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ABSTRACT

The quark-antiquark potential in QCD is discussed with particular
emphasis on the related §-function. The empirical information about the
potential at intermediate distances, due to the ¥- and T -spectroscopies, is
reviewed. Finally we examine the quantitative connection between the -
spectroscopy, formed by the anticipated t-quark and its antiquark, and the
short distance behavior of the quark-antiquark potential.

I. THE (QQ) POTENTIAL IN QCD

More than six years ago Appelquist and Po]itzerl were led by the idea
of asymptotic freedom to suggest that heavy quarks would form non-
relativistic positronium-like bound states, which should be observed as narrow
resonances. Since then the dynamics of heavy quark systems“ has been
extensively investigated. Theoretical efforts have been concentrated on the
static quark-antiquark potential in QCD and on the development of the
phenomenoclogical potential model. 7

The theoretical investigations® " have shown that the (QQ) potential in
QCD can be defined as the binding energy of a quark-antiquark pair in the
limit of infinite quark mass. It can be expressed in a manifestly gauge
invariant form as a Euc]igean path integral, the vacuum expectation value of
a rectangular Wilson Joop™ of size R x T,

ig$ dxHA
VR) = -lim %<trPeg§ M (1.1)
T+ 0
Equation (1.1) has provided the starting point for many attempts to compute
the (QQ) poge%ial from first principles, and in particular Jattice gauge theory
calculations™ "™ have recently led to very promising resu]ts.

Here we will be mostly interested in the short distance behavior of the
potential which, due to asymptotic freedom, can be calculated perturbatively
as a power ‘seré'e[slililzthe strong coupling constant. In momentum space the
potential reads’""?

2
i
Q

+% C,(G) -199- Nf] + 0(0‘%1—5(“))} ;
(1.2)

411C,(R)a e (p) arzlu) '
VIQ, 1y ars(i) = - ——2 7 M> {n% [( —131-(:2((3)—§Nf)1n



2

Q, ¢ and a=(n) are the momentum transfer, the sc:aiq in dimensional

e MS . . = 3 .
regularization and the coupling constant in the MS-scheme. As a physical
quantity the potentiﬁ! satisges a renormalization group equation without
anomalous dimension” ' (a = g“/4n),

I:ug% + B(g) 5% ] V(Q, wya(w) = 0 ; (1.3)
which implies the short distance behaviorw
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the relation between the scale parameters A_ and Am reads16

_ | 3] 10
AP = Afrg exp[gga (-9— CZ(G) -5 Nf)j[ . (1.5)

A represents the characteristic scale parameter of the coupling
constarit ap(u), which can be defined in terms of the (QQ) potential (cf. Eq.
(1.2)),

qu(u, Wy orelu))
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a =)
a'M—'S(IJ)[ 1+ qur (3—91- c(c) - 42 Nf) + o(agm—s(u))]. (1.6)

a (W) is a physical guantity, the strength of the quark-antiquark interaction
at momentum transfer u, and therefore gauge and scheme independent. For
SU(3) and 3 flavors one obtains

arre(u)
aM—S(p)I: L +0.78b,, “MES'F . o( o 2m(u)) ] (1.7a)
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ap(p)
and

_ — . (1.7b)
Ap = 148 Appe |

The coupling constant ap(u) satisfies the inequality”

GM"'"‘S(M) < ap(l-l) < U-M()M(u) ’ (1-8)

and may be a useful expansion parameter for other processes in perturbative
QCD.

The static (QQ) potential is a quantity which has the dimensions of
mass. It depends on dimensionless parameters {e.g. group factors) character-
izing the QCD Lagrangian and (if the masses of light quarks can be neglected)
a single scale which we may choose to be A or the string tension k. In order
to disentangle these two ingredients which determine the (QQ) interaction it
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is instructivezto study the l%irnension]ess f-function of the ruéming coupling
constant p{Q“) = a (Q)/4n.”" The asymptotic behavior of p(Q*) for large Q
reads (cf. Eq. (1.4))7
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and at small Q2 the hypothesis of linear confinement implies
Q%) m B 1140w , (1.9b)
Q+0 Q

where the parameter K is related to the string tension k and the Regge slope
a' of light hadron spectroscopy,

