a:b) = lK(x,y)—A?[ dzl
a

K(x,y) K(x,zl) k3 b b
5 fdzl fd22|3><3|—
K(zl,y) K(zl,zl) " Ya a
(5.13)

and D is the Fredholm determinant,

C b 2 b b 1K(2+:2.) K{(z,,Z,)
D{a,b) = l—AfK(z,z)dz +%|- t:lzlfdz2 1’71 1*"2
a *Ya

\ -sawm (5-14)

K(zz,zl) K(zz,zz)
= Det (1 - J\K)o

The ¢ = = Green‘s function (5.8) d4s thus a Fredholm minor with its

argumants evaluated at the endpoints of the integration regionm,
¢ (a - b) =7 D, (a,bsa,b). (5.15)

All of these ¢ = % results have been known since the work of Lenard.
Here we see how they follow as a special case of the quantum inverse
formalism. Moreover, we can now go on to consider finite ¢ corrections.

An expansion in powers of (1/c) can be obtained by collecting the
terms in (4.26) according to the number of untrapped‘ z-integrations.
Each untrapped integration is accompanied by a factor (even nuamber of S5’s
- 1), which is of order (l/c). Here I°1l consider the Green’s function
up to order (l/c), so only terms with zero or one untrapped integration

must be kept.

(1) _ (1) (1)
¢t =gt 4+ 61t (5.16)

For the terms with no untrapped integrations, we use expansions of the

form
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ke
10
S, D ~ 2 -—0)

12 2
(S;g 1(8,,8° 75, ~ 1) ~ (-2) [1 -

kgt kog* kgt P)p) ] (5.17)
ic

etcs By this approach we obtain the 1l/c correction

o N N d N
(1 _ (1 (=2) — —L
Gy (1::) NZI N LLIO Plpy) 7 j[ (pg- pj)]
= = (5.18)
X X
X | dzl..- -g dZN @N(x,y;z,P),

and QN is the same determinant of exponentials which appeared in the ¢ =
@ Green’s function. By writing out the determinant In (5.18) and

expressing the factor I(p.— p.) as derivatives with respect to x,y, and
0 ¥y

J
zy, 1t 1is possible to write (5.18) in terms of the Fredholm resolvent and

minor (5.12) and (5.13). Let us define the functions R(t) and D, (t) by

t
R(t) = XK(t,0) + AZI dz| K(t,z)) K(z[,0)
0 (5.19)

t t
3
+ AL dzlj; dz2 K(t,zl) K(zl,zz) K(zz,O) + .o

2 t E{t,}) K(t,zl) AB t t
Dl(t) = A K(t,0) - Xj dzl "‘Ti'j dzlj d22]3 X 3= 4ee
0 K{z.,0) K(z,,z.) 0 0
1 1’71
(5.20)
After some manipulation, (5.18) may be written
2 a21nD.  91mD. 31D
¢Weey =L p J[21n R _ 31aR dlnR} _ 1 1 1 (5.21
0 e D18 3tan 3t X 3E9X 3c ax | {(°-2D)
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Next we must consider the contribution of the terms in (4.26) with

one untrapped z-Integration. The corresponding S-matrix factor may be

expanded,
N-1
oN N-1,N 2 s _
5" Sygre-S SnoN-1 | T Te igo ey =lo) = (py = py))
(5.22)
2 X o
= Ic 12;?0 (ki“‘ Pi) + e (PN" kN)-

Since this 41s already of order 1/c, the rest of the expression can be
evaluated at ¢ = = In particular, the R’s can be taken to anti-
comnute. The second term in (5.22) is found to vanish by antisymmetry,

while the first term gives a contribution proportional to the ¢ =

Green’s function,

o)

G{” =2 (0, (5.23)

Tie

To summarize, the first two terms in a l/c expansion of G(t) are

(0 1
G 3 D1 (5.24)
2 321nD alnD, 31nD
oD _ 2.},  [8°1nR _ 31nR 3inR) 1 ™ 1 (5.25)
e ataA ot  3A a3 at ar ir iy

where R(t) and Dl(t) are glven by (5.19) and (5.20). In the last
lecture, I“1l discuss the method for treating Green’s functions developed
by Sato, Hiwa, and Jimbo22 and applied to the ¢ = < nponlinear
Schréﬁinger model bj Jimbo et al.l? This method gives closed forms for

R(t) and D{(t) in terms of Palnleve transcendents.
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VI. CREEN’S FUNCTIONS AS PAINLEVE FUNCTIONS

