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ABSTRACT
In analogy with the SU(N) two dimensional g-model we discuss models in
which composite gauge fields arise. We show that it is possible to construct abelian
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. INTRODUCTION

Soon after the in'croct'uc‘cionl of the two dimensional SU(N) c-mode] as a close
analogue to four dimensional nonabelian gauge theories, it was pointed out by
several authors2 that in an appropriate N =+ « limit the model also displays the
interesting phenomenon of dynamical generation of an abelian gauge interaction.
In other words, a composite abelian gauge field dominates the interactions in that
limit and leads among other things to confinement. Whereas the gauge field may
be introduced initially as a dependent quantity and without a kinetic term in the
Lagrangian, such a term is generated dynamically in the N + «]imit,

On the other hand, using some results from SO(8) extended super gravity3 the
suggestion has been made!'L that if the gauge fields that presumably mediate all
interactions are not "elementary" but rather "composite,” in a manner similar to
the SU(2) two dimensional o-model, then it becomes conceivable to construct a
grand unified theory, from broken super gravity.

Independently from the above, however, the question of whether gauge fields
can be thought of and obtained as composite fields from some more fundamental
interaction is in itself of course interesting.

In this paper we consider this question and discuss models constructed by
direct analogy with the SU(N) g-model. Our emphasis is on whether a kinetic term
for a dependent gauge field already introduced in these models can be generated as
a result of the equations of motion of the rmodel itself; and then whether this
phenomenon survives quantization.

We discuss the problem in detail in Sec. Il by reviewing briefly the SU(N) o-
model and then proceed to construct our model lagrangians for the abelian case in
Sec. III and for SU(2) in Sec. IV, We then discuss some properties of the classical
composite SU(2) gauge fields in Sec. V. We show in Sec. VI that the model survives
quantization via z path integral approach and give in Sec. VII some concluding

remarks.
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1. COMPOSITE GAUGE FIELD IN THE
TWO DIMENSIONAL SU(N) 0-MODEL

In this model in two dimensional Euclidean spacetime, one considers an N
dimensional multiplet of complex scalar fields Z transforming as a vector under
global SU(N) and satisfying the constraint ZZ = 1. As this constraint restricts the

fields only up to a general space dependent phase transformation
7 = zelf) , (2.1
one is led to consider the "gauge invariant" Lagrangian density
€ =@ - iAu)f(au+ iA )z (2.2)
where Au is a "gauge field" transforming like
AL = A - BUA(X) (2.3)

under this phase transiormation.
Clearly Au as introduced above is a dependent field and hence as it is deter-
mined through its equation of constraint (eqn. of motion!) its properties must be

censistent with the above. In fact this is the case since one has

3E _L¢w o5 T
?A_; = 0= AU = Z(ZBHZ BUZ Z) . (2-4)

Thus the classical constraint does give the required property (2.3) for Au and leads

to a Lagrange density of the form
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showing a fundamental current current interaction between the constituent fields

g
Z, L.

’

A quantized theory may now be constructed by a path integral approach. One
then finds that the constraint (2.4} is still satisfied. This may be done in several
ways. The first approach is to integrate over the field /\u around its classical
minimum and show that quantum fluctuations around it are quadratic and may be
integrated out as a constant multiplication factor. The second is to impose the
constraint on to the functional integral by an appropriate ¢-function and then show
that its effect is to provide only an inessential multiplicative factor, too. We

detail here the first approach as it will be used later and since in it the constraint

is not imposed externally, We have5

dedfdAudo exp{ ifdzx( 3, nﬂ\u)Z(aLl + iAu)Z -olZZ - 1)} (2.6)

where the o-field is used to impose the constraint ZZ = | on the quantum fields. If

we now integrate A U around its classical minimum by writing

A = %(23_1:2) + 1

" dAu +dn . (2.7)

u o’

then we obtain
fddednpdo exp{ ifdzx( 9 +1TIZB, ~13)Z + nuz - 0(ZZz - 1)} (2.8)

where Jli = 1/21(Z 5:2)-
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The nu integration clearly is doable and leads to an inessential constant and
the constraint is implemented. Note here that If the quadratic fluctuations nuz
had Z dependent coefficients then besides the implementation of the constraint
further Z interactions would result; we would expect this to happen in general when

a theory is quantized in this manner. However, considering again Eq. (2.8), we are

left with
f dZdZdg exp { ideX(au + i:lu)f(au - iJu)Z -glZZ-1) } . (2.9)