1 1

a' = = . (1.9¢)
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The B-function of the coupling constant p is given by
B, (0 = Q% 5 p(@) ,  (L10)
P 3Q? 22
Q"=Q"(p)
and from Eqgs. (1.9) we read off its asymptotic behaviors
B (p) —bop2 - blp3 + O(pl‘L) ’ (1.11a)
P 00
B (p) mw -pll+o(L)] . (1.11b)
P preo

The differential equation (1.10) can be integrafed using the boundary
conditions Eqgs. (1.9) for large or small values of Q. The requirement, that
both solutions are identical, leads, as a.,consistency condltio% to a relation
between fEe dimensionless quantity K/Ap, or equivalently a'A=g, and the 8-

function, Ms’
b
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We note that precisely the subtraction of the leading term at large p and the
one- and two-Joop contributions at small p are required in order to render the
integrals over the B-function in Eq. (1.12) finite.

Obviously, the B-function determines the relation between a' and A &=z,
Setting the scale of the theory by fixing a' or Am determines the (86)
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potential in terms of its B-function. In principle, the B-function can be
evaluated directly in QCD. At present, however, this has not been achieved.
Yet there exists a simple empirical B-function which has the following
properties:
. (i) at small and large values of p, By
required asymptotic behavior of Egs. (1.11);

(ii) at intermediate values of p, B_(p) is empirically correct, as it Jeads
to an accurate description of the V¥ ahd T spectroscopies, which probe the
quark-antiquark coupling strength at intermegiate distances;

(iii) the integral over 8 (p) yields a'AZ= = 0.27, i.e. a Regge slope of
a' v 1 GeV™“ corresponds to aPscale paramet% AI1 v 0.5 GeV. These values
for o' and Agg are consistent with results é—éained from light hadron
spectroscopy ang deep inelastic scattering processes.
This B-function is given by the following Ansatz:

(p) conforms to the theoretically

b
1 1 11 -2p
= - - 2 1.13
) > Tbgey 52 b ¢ » (L13)
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where the parameter £ is determined from the ¥ and T spectroscopies, which
yield 2= 24.

The B-function Eq, (1.13) is closely related to the (QQ) potential
proposed by Richardson.”” The B-function, which corresponds to Richardson's
running coupling constant, is obtained from Eq. (1.13) in the limit £ + o (or by
setting b, = 0),

. -1fb
BR‘C%):-bop?[l-e o] IR

Its intriguing feature is the essential singularity at p = 0. Precisely this
structure is expected if classical field configurations are important for the
transition between weak and strong coupling regimes. Yet the two-Joop
contribution to the B-function is required in order to relate the short distance
behavior of the (QQ) potential to a well-defined QCD scale pararneter, say
AE'G' These considerations led to the B-function Eq. (1.13).

The discussion of this section may be summarized as follows:

(i) The (QQ) potential can be defined in QCD as the binding energy of a
quark-antiquark pair in the infinite-mass-limit; it can be expressed in terms
of the Wilson loop integral.

(ii) The short distance part of the potential has been evaluated in
perturbation theory. The physical coupling constant o_{u), which is defined in
terms of the quark-antiquark potential, may be convenient expansion
parameter for other processes in perturbative QCD.

(iii) The (QQ) potential can be expressed in terms of the dimensionless
B-function B8 _(p) and a dimensionful constant which one may choose to be the
scale paramgter A or the string tension k. A simple empirical Ansatz for
B _(p) has been obtained which conforms to the theoretical expectations for
sMall and large values of p; at intermediate coupling strengths B _(p) is
empirically correct as the resulting potential describes successfully Rhe v-
and T-spectroscopies.
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II. THE {QQ) POTENTIAL AT INTERMEDIATE DISTANCES

Over the past six years the potential mc>d<=:l2 for heavy quarkonia has
been extensively developed. As we have outlined in the previous section one
expects theoretically the static (QQ) potential to be Coulombic at short
distances and to become linear at large quark-antiquark separation. The
"Coulomb plus linear" potential, which is obtained by a simple superposition
of both asymptotic limits, therefore represents the prototypelgf a QCD-like
potential model, and its detailed study by the Cornell group ® has led to a
successful description of the ¥ and T families.