Simple Derivation Of Painleve Equation

Consider the resolvent R(x,¥) at zero temperature defined by (5.11),

b X
RGe,y) = Mey) + 22 [ Kx2) K(z,y) dz + oen = [-l-f—%](x,y) ,(6.1)
a

where the kernel K(x,y) = sian(x-y)/(x-y). The x and y dependence of

(6.1) may be written in a factorized form by defining

b +iz

b b +iz
R:I:(x) = eﬂ;ix+ A A dle(x,zl)e 1+ J\ZJ dzl':[ dzzK(x,zl)K(zl,zz)e 2

{(6.2)
F ohee = [1 -—IAK E't] (x)!
where
By (x) = otix, (6.3)

The quantity Ry(x) R_(y) - R_{(x) Ry(y) can be worked out term by term

using

E (z) E_(2") - E_(2) E4(2") = 2i(z-2") K(z,z"), (6.4)

and

(x-2z1) + (21-239) *teeet (2,-y) = (x-y). (6.5)
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This gives the factorized expression

AR, 00 R - R_G0) R.(9)]
2i(x - ¥)

R(x,y) = . (6-6)

The series (6.2) may be differentiated term by term to obtaln BRilax-
Since K 1s a difference kernel, we may replace %; 3 --Egm, integrate by

1
parts, then replace 3/d3z; * -3/8z,, integrate by parts again, etc., until

+iz
the derlvitive is acting on e N, fThe surface terms can also be summed,

and we find

aI{t(X)

F +1i Rt(x) + R{x,a) Rt(a) - R{x,b) Ri(b)‘ (6.7)

Using the factorization property (6.6), it is seen that the column vector

R, (x)
y(x) = \ p ) /) (6.8)

satisfies a first order equation

vhere
R (a) R (a) - R2(a)
+ - +
Af(a) = A s (6.10)

R%(a) - R (a) R_(a)
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¢ = . (6.11)

We may also derive an equation by differentiating R* with respect to a or
b The derivative acting on the upper or lower limit of integration
gives terms which sum up in the same way as the surface terms in (6.7).

In this way we get

A
R O (6.12)
EI' = —Ala Y, (6913)_

Eqs. (6.9), (6.12), and (6.13) can be written as a total differential

relation,

dy = %y, (6.14)

where £ is a differential form given by

2 = A(a) din(x-a) - A(b) din(zx-b) -+ Cdx. (6.15)

The linear system of equations (6.14) is the fundamental property of the

series (6.1) with kernel sin(x-y)/(x-y) which was discovered by Jimbo, et

al. Later on, I will discuss how (6.14) follows directly from an iso-

monodromy property. But first let me derive the Painlev; expressions for
R(t) and D(t), using (6.14). Let

x=b =1t/2
(6.16)

a = -t/2,
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Then din(x-a) = diat = dt/t
din(x-b) =0 (6.17)
dx = 1/2 dt.

Denote by ri(t) the quantities (6.2) evaluated at (6.16). Then (6.14)

can be written

e -5 (6.18a)

-2 r,. (6.18b)

Now introduce two functions r{t) and ¥{t) by

r = eiw/4 r cosh —;‘ G

|H
X

) (6.19a)

r o=et™4 pgian Ly~ AT (6.19b)
2 2
Then Egs. (6.18) reduce to

2 =:§I (y* + cosh {), (6.20)

and

It

R VR |
Ll + T cosh y'»«-—;—sinh 2y = 0. (6.21)

t
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Eq. (6.21) 1is equivalent to a Painlev; equation of the fifth kind. It is
convealent to make another change of wvarlables
sinh Y = cot ¢. (6.22)

Then Eq. (6.21) becomes

o = [(¢')2 - 1] cot ¢ +i1——;-ﬂ. (6.23)

The function ¢(t) 1s completely specified by (6.23) along with the

boundary condition
$(e) ~t - A2+ 0(ed) as t > 0, (6.24)

which follows from the serles expression (6.2).
All the Ffunctions needed to express the ¢ = ® Green’s function and
the 1/c correction can be expressed in terms of ¢{t). The Ffunction R{t)

defined by (5.19) is

T L
R{t) 7 sind ’ (6.25)
while Dl(t), Eq. (5.20) satisfies
8%n D3 [ N2 _ ]
e RS e g L (6.26)
4 sin" ¢
Eq. (6.26) along with the condition