The effects of Ju may be now isolated by introducing a field Bu and the following

integral into the expression (2.9)
dB (B +J ) = 1 . .
XIS (2.10)
We then parametrize the & function as

{2
X exp - .
f X exp 1fd X2h <8, + 7)) (2.11)

and obtain

— , 2 . — , —

dZdZdodB d; - . - Z-1)-Z .
f ZdZdgo ” \uexp{ 1fd )-c(aLl 1BU)Z (a“ + LBU)Z alZ ) }\U(Bu + Ju)} (2.12)

where i\u plays the role of a Lagrange multiplier field. Here again by a change of

variables to
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one finds that Eq. {(2.11) becomes
2 T . 5 2
dZdodB! a - iB! B')Z «c(ZZ-1) - . .1
de Zdo Budluexp; 1fd x( " IBM)Z(BU + 1B} o ) )\.u } (2.13)
The }‘u integration is now trivial and cne thus ends up with an equation

further that the integration over B'Ll may nevertheless be performed independently
from that over the constituent Z, Z. This is all achieved without introducing any
further interaction terms into the exponent of the path integral. This may not
happen in general and such extra terms may indeed show up.

Now that the quantum theory is wel] defined we note that the Z integration is
quadratic and may be done exactly.2 In fact when this is done and then the limit
N » «is 1:;:1ken,6 a perturbative treatment of the gauge field B{J may be performed.
The interesting resujt shown in Refs. (2) is that although no kinetic term appears in
the exponent of Eq. (2.13) for B'u, it nevertheless displays in this }limit a behavior
characteristic of a true gauge field. Thus a composite gauge field is dynamically
generated.

Having seen the details above we are now in a position to clarify the question
we address ourselves to in this paper.

We ask whether it is possible to modify the Lagrange density of Eq. (2.2) in a
way where the fields Z, Z interact gauge invariantly with the gauge field AU in
such a manner that the equation of constraint is still abeyed and further that when
the constraint is satisfied a kinetic term is generated for the field AL!' Moreover,
we require that all of this survives a quantization of the theory in a rmanner similar
to the model discussed above with the possibility of generating some extra

interactions.
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We discuss this question for both abelian and SU(2) gauge fields. The classical
Lagrangians are introduced in the following two sections and some of their

properties discussed in Section V, whereas the quantization via path integrals is Jeft

then to Section VI.

II. KINETIC TERM FOR COMPOSITE GAUGE FIELDS--
ABELIAN CASE

We start our discussion by considering the abelian case started in the previous

section except now we do not restrict ourselves to two space time dimensions,

If we define the covariant derivative

B = 1A .
uZ (8u+1 U)Z (3.1)

then aside from the term already used before, namely D}J ZzD Z we can construct

the following gauge and SU(N) invariant combination

with

_lls=n s v -
Kw = i[DuZDUL D, ZDH,.] . (3.2}

In fact when the constraint ZZ = | is imposed in Eq. (3.2) we find that the Ali field

drops out and one obtains

1 = =
Ko = 1 ’:%"ax-z“ a\)Zauz] . (3.3)
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Thus if we take as a Lagrangian density

¥ = #_ +D ZD Z (3.4)

then the constraint equation on AIJ is unchanged, namely AH :-2£ _5_;2 E-Ju.
Remarkably now, however, if this constraint is implemented in the Lagrangian

density of Eq. (3.4) we find

F o= n [(apj\) - av:}u)zj #(a, + i:lu)f(av -13,)Z . (3.5)
Thus Ié’K of Egs. (3.2) and (3.3) plays the role of a "kinetic term" for the composite
field Ju. We shall show in Section VI that implementing the constraint on Ap into
the quantized theory is unchanged by our addition; however isolating the effects of
the composite gauge fields AL! = -Ju requires the introduction of a Lagrange
multiplier field Au that does not integrate out completely but introduces further

interactions into the Lagrangian.
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IV. KINETIC TERM FOR COMPOSITE GAUGE FIELDS-SU(2)