More recently, variiéaus authors have investigated the effects of
logarithmic modifications™” of the Coulombic part of the potential which are
expeﬁed as a result of vacuum polarization corrections in QCD. Richard-
son’s™" potential, in particular, yields an excellent description of the (cc)- and
(bb)-spectra. In order to relate the short distance behavipr of the (QQ)
potential to a well-defined QCD scale parameter, say A=z,”” the two-loop
contribution to the B-function and the one-loop correctiof to the potential
have to be incqlaaorated consistently. These considerations led to a new
potential model”” and, within this framework, to a value of AT = 0.5 GeV
whic% determined from quarkonium spectroscopy, is <:onsiste‘kfS with ana-
lyses™" of deep inelastic scattering experiments.

QCD-like potential models have achieved a successful description l%f the
¥ and T spectroscopies, in particular with respect to leptonic widths'® and
hyperfine splittings which are most sensitive to the sf}cirt distance part of the
(QQ) potential. However, this success is not unique.”" It is shared with the
class of logarithmic and small pgwer potentials, investigated in detail by
Quigg and Rosner™” and Martin,“” which do not conform to the theoretical
expectations at either small or large distances. Thus, so far quarkonia have
not led to any conclusive evidence for the theoretical preconceptions based
on QCD. Yet the ¥ and T families have determined the quark-antiquark
potential at intermediate distances: the four phenomenologically successful
potentials, shown in Fig. 1, all coincide numerically at distances r with
0.1 fm < r < 1.0 fm, although their functional forms are very different. At
large and small distances a variety of asymptotic behaviors appear to be
compatible with present experimental data. 25.26

The evidence for a flavor independent“?“” (QQ) potential has also been
established in a model independent way by use of the inverse scattering
method. Using mass differences and leptonic widths of the S-stat»:es2 én the ¥
or T families as input and assuming different "correction factors"“" in the
van Royen-Weisskopf formula (which reflect uncertainties of unknown rela-
tivistic and higher order radiative corrections), the {QQ) potential has been
constructed. Again, as shown in Fig. 2, it appears to be uniquely determined
at distances between 0.1 fm and 1.0 fm where it coincides with the specific
models shown in Fig. 1. Direct evidence for the flavor independence of the
static potential is provided by Fig. 3, where the potentials constructed from
the ¥ and T families are compared; they agree remarkably well in the
distance range 0.1 fm - 1.0 fm. The accuracy to which potential models can
account for the properties of quarkonia is demonstrated by table I, where the
predictions of various models for the three narrow S-states of the T family
have been compiled. We emphasize that the non-relativistic potential model
of heavy quark systems works mygh better than one might expect on the basj
of coupled channel calculations™® or estimates of relativistic corrections.



...!...4

0
— "‘ L'
>
S,
s b
~
..3 "~
-4 } v
/s
1 * [ ' ! ]
010} co5 0O 05 1.0

Fig. L. Various successful potentials are shown. The numbers refer to the
following references: (1) Martin, Ref. 23; (2) Buchmiiller, Grunberg and Tye,
Ref, 16; {3) Bhanot and Rudaz, Ref. 24; (4) Cornell group, Ref. 18. The
potentials (1), (3) and (4} have been shifted to coincide with {2) at r = 0.5 fm;
the "error bars" indicate the uncertainty in absolute, r-independent norma-

lization. States of the ¥ and T families are displayed at their mean square
radii. From Ref. 16.
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Fig. 2. Three potentials constructed from T data by means of the inverse
scattering method, corresponding to three different “Correzctéon farz‘tors" P 51
the wvan Royen-Weisskopf formula, I‘ee(nS) =1/p (l61a“e )/Mn ¢ (0)]°.
Dot-dashed line: p = 1.0; solid line: p ™= 1.4; long-dashed lihe: 'p = 2. The
short-dashed line is the QCD-like potential of ref. 16, with the scale’
parameter chosen as Am-s-z 0.5 GeV. From Ref. 26.



Tab]e I. Predictions of various potential models for the T family,

compared'with experiment. Mode] 1: Martin23; mode] 2: Buchmlilier,
Grunberg and Tye,l6 AM = 0.5 GeV; mode] 3; Rlchardson”;
modei 4: Bhanot and Rudaz

(the range of predictions, which are

dependent on the b-quark mass, is given); model 5: Cornell group.18

The first column contains the leptonic widths in keV, the second

and third columns the excitation energies in MeV and, in brackets,

the ratios of the leptonic widths with respect to the T leptonic width.
From Ref. l6.

