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The perturbation on one beam due to the other in a colliding beam storage
ring is concentrated in a finite number of points in the machine, so that the Hamil-
tonian describing the perturbation induces a number of explicit Dirac §-functions.
The most popular way to analyze such a system without recourse to a computer
involves Fourier transformation, wh‘ich amounts to replacing the &-function
8(6 - 60) on the circle by 57 Y em(e-eo), with the intention of ultimately
truncating the sum or concentratingnon]y on a few particular ter‘ms.1

This approach has the disadvantage of obscuring the significance of the
instantaneous kick-like nature of the interaction. This is easily remedied by
observing that the instantaneous nature of the interaction allows the equations of
motion (at least in the weak-beam/strong-beam idealization, assuming the strong-
beam profile is known) to be explicitly integrated, at least for one revolution about
the accelerator. In the case of ee” or pp machines with one bunch of each type of
particle, the equations of motion looked at in this way amount (ignoring effects due
to the radio-frequency system) to applying a factorized transformation BLBL to the
six-dimensional phase space describing the oscillation of a weak-beam particle
about the closed design orbit. L represents the linear transformation corresponding
to transit through half the ring; B represents the beam-beam kick that abruptly

shifts momentum, leaving position unchanged. One must in addition include

effectively instantaneous factors that describe radio-frequency impulses that give



rise to phase stability. Whatever the RF modification, call the net single-
revolution transformation (presumed calculable) F. Then study of long-time
stability of the storage ring amounts to study of high iterates of the function F (i.e.
sequences {xn} defined by x| = F(x ), for large n).

I have restated this commonplace because a lot of progress has been made
recently in precisely the area of highly iterated maps.2 At Mel Month's suggestion
I will review briefly those aspects of these developments which may have some
suggestive power for the creation of an adequate theory of storage ring stability at
high intersecting currents.

I might add, in passing, that the new developments, going under the name of
"universality theory of iterated maps," is of interest to elementary particle
theorists like myself not only because of the insight into experimental apparatus
that it might lead to, but also because of its formal links with the theory of the
renormalization group, one of the cornerstones of modern quantum field theory.

The bad news for accelerator theorists is that the universality theory at
present only describes physical systems with (at large times) effectively one-
dimensional phase-space; principally, dissipative systems (the one dimension
corresponds to the least damped direction in the original multidimensional phase
space)--indeed, only systems whose one-dimensional reduction amounts to iteration
of a positive function F(x) on x € [0, 1] satisfying F(0) = F(1) = 0 and having a
single maximum. (E.g. viscous fluids driven by periodic stirring or by an externally
impressed temperature gradient. I will not go into the problem of how this

reduction takes place, nor of how the existence of F is mathematically or
physically ascertained.B) The beams in ee™ machines are damped by radiation

emission, but they are not in addition subject to the kind of external pumping which

makes possible the kind of effective one-dimensional F described above.



Nevertheless, although the setting of the universality theory and its results
are manifestly not suitable for application to colliding-beam storage rings, the
general style of argumentation may yet have something to teach us. I must say at
the outset that although I have some obvious rough suggestions, I have no specific
progress to report along such lines; the hope is that the kind of critical overview
that follows may serve to stimulate deeper study.

I now proceed to sketch the most basic results of the universality theory. The
theory's immediate practical goal (somewhat simplified) is to understand how the
behavior of high iterates of FA(X) = A f(x) depends on the parameter A (assuming, as
above, f is positive, vanishes at x = 0 and !, and has a single extremum; the A-
dependence shown is chosen for simplicity only)--in particular to understand the
behavior for A near the value X  at which the distribution of high iterates becomes
chaotic. This corresponds, for example, in a viscous fluid reducing to such a map,
to the onset of turbulence at some critical Reynolds number.

First basic fact: There is a sequence of A-values {An} , With n unbounded,

such that for A fixed in[A , A . l) the high iterates of F, approach a unique cycle
(closed periodic orbit) or period 2n, for almost all initial conditions.

[ One of the main results of the theory is that the An cluster to A from
below, and that for large n they do so geometrically, An v A - (cnst)é'n, where §
is a number that depends only on the power with which f approaches its unique
maximum at x=x_ (i.e. v in f vi(x_) - (cnst)|x - xm|\) ). 1 am not really
concerned with this result in this review because in the storage ring setting, our
cycles are never attractors; they are at best centers, at worst saddle points.