The source of the abelian gauge freedom in the SU(N) o-model discussed
above is the invariance under a general phase transformation of the restriction
ZZ = 1. Thus in crder to build a o-model with an SU(2) gauge invariance one must
generalize the space of Z fields in such a way that the phase invariance group of
the restriction becomes the full SU(2). As emphasized by Gursey and Tze?, Z most
naturally then belongs to quaternicnic projective space. Thus instead of the

elements ZE’ i=1..N be complex numbers we shall now consider them as

quaternionic numbers. If we use as quaternicnic basis vectors the quantities ¢

(1, —iol, -0, -103) with § being the Pauli 2 x 2 matrices we then have

- 4a._.4d a:O; --:3 4.1
“1 7 9% 0 i=lu,N (.1
where the 4N quantities qia are real. We also define
= T
Zi = 5221 =g (4.2)

-T. -
where Z; s the transpose of Zi Thus

and

IRl
I

Q e
qi + 1q1-0

and hence
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is ¢ quaternionic scalar quantity.

tion of the quaternionic elements Zl' Thus it is invariant under
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S Zz, - ST ? 3.9 (.3)
P CIEPA I R R T '
1
The restriction ZZ = 1 therefore allows a general SU(2) "phase" transforma-
.t 7\
U=el 9280 e Sy (4.%)

With this choice for the field space Z,

Z we now proceed along lines similar to the

previous sections. We introduce a quaternionic gauge field /—\u which under the

gauge transformation U transforms as

| I -1 il
AH = 1J AuU+1U 3

and consider the covariant derivative

We now construct the Lagrange density

(7. Tr{SEK + (au- iAu)'Z"°Z(§u + mu)}

where

and

u

I (4.5)

(4.6)
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Ky - 11'__-(% SAPTUIE HIA)) - (5, - 1A)ZZ(E - mu)} LWy
5-,# acts only on the field Z preceding it and the order in which the quantities are
written allows for thinking of them as appropriate matrices with all operations as
matrix multiplication.

Clearly again the field Au is introduced as a dependent quantity and in this
case Ku\) is dependent on AM in contrast to the abelian case. The constraint

equation for AU may be worked out and both ;Z’K and the other term in Eq. (4.6)

give the same result, namely

Z = -] . (4.8)

This is of the same form as before except that all quantities are quaternionic.
One notices however immediately that A is purely a 'vector" quaternion,

namely that it is of the form
(4.9)

Therefore there are only three independent guantities AS‘, precisely what is
required of an SU(2) gauge field. Furthermore the constraint on Au satisfies the
assumed gauge transformation properties of Eq. (4.5). Most importantly when the

constraint is implemented into the Lagrangian of Eq. (#.6) we get
F o= o Tr{a S5 3 -1i[3,17 ]}: +(8u i3 E 58 Si3 . (4.10)

Thus ”(ZK plays again the role of a "kinetic" term for the composite SU(2) gauge

field Ju, just as in the abelian case.
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V. SOME PROPERTIES OF THE CLASSICAL LAGRANGIANS
One may consider the models introduced above simply as o-models by
eliminating the AU fields altogether. In this case a unified notation may be used

for both the abelian as well as the SU(2)} case. We have

8z . I8z
+ Tr (a -—E-—)'Z'-Z(a +-—-—E—) (5.1)
u 2 W 2

where Z is an N component complex field in the abelian case and an N component
quaternionic field for SU(2). In both cases ZZ = 1 is understood. The "gauge"
invariance of £ is now implicit. One may fix the gauge by taking ZN 1o be a real
scalar in the abelian case and a quaternionic scalar, i.e. a real constant, in the case
of SU(2). Furthermore classical equations of motion are best studied in terms of
independent unconstrained variables ti’ 1= lu,N-1. There are various choices for
these but to iljustrate our points we choose two specific ones to facilitate contact
with other works. These points are first that a Gribov type of ambiguity exists in
these models even after a choice of gaugeg and the second7 is that the kinetic term
of the SU(2) model allows instanton solution with @ maximum winding number N, in
contrast to a full-fledged SU(2) gauge field.
A. "Gribov Ambiguity"