specifices let) completely. By numerical Integration of Eq. (6.23), the

functfons G(M(e) and ¢(e), Eqs. (5.24) and (5.25), may be easily
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plotted. The long distance behavior of the Green’s function may be
studied using the asymptotic expansion of 4(t). The behavior of ¢(t) as
t * © depends critically on the value of A For -= < A< 1/7, the asymp-
totic behavior 1is ¢{t) ~ t + O(int) while for 1/7 < X < =, it 13 ¢§(t)
~~t + 0{f4nt). At the critical value A = 1l/m, ¢(t) goes to a constant,
&t) ~ /2 + 0(l/t). The ¢ = = Green’s function c(0) is givenrin terms
of &(t) at A = 2/7m while the 1l/c¢ correction c(1) involvés o{t) and its
first A-derivative at that point. It is amusing to note that the criti-
cal value X = 1/7 also arises in a physical problem, that of deterunining
the eigenvalue distribution of random matrices.

To study the long distance behavior of the two-point functionm, we

use the asymptotic expanslon

¢(t) ~ -t + tg + kint + 0(1/t), (6.28)

where k and tq are A-dependent constants. For a detalled discussion of
the asymptotiec analysis, I refer you to the literature.? Here, I will
simply mention that the dominant effect of the lfec correction is to alter
the power-law falloff of the Green’s function. The full Greea’s function

G(t) behaves like
G(t) ~ const x t~V [1 + O(Ll/t)], (6.29)

where VvV is a c-~dependent constant. At ¢ = ®, Vaidya and Tracy showed

that v = 1/2. Our result for the l/c¢c correction gives

+ 0(—). (6.30)
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This agrees with a receant result of Haldane23 and also of Popov, who

obtained the value of Vv for arbitrary c,

v=3 ek, (6.31)

where p(kp) is the Lieb-Liniger density function at the Fermi surface.

Monodromy and Isomonodromlec Deformation Theory22

The connection between Green’s functionms and Painlevé functions is
particularly fascinating because of the elegant mathematical structure
which can be associated with the Painlev; equations. This mathematical
strucfure forms the basis of the analysis of Sato, Miwa, and Jimbo.
Before 1introducing these ideas, let me explain what Painleve did to get
his name attached to these functions. In 1902 Painlevé25 studied and
solved the problem of classifying all second order ordinary differential

equations of the form
y" = £(y,y"»t) (6.32)

where £ is an algebraic function, and with the requirement that the solu-~
tions should have no movable singularities. A movable singularity is one
vhose position depends on integration constants {i.e., on boundary condi-
tions) and not just on the parameters in the equation. For example, the
equation y° = 1/2y has a movable singularity because its solution is
y = (t-a)llz where a is an arbitrary constant which doesn’t appear in the
differential equation. Painlevé showed that there were six kinds of

equations of thls form whose soluticns could not be expressed in terms of
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elementary functions. These equations are known as Painleve I-VI. Some-

6 27

what later Schlesinger2 and Garnier showed that all six Painlev;
equations were obtained in a natural way as integrability conditions in
the deformation theory of ordinary differential equations. The relevance
of Painlevé equations to the theory of Green’s functions was first exhib-
ited by Wu et al.,28 who showed that the spin-spin correlation function
of the two-dimensional Ising model in the scaling 1limit could be
expressed in terms of a solution to Painlevé III. Motivated by this
result, Sato, Miwa, and Jimbo discovered a wvery elegant derivation of the
correlation function which exploited the monodromy property of a certailn
expectation value of order and disorder operators. The result of Jimbo
et al-,lz for the ¢ = © nonlinear Schrr;dinger model was obtained by a
similar technique.

To introduce the {1dea of monodromy and isowonodromic deformations,
let us consider a linear problem of the form

N A
dy v
ol u‘; = Y, (6.33)

where A, V= lye:2,N, are x independent M X M matrices, and Y(x) is an
M x M matrix solution satisfying some specified boundary coadition, e.g.,
Y(xg) = I. Y({x) is not generally single-valued as we continue around the
singularities at aj,ap,...ap-. In general, traversing a closed curve

around the singularity at x = a,, Will produce a linear transformation

Y(x) ———} Y(x) M,. (6.34)
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where M,, is an x-indepeadent matrix called the monodromy matrix. Near

X = a,, we can vwrite

- L
¥(x) = Y(x) (x-a ) v, (6.35)

where L, is 2 constant matrizx and Y(x) is nonsingular at x = a,  The

monodromy matrices are related to the L,’s by

2inL,,
y=e . (6.36)
. 3Y ~1
Looking at the x = a,, pole of I Y & we see that
Av = Y(av) L, Y(av) . (6.37)