T T’ T"
Experiment
a}) Ref. 36 1.29 + .22 553 ¢+ 10 ~——
(0.45 + 0.08)
b) Rei. 37, 38 1.02 + 0.22 560 % 3 %9 + 4
1.10 £ 0.17 (0.45 = 0.07) (0.32 + 0.06)

lodel 1 —— 560 290
{Martin)

(0.43) (0.28)
Mode} 2 1.07 555 390
(Buchmiller,
Grunberg & Tye) (0.46) (0.32)
bhModel 3 ——- 555 886
{Richardson)

(0.42) (0.30)
Model 4 1.07 - 1.77 561 - 566 881 - 879
(Bhanot and :
Rudaz) (0.47 - 0.76) (0.3¢ - 0.51)
Model 5 - 560 398
(Cornell group)

(0.48) (0.34)
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Fig. 3. Comparison of potentials deduced from the ¥ and T families. The
energy scale is appropriate for the ¥ spectrum. The label on the left-hand
ordinate refers to the potential constructed using T data (solid curve). The
label on the right-hand ordinate refers to the potential constructed using V¥
data (dashed curve). p = 1.4 (cf. figure caption of Fig. 2). From Ref. 26.

The ultimate theory of strong interactions will have to explain why the
corrections to the non-relativistic limit are so small.

We conclude:

(i} QCD-like potential models provide an accurate description of the ¥
and T families. However, this success is shared with power potentials, which
disagree with theoretical expectations based on QCD. Thus, no direct
unequivocal evidence for asymptotic freedom has been obtained so far on the
basis of quarkonia.

(ii) The {QQ) potential has emerged as a measurable quantity, which can
be directly compared with predictions derived from any fundamental theory
of strong interactions. The ¥ and T spectroscopies have determined the
quark-antiquark potential at distances between 0.1 fm and 1.0 fm.
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UI. THE (QQ) POTENTIAL AT SHORT DISTANCES
As we have discussed in Sec. I, the (QQ) potential hgzs1 Peen computed
b}

perturbatively in QCD. In coordinate space the result reads (for &
flavors} -

a (r)
VQCD(r) —~ 1S

r+0 3 ’
127 462 Int 53 1 i
aglr) = 35¢ [l-m't— +(73 +2Ye)¥ *0(;‘2‘)] ,
t = “"QIT , G
rﬁm

where v = 0.5772... is Euler's constant. In order to compare this perturba-
tive short distance behavior with a phenomenoclogical potential, one has to
specify at what distances corrections to Eq. (3.1} are expected to be
negligible. In analyses of deep inelastic scattering processes comparison with
perturbative Q Dj's considered to be justified for momentum transfers Q,
which satisfy Q“/A“ > 100. Correspondingly, at distances r, with

r<r L~ 100 , (3.2

VQCD(r) should be a good approximation to the (QQ) potential. Indeed, for
distances r <r_, the corrections of relative order 1/t in Eq. (3.1) are less than
»15% and the perturbation series is self-consistent. Nonperturbative
effects, such as gluonic vacygm ﬂuctustionszgharacterized by a nonvanishing
expectation value p= <0 [5G \)G‘i | 05°° appear to be negligible; a
dimensional analysis &@éﬁts cBrrections Jess than 1%.

Figure 4 shows V (r) for different ﬁlues of A == and distances
r<r ; for comparisob&f potentials of Martin™ and Ref. lYlé are also given.
For s = 0.1 GeV, V {r) and the empirical potential, determined by the ¥
and T 1Isamilies, overlap for distances between 0.1 fm and 0.2 fm. The two
potentiafg appear to be clearly different in this region, and a quantitative
analysis™~ shows that values of Az less than or equal to 0.1 GeV appear
indeed incompatible with quarkonMg'l spectroscopy. For values A=z > 0.2
GeV perturbation theory becomes unreliable already at distances r N&.l fm.
Therefore present quarkonia cannot distinguish in a mode! independent way
between values of A= larger than 0.2,GeV.