One way to see that a Gribov ambiguity exists in our models even after a

choice of gauge is to follow the method of Ref. & and change to the independent

unconstrained variables ¢ defined by
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2¢1
Zi = — ; iz 1le,N-1
Lo+ oa9)
[Z l - {l - ‘_—\ﬁ_‘j
N o+ o)

In this case the Lagrangian becomes

- 1 L n —_ —
£ = pTre #| —=—[23 3. ¢ -0 03 o]
4 {1!_(1+$¢)2 [TV VT U

16 - .
- —22 (3 Fe0da b - 3 dedFed o]
(1+3p)" ¥ v v W

L Llefl - )

r
(L= Fe i

—— . —
198,60 Gh ¢80
. Tr[;————ﬁ“c"l — B ]

- = o+ Lk
1

{1+ Bo)- (1 +39)"

unless of course p¢ = 1 for in that case the Lagrangian may be rewritten as

¥ - 4 Tr{jl[auﬂl - Eqp)avd; - av?ﬁ(l - ¢>&38u¢ 1}2

T ( au'@)$°¢(§u +__§2P_¢—>

which is of the same form as Eq. (5.1) with ¢ now an N-1 dimensionaj field! Thus
for all configurations ¢ = | one has to remake a choice of gauge and so on. This
of course is so, clearly because for §¢ = 1, | ZNI = 0 vanishes and a specification of

reelity becerres mearingless trer. This of cource is simriv 1te same phenomenon

-2
| ¢é‘;¢.av(¢¢)+(¢av¢)au(¢¢)l _ }

{5.2)

(5.3)

(5.4)
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B. The Kinetic Term and Instanton Solutions
An expected property of the kinetic term for the SU(2) case is to possess
instanton solutions. To see that this is so we now choose the following set of

unconstrained coordinates ti:

£ = ——1——[ , 1= Ll,u,N-1 (5.5)

where

This cheice is made mainly to make contact with the work of Gursey and Tze in

Ref. 7. The kinetic term may be written now simply as

S g - szat:l}z (5.6)
VLTt (1 +TH) L
with
iﬂru’t
A =i -
H 2[+¥t

This is the same as
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and is precisely the parametrization used by Gursey and Tze to study instanton
solutions for SU(2) gauge theory. For the equations of motion for t; derived from
Eq. (5.6) automatically minimize the action derived from SEK and are eqguivalent to
the duality or self-duality of the field tensor derived from Au. Such solutions are

studied in detall by these authors and we refer the reader to their paper for details.
We make here however the following observations:

1. Our composite gauge field Ap is expressed in such a way that instanton
solutions for the kinetic Lagrangian exist and are known in terms of the constituent
fields t.

2. These instanton solutions however can carry a maximum winding number
of N-1. For as shown in Ref. 7 the solutions to the equations following from the
Lagrangian of Eq. (5.6), the instantons have 8(N-1)-3 parameters. This is precisely
the maximum independent number of parameters for a winding number N-I
instanton in SU(2). Thus our composite gauge fields do not embody the full
topological structure of a true gauge field unless N, the number of components in
the constituent fields Z, is allowed to go to infirity. Thus it seems that the natural
choice for the construction of composite gauge fields is to look at an appropriate
N > limit of the Lagrangian densities we have constructed.

3. As a corollary of the above, our Lagrangians represent then gauge theories
with a truncated topological, and hence classical ground state, structures. These
may be of interest by themselves as approximations of increasing complexity (with
increasing N) to the true gauge theory. Thus for example an N = 2 model would
represent a gauge theory with only one instanton solution which may be interpreted
as a theory with a doubly degenerate classical ground state! Larger N involves an

increased degeneracy until the full gauge theory is reached.
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VI, PATH INTEGRAL QUANTIZATION

In defining a quantum thecry out of the Lagrangians discussed above, special
attention should be paid to the constraint equation on A}J. For while classically Au
is forced to take on the value i/2 ZQ:Z and consequently a kinetic term for this
composite object is acquired, one must show that quantum fluctuations of Au
around this extremum do not wash out this effect. In other words, one must show
that this extremum is a stable minimum (and not say a saddle point!) and that
preferably the fluctuations are integrable with minimal effects. We saw that this
is indeed the case for the SU(N) o-model discussed in Section II. We proceed now
to discuss our models along similar lines.