Nevertheless it may be useful to remark that the transition represented by
A =A_ is in some sense complementary to the Chirikov transi'ciont‘l of Hamiltonian
systems, in that it seems to correspond to the first occurence of disorder (closed

cycle of infinite period), rather than to some kind of takeover of all of a connected



part of phase space by a stochasticity already existing (in a more localized way) at
nearby parameters. This takeover transition occurs at some other value of A above
A _; I will not dwell here on the phenomenology of A > X _ (see ref. 3). ]

Second basic fact: For all but one ) in [An, An+1) the transients in the

approach to the 2n-period cycle decay like u'k, where the scale u depends on A but

not on the initial x, and where k is the number of iterations of F This fact is

A"
introduced so that I can draw attention to the unique value xn [ [An, An+ 1) it
which p vanishes ("superstability"). When A = ;o the transients decay like (u')'2 R
where ' now does depend on the initial condition. It turns out that X (the
location of the maximum of F)\) belongs to the superstable 2"-cycle of FA (i.e. it's
one of the 2" fixed points of (FA )Zn, where raising F)‘ to a power refers to multiple
functional composition) when A = )‘n' [ As before, I do not mean to dwell on the
notion of superstability per se since in our conservative storage ring systems there
are no completely attracting orbits. ]

Main result: Here is the point that may have some inspirational power for

accelerator theorists. According to Feigenbaum, there exists an a'(> 1) such that

the following limit exists for all integers r:

n-r
lim (-a)n'r(FA )2 [(x-x )/(_a)n—r] = g (x) .
m r
n+w n
Moreover the limit g, is the same for all original functions f having a single
maximum with the same power v characterizing the approach to that maximum.
Incidently, the limit of the g_as r= = (call it g) also exists and satisfies the
functional equation g(x) = - ag(g(x/a)).

In words, the existence of these limits means that certain high iterates of F, ,

at certain values of A, when rescaled in a universal way relative to a certain value



of x (i.e. xm) look alike. In the viscous fluid context, such results enable one to
quantitatively account for the way the power spectrum of a stirred or heated fluid
changes as the Reynolds number comes close to the critical value for turbulence. 2

It's natural to ask whether an analogous self-similarity law characterizes high
iterates of the measure-preserving map correspoonding to the passage of the weak
beam through a single revolution of a colliding-beam storage ring, in the presence
of an unperturbed counterrotating strong beam. For example, are there matrices
o and B n iterate numbers kn’ parameter values }‘n (specifying machine energy,
beam-beam tune shifts, machine tunes, RF characteristics, etc.) and cycle points

xn such that

N-+>oo

k
lim O‘n(FA ) n{Bn(x-xn)]
n

exists? One might not want to preclude the possibility that ansn £1, that
ap, l°‘n—1 is not independent of n, that the X, are not all the same, or even that all
the }‘n are the same. [ In this last possibility I have in mind computer-generated
pictures showing a two-dimensional phase space subject to the iterations of a fixed
area-preserving map, revealing an apparently endless cascade of resonance islands
surrounded by smaller islands surrounded by smaller ones, and so on.5]

Could such a limit be universal in some sense? What kinds of gross features
would such an FA have to satisfy to ensure its membership in some particular

universality class? In the one-dimensional case, as analyzed by Feigenbaum, the

exponent v characterizing the approach of the one-dimensional F, to its unique

A
maximum X determines the universal limits by appearing explicitly in the
boundary conditions under which one solves the functional equation

g(x) = — ag(g(x/a)). Specifically (this is in fact how a is determined, by looking for



such a solution) g(x) must look near x = 0 like a-b |x |[Y. The g, are determined
approximately by the eigenvectors of the linearization of the operator
¥ > — aplp(x/a)) about the fixed point g, with { also subject to boundary conditions
fixed by v. What characteristics of a multidimensional conservative F}\ could
provide boundary conditions for such a functional calculus?

The beam-beam force reaches its maxima near the periphery of the strong
beam. Can this be enough to determine universal scaling limits of higher
iterations? From a functional point of view the location of the maximum force is
not especially interesting since F is still one-to-one there, (by virtue of its
measure-preserving properties) and none of the eigenvalues of its linearization
vanish (in contrast with the one-dimensional case where the derivative of F is zero
at its maximum, and F is one-to-one only at X » two-to-one everywhere else). This
would have been the most obvious possibility, but apparently it is too naive.

Still, if there were nontrivial aspects of self-similarity in the high iterates of
the multidimensional Hamiltonian maps characterizing motion in storage rings,
what kind of physics would this correspond to? The statement that some kind of
nontrivial structure repeats itself, in some region, at ever-decreasing scales
suggests motion of a chaotic nature, although it does not suggest in any way that
this chaos has encroached upon the whole of phase space. The most popular
theoretical ideas currently available for analysis of stochasticity in the colliding-
beam context are those involving resonance overlap,1 which concern transitions
beyond which almost all of phase space is stochastic. A self-similarity theory could
provide us with new information on the opposite limit--the local onset of
stochasticity.

This could be quite useful: First, in view of the known existence of

Hamiltonian systems exhibiting stochastic diffusion that ranges wide in phase space



while occupying a small total volume6; Second, in view of the results of Kheifets'7

and Ruggiero's8 semiphenomenological analyses of the beam-beam effect in e'e”
machines, which attribute to weak-beam phase space a diffusive fraction that (with
radiation noise separated out) is typically very small, according to some
measurements.

To summarize: The success of notions of self-similarity in the analysis of
certain one-dimensional iterative systems related to turbulent flow encourages us
to seek applications of such notions to the analysis of the higher-dimensional
conservative systems corresponding to colliding-beam storage rings. This may yield
information inaccessible to the resonance-overlap criterion, and may be of greater

relevance to observed phenomena.
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