Obviously, the ¢-spectroscopy,”” formed by the anticipated t-quark and
its antiquark, wiil be sensitive to larger values of the scale parameter. Figure
5 shows two potentials whose asymptotic behaviors at short distances are
characterized by the scale parameters A——= = 0.2 GeV and ANT = 0.5 GeV.
The indicated mean square radii illustratel\égwn to which distanées the (QQ)
potential will be probed by (tt) bound states of a given mass. The properties
of the 1S-state of the Z-spectroscopy will be most sensitive to the short
distance part of the potential. Figure 6 shows the 1S-leptonic widths as a
function % the t-quark mass for Az = 0.2 GeV, Az = 0.5 GeV and Martin's
potential™; for a t-quark mass of %Gev various predictions of the different
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V(r) [GeV]

Q0! 0.l ' 1.0
r[fm]

Fig. &. 2-loop "asymptotic freedom" 5otent1a!s far 4 flavors and different
values of Af\)_lg at distances r <r, r.” = 1/(100 Afzg). For comparison the
potentials (I} and (2) of Fig. 1 ar€ also displayed. e "error bars" indicate
the uncertainty with respect to absolute normalization. From Ref. 16.

models are listed in table II. It appears obvious that a ({T) system with
m,_ > 40 GeV will clearly distinguish between power potentials and QCD-like
madels as well as between different values of Am—.

The main problem in the determination’of A by means of the (QQ)
potential is the uncertainty in the absolute normalization of the potential, i.e.
the uncertainty in our knowledge of the c-quark and b-quark masses. The z-
spectroscopy will measure the (QQ) potential down to distances of about 0.04
tm, where a change of A—,j— by 100 MeV will change the "asymptotic freedom"
potential by about 300 N e?. The uncertainty in the absolute normalization of
the empirical potential of about * 400 MeV (cf. Fig. 1) will lead to an
uncertainty of about *150 MeV in the determination of A. This situation
would be improved through a better theoretical understanding of finite



12

0 | .
-] =
Ais=200 MeV
s T2r
@
2,
= ™A s =500MeV
> -3 -
-4k £ (1s0} , £ (60) £(30)
-5 oo gao ]
-6 ] {
0.0l 01
- r[fm]
Fig. 5. Two (QQ) potentials which approach "asymptotic freedom' potentials
with Az = 200 MeV and Ags = 500 MeV at short distances. Mean square
radii ofwé?)

ground states (MRoted as c(ng)) are shown for Ags = 500 MeV

and different quark masses m,. From Ref. |

Table II. Comparison of (tt) spectra for different potential
models, with m, = 30 GeV.

!‘..’Iantinz3 AK,T-S:O.Z Ge\/16 AHE:O.S G.e‘.f16 Richardson”
E, - E [‘MeV ] 512 610 762 801
ree(zs)/ree(ls)_ 0.48 0.53 0.30 0.29
Ey - E; [ MeV ] 814 . 913 1090 1136
ree(35)/ree(1s) 0.34 0.28 0.13 0.17
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Fig. 6. Ground state leptonic widths as function of t-quark mass m,. The
solid lines correspond to the pa‘%entials of Fig. 5. The dashed line shows the
results of Martin's potential.”” Here we have ignored weak interaction
effects, which would only enhance the differences, From Ref. l6.

structure, hyperfine structure and E! transitions which would lead to a more
precise determination of the quark masses.

It is also conceivable that the scale parameter will be determined more
dccurately through the measurement of electromagnetic and hadronic decay
widths, where \(tﬁo leading order QCD radiative corrections have recently
been computed.”” ~“ For instance, a measurement of the hadronic width of a
60 GeV toponium state with an accuracy of v 20% would determine the strong
coupling constant of a_ (60 GeV) within v 7% and thereby measure Atz with
an uncertainty of about * 100 MeV. This, in turn, would fix the normaliZzation
of the (QQ) potential up to *+300 MeV and thereby determine the c-quark and
b-quark masses within %150 MeV!