Keeping to a simplified notation and dropping gauge fixing and other terms

we are interested in the following path integral

dedZ—Zd/\idG exp i f (£ +0(ZZ - 1))dx . (6.1)

The integration over the o field is needed to enforce the condition Z7 =} and the

Lagrangian is of course

£ = Y% Tr{ii [, - iA“)f-Z( afd IA) - {8 - i/-\))Z-Z(a*u - 1Au)1}2

+ Tr | (a;’l - 1;3\“)2-2@Ll +1A )] . (6.2)

We consider now fluctuations of AU around its classical minimum i/2 251:2. We
may write

A =
H

N

z : - .
‘E;zﬂqu i dA > dn, (6.3)

in which case the integrand in the exponent becomes
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—

£z 4 Tr| Fuo@-iln, nyl 2 . T E_.(au 13 )ZZ(3,-13))

where

Fuv{:l) wdy -8y, -3, SN

I
Q
)
I
<
&)
—
-

1, == Z§:z . (6.4)

Clearly in the abelian case [ﬂu, n,} vanishes and the only fluctuations in 7
are quadratic as in the two dimensional case. These can be integrated out leading
only to a multiplicative factor. In the non-abelian case the situation is somewhat
more complicated. Nevertheless one immediately notices that the fluctuations are
quadratic in any one component of ﬂu and at most quartic in this field. In fact the
ﬂu integral can be done formally exactly. Tc see how this comes about let us first

expand the equation for the integrand above. We get

w . . 2 a abc,c b, a b d e, .ad.be e bd
¥ -y { TrOR 02 e 2 P00 b Py @8 (s995Pe L e )}
a db b . = b . =
+ 2nu6 Spunv + Tr (8u+ 1JU)Z Z(ap-lju)- Tro(ZZ-1) (6.5)

where we have used the definitions

and
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Ua
o . (6.6)

If for the moment consider small Ny and neglect the quartic terms the

integrand has a term quadratic in nu and of the form

na( 2530 S,y e"bcfﬁu nf : 6.7)

The quantity in parenthesis can be diagonalized in internal symmetry space by a

global SU(2) rotation. The resulting three by three matrix has diagonal elements:

:\1 = 26
v
vl
Ay = zcsp\)”/%‘fuv
»*2
Ay = 28 e MED : (6.8)

If we call this diagonal matrix M then the np integration can be performed leading

to an effective Lagrangian of the form
£ = wTe(F (D) -1 indet ME® )
LV M
£ Tr(s, + 1302025 - 13 ) - Tr o(ZZ - 1) : (6.9)
Therefore an extra term symbolized by ! is introduced by the quantum

fluctuations.

If we now consider the quartic term we note that we can write
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a a i
z ndnd = e Lyl cos o (6.10)

—

a=

where @u Is an "angle" in the internal symmetry space between the p and v

v
components of Ny This angle is of course invariant under rotations in this space.

The quartic term thus becomes
2 2 2
|nu| |r1\)| (1-(cos ew) ) (6.11)

and is invariant under rotations that diagonalize the quadratic term. In fact since
c052 9 < | this term is always greater than or equal to zero, that is of the same
sign as the quadratic Fuv dependent term A, so that at best it can modify the Ny
integral but not change its character. Thus including the quartic term would onty
complicate the Ny integral without changing the main result, namely that the
kinetic term persists in the quantized theory with extra interactions symbolized by
a modified matrix M.

In order to isolate the effects of Jp we introduce the following §-functional

into the functional integral

deu6(3u+Bu) -1

and finally get the model in the form
d'— . Ia[ ] 2 d Gz
ZdZdeBud Auexp iTr A Fuv(B) - In det M2 u\J,(B)
+ 8 - 1B )ZZ( Su +iB ) - o(ZZ- 1)

i
Y .(BHJ,EL;; z)}] . (6.12)
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The Z, Z integral now is quadratic with coefficients depending on the tields BU’ o
and the Lagrange multiplier field ?\u . This may be done and a perturbation
expansion in terms of the remaining o, )\u and Bu fields can be attempted. This
and further study of the quantized version of this model will be left for future
publications. We note however here that the presence of }‘U is in the spirit of
introducing collective variables by Jevicki and Sakjta,9 something that becomes
more justifiable in N» « limit to be taken in our model as the natural }imit

required for a gauge field with full topelogical structure.