The problem of constructing the monodromy matrices from the differential
equation (6.33) is somewhat analogous to the direct problem of scattering
theory. The analog of the inverse problem, i.e., reconstructing the
function Y(x) and the differential equation (6.33) from the monodromy
"data," is known as the Riemann-Hilbert problem. Schlesinger26 addressed
this question by studying the behavior of the equation (6.33) uﬁder =4
variation of the positions of the singularities a,. Specifically, he
allowed the coefficient matrices A, to depend on the a,’s and asked what
conditions would lead to monodromy matrices M, which were independent of
the variation. Such an "isomonodromic deformation" leads to a linear
system of equations for Y:

N A
Y ; v
ax = L R-av Y (60 38&)
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Y v
m - T %= Y. {6.38b)
v
In differential forms, this reads
dY = QY (6.39)
where
N
2= ) A dn(x-a ). (6.40)

v=]

The dependence of the A;'s on the a;”s is givean by the nonlinear con-
sistency {(integrability) conditions for the 1inear system (6.39). Using
Polncare’s Lemma, dz(anything) =0 (i.e., mixed partial derivatives taken
in reverse order are equal), we get the integrability condition

df = QAQ. - (6.4])
This 1is analogous te F,, = 0, Eq. (2.24) in the inverse scattering
method. In explicit form, the dependence of the A,’s on the au’s Wh;Ch

yields fixed monodromy data is given by "Schlesinger’s equations,”

A, LAU,AU]

- (n#v) (6.42a)
aau auau
A [A SA ']
v vy .
v v #y v v

In the simplest nontrivial case of Schlesinger’s equations, the Ay's
are 2 X 2 patrices and there are N=4 singularities. This case reduces to
an ordinary nonlinear differential equation which 1is just Painleve VI.

27 showed that Painlevé I thru V could also be obtained as

Garnier
monodronmy preserving deformation equations. For this one must coansilder

the lipnear equation
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N A
oY v
— = + 0y, (6.43)
ox \;1 x=a,

which allows for exponential behavior at infinity,

Y(x) ~ eCX [1 + 0(1/x)]. (6.44)
FTor {(6.43) the simplest nontrivial case 1is N=2, and the deformation
equations reduce to Painlev; V. This is the case which is relevant to
the nonlinear Schrgdinger model. The result expressing the functions

R(t) and Dy (t), Egs. (5.19) and (5.20) in terms of Painleve function can
be derived from a monodromy argument. To see how this works, separate
the kernel K(x,y) = sin(x-y)/(x~y) into two pleces, K = K, + K, with

o1 (x-y)
K*(X.Y) = & oy " (6.45)

Now define Rt(x) as in (6.2), and also define the series

n 2 2 - 1
Ry = By + MCE, + AK KB, + AKX KZE, +... = By + m—-{l«-)&] E,. (6.46)
Ve see that Rt(x) is nonsingular at x=a and x=b, while at(x) has a cut in

the x-plane from a to b. Using the discontinuity of the kernel,

Disc X_{(x,y) = wd(x-y), (6.47)

wve get

Disc E*(x) = TR, (x). (6.48)
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Thus, the matrix

R (x) R.(x)
vy = 0t L, (6.49)

R_(x) R_(x)

has an isomonodromy property. Defining closed curves ¥; and Y, arocund a

and b respectively, 1t is easy to show that

Y(x) ——;—B-Y(x)l‘il {6.50a)
1

Y{x) —? Y(x)M,, (6.50b)
9 2

where the monodromy matrices are

1 m {1 -m ' '

The monodromy is Independent of the positions of the singularities a and
b, and hence, by Schesinger’s result, it follows that Y(x) obeys the lin-
ear relation

dY

=)

(6.52)

where

= A(a) d¥n(x-a) -~ A(b) din(x-b) + C. {6.53)

The first coluen of (6.52) is just Eg. (6.9), but now elegantly derived
from monodromy properties. The Painlev; V equation follows £rom the
integrability condition dft = QAQ.

The SMJ analysis of Green’s functions adds soma substance to the

connection between Integrability and duality. This 1is especially clear



57 FERMILAB-Conf-81/47-THY

in the case of the two-dimensional Ising model, where the function which
exhibits a monodromy property is constructed from expectation wvalues of
order and disorder fields, and the monodromy is a direct consequence of
the algebralc properties of these fields. It is encouraging to note that
very similar ijideas have emerged In recent studies of four-dimensional

gauge fields.2?
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