Thus the g-spectroscopy will not just determine the (QQ) potential at
short distances and the QCD scale parameter A, it will also have
consequences for the ¥ and T spectroscopies: we can expect a better
determination of the c- and b-quark masses and a very accurate test of the
flavor-independence of the potential at intermediate distances due to the
large number of g-states with mean square radii in this region. For instance,
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Fig. 7. (tt) S-wave bound states below threshold as function of the t-quark
mass. The binding energies have been computed for a potential which
corresponds  to Amz 300 MeV; it satisfies V{Agg = 200 MeV) >

V(AM—S = 300 MeV) > s = 500 MeV). From Ref. l6.

as shown in Fig. 7, a (tt) system of 603§}ev will have 8-9 narrow S-states, in
accord with the semiclassical estimate

~ my /3
n=< 2 e s (3.3)
C

and a corresponding numer of P-, D-, F-,... states which will lead to an
extremely rich spectrum of electromagnetic and hadronic transitions.

Predictions for the Z-spectroscopy up to ground-state masses of 60 GeV
have a.ls%geen made in a model] independent way based on inverse scattering
methods.”” The three potentials, shown in Fig. 2, which are constructed from
the masses and leptonic widths of the T family, lead to a range of predictions
for toponium, thus reflecting the degree to which the g-spectroscopy can
already be anticipated from our understanding of the T-spectroscopy. The
leptonic decay widths of the first four S-states are shown in Fig. 8. The main
conclusion is that the properties of the 1S ground state, in particular its
leptonic width, will be most important for the determination of the short
distance behavior of the (QQ) potential.

We conclude:
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Fig. 8. Leptonic widths of the 1S-4S levels of the L-spectroscopy are'
displayed as functions of heavy-quark mass for six potentials: (a) Inverse

scattering,
GeV; (¢) inverse sca

potential, Ref, 17; (e) Ref.

From Ref. 35.

p=1, m¥ = 4.5 GeV; (b) inverse scattering, p = 1.4, m
t

R

ering, p =2, my =5 GeV (cf. Fig.2); (d) Ric

= 4.75

ardson

ie, Am = 0.2 GeV; (f) Ref. 16, AI\-’\_S = 0.5 GeV.
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(i} VQCD_(!'), the "asymptotic freedom™ potential calculated in perturba-
tive QCD, is expected t% Eoincide with the empirical (QQ) potential at
distances r < r_, where 1/t2ATe = 1003

(ii) the ¥ and T spectroscdpies Jead to the lower bound on the QCD scale
parameter A, Az > 0.1 GeV;

(iii) the T spectroscopy, with m_> 40 GeV, will determine the scale
parameter A, if A== < 0.5 GeV; ¢

(iv) the g -speCtroscopy may lead to a better determination of the c-
quark and b-quark masses;

(v) the properties of the 1S toponium ground state will most conclu-
sively determine the short distance behavior of the (QQ) potential.

V. SUMMARY

The main conclusions are as follows:

(1) The (QQ) potential can be defined in QCD as the binding energy of a
quark-antiquark pair in the infinite-mass-limit. The physical coupling
constant a _(p), which is defined in terms of the potential, may be a
convenient Bxpansion parameter for other processes in perturbative QCD.

(2) The (QQ) potential can be expressed in terms of the dimension{ess 8-
function B _(p) and the scale parameter A_ (or the string tension k). A simple
empirical Rnsatz for B_(p) has been obtaified which satisties the theoretically
required boundary conditions at large and small values of p and provides an
accurate description of the ¥ and T families.

(3) The (QQ) potential has emerged as a measurable quantity, which
allows a comparison with QCD at all coupling strengths. The ¥ and T
spectroscopies have determined the potential at distances between 0.1 fm and
1.0 fm.

(4) Comparison of the "asymptotic freedom™ potential of perturbative
QCD with the empirical (QQ) potential, determined by ¥ and T data, jeads to
a Jower bound on the QCD scale parameter, AW:’ 0.1 GeV. The -
spectroscopy, with m_ > 40 GeV, will determine the (QQ) potential down to
distances of « 0.04 frr. If Aﬁ- < 0.5 GeV, as expected on the basis of deep
inelastic scattering processes, %his will Jead to a determination of the QCD
scale parameter A.

(5) The gz-spectroscopy will have important consequences for ¥ and T
physics. It will provide a very accurate test of the flavor-independence of
the (QQ) potential at intermediate distances and may also Jead to a more
precise determination of the c-quark and b-quark masses.
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