VII. CONCLUSIONS AND DISCUSSION

We have seen in the above that it is possible to construct Lagrangians where
composite abelian and nonabelian SU(2) gauge fields follow as a result of the
equations of motion. Other non-abelian composite gauge fields can be constructed
in a similar manner and will be dealt with later. Thus we may conciude that not
only is it possible to "parametrize" a gauge field in a composite manner but that
this compositeness follows from ordinary equations of motion. In path integral
language this means that the integral over the dependent field Au picks up its
leading contribution when &% is minimum at Au =1/2 Z§:z and in that case this
composite object appears with its own kinetic term in #. Quantum fluctuations of
All around this minimum are then argued to introduce further interactions but not
to eliminate this leading contribution.

One important observation is that as long as we consider ¢ -models of finite N
then the composite gauge field does not have the full topological structure, thus
indicating that it is then natural to consider the N -+ « limit of our models,

Furthermore it also shows that the composite gauge fields considered by the
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authors of Ref. & may be such "truncated" gauge fields. This of course raises the
question of whether this in any way diminishes the value of their suggestion. In
other words, if the gauge fields are elementary they presumably carry the full
topological structure; but if they are composite that structure may be limited by
the symmetry group of the underlying constituents unless the N+ o ]imit is
considered. Which, if any, of all these possibilities does nature choose?

Finally if we consider other fields in the Lagrangian, such as Dirac fieids,
coupled to the I fields via the currents Ju :—Zii-fﬁzz such as ﬁyuqﬂu then clearly
the fact that 1 becomes effectively a composite gauge field one expects that the
J mediated interactions between the \'s become identical to the interaction
expected from a gauge field. In particular all of instanten physics can be
incorporated here. For the path integral over Z, Z does cover, for any N, all gauge
theory instantons with winding number up to N,

Of course many problems remain to be considered concerning the above
models and for example the exploration of the various properties of the "truncated"
composite gauge fields seems also to be of interest particularly as concerns

questions of CP violation. These cuestions znc cthers are currcrtly being pursued.

ACKNOWLEDGMENTS
This work was done while I was visiting Fermilab. 1 wish to thank C. Quigg
and W.A. Bardeen for their hospitality during that visit and W.A. Bardeen and

C. Hill for some discussions related to this work.



22 FERMILABR-Pub-30/83-THY

REFERENCES

E. Eichenherr, Nucl. Phys. Bl46, 215 (1978); V. Golo and A. Perelomov, Phys.

Lett. 79B, 112 (1978).

A. D'adda, M. Liischer and P. diVecchia, Nucl. Phys. Bl46, 63 (1978) and B152,

125(1979)% E. Witten, Nucl. Phys, Bi149, 285 (1979).

E. Cremmer and B. Julia, Phys. Lett. 80B, 48 (1978) and Nucl. Phys. B159, 141

(1979).
3. Ellis, M.K. Gailfard and B. Zumino, Phys. Lett, 94B, 343 (1980).

We use here a simplified notation for path integrals and do not write terms that

do not have a direct bearing on the point being discussed.
This limit requires appropriate rescaling of the fields Z, Z. See Ref. 2.

F. Gursey and H.C. Tze, "Complex and Quaternionic Analyticity in Chiral and
Gauge Thecries," Yale preprint YTP79-02, to appear in Annals of Physics 127
(1980). See also N.H. Christ, E.J. Weinberg and N.K. Stanton, Phys. Rev. D18,
2013 (1978).

N-1

H.E. Haber, 1. Hinchtiffe and E. Rabinovici, "The CP Model with Uncon-

strained Variables," preprint LBL-10519, Feb. 1980.

? A. Jevicki and B. Sakita, Nucl. Phys. B165, 511 (1980).



