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ABSTRACT

The idea of Kulish and Faddeev for treating asymptotic dynamics in QED by a
deductive construction of asymptotic states corresponding to the asymptotic
behavior of the Hamiltonian operator for |t| +«, in the interaction represen-
tation, is further extended in QCD to provide a more complete analysis of the
combinatorial structure of the asymptotic states obtained by the analogous
construction in QCD. In the processes so far considered in low orders in
perturbative QCD, we find that with these asymptotic states, IR divergent
contributions are systematically generated in the matrix element such as to cancel
the leading-order IR divergences arising from the unitarity cuts of the standard
covariant graph of perturbative QCD. This occurs separately for each topological
type of covariant graph. The cancellation of the forward scattering, leading-order
IR divergences in the matrix element in "qq + qq + gluon™ to lowest order in

perturbation theory is discussed in detail.
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I. INTRODUCTION
In QED a constructive procedure leading to an infrared-finite asymptotic

dynamics was proposed by Kulish and Faddeevl’2

which produces a set of
asymptotic states with an "S-matrix operator" with infrared-finite matrix ele-
ments. In QED and gravitation such states are essentially simple generalizations of
the well-known coherent states and in the non-Abelian gauge theory, we adopt this
constructive procedure for generating a set of asymptotic s'ca‘ces3 in the infrared
region# of perturbative QCD. This procedure is an amplitude approach which is
based on the asymptotic behavior of the Hamiltonian operator for |t| + = in the
interaction representation. This specifies an asymptotic Hamiltonian and an
associated time evolution operator, U as('c), which is used to generate an initial
asymptotic states' space % s < Uas(t)% , where t-+ -, from the usual Fock
space %

Since this is a formal construction, explicit perturbative calculations are then
required in QED and QCD to verify that the S-matrix elements <y | SD|¢'> for
specific ¢ and Y' in the asymptotic %;s are indeed infrared-finite. Such
calculations in the literature have usually exploited the relations between this
approach and the standard cross section approach in order to demonstrate the IR
cancellations in the matrix element. However, the basic mechanism underlying the
cancellation of the leading-order IR divergences in the coherent state approach is
apparently very simple. To be specific, we consider the topological set of diagrams
of Fig. 1 which contribute to the bremstrahlung of one gluon in quark-quark
scattering. The non-vanishing diagrams in this set are shown in Fig. 2. In these
Fig. 2 diagrams, which are defined by the expansion of the S-matrix operator in Eq.
(29) in Sec. II, on-mass-shell particles bridge the initial state, graph, and final state

parts. The graph part is the usual Feynman graph, including disconnected graphs.
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The observation is that for the processes which have been studied to date, with the
asymptotic states constructed in Sec. II, IR divergent contributions are systema-
tically generated in the matrix element such as to cancel the leading-order IR
divergences arising from the unitarity cuts of the standard covariant graph of
perturbative QCD. This occurs separately for each topological type of covariant
graph.

An interesting implication of this observation is that the amplitude approach
does give meaning to "qq -+ qq + gluon" and to "q +q in a color-singlet external
potential" without summing over final color spins and without averaging over initial
color spins. For example, in a Yang-Mills notation for color, pp ~ pnp+ is free of
leading order IR divergences. However, here in the amplitude approach a massive
asymptotic quark (for example) evolves thru the dynamics generated by the
asymptotic Hamiltonian and so H as provides an explicit "dressing" of the massive
quark with a color-singlet set of self-interacting soft gluons. Hence, in a physical
measurement with finite energy and momentum resolution, it is necessary to sum
and average over gluon color spins. Nevertheless, for massive quarks, it appears
consistent, as far as the perturbative QCD leading-order IR behavior is concerned,
to discuss reactions involving a massive quark of a definite color, so long as the
quark is accompanied by its associated color-singlet set of self-interacting soft
gluons.

In Sec. Il the asymptotic states obtained in Sec. II are applied to show the
cancellation of the forward scattering IR divergences in separate topological sets
in the matrix element in "qq + qq + gluon" to lowest order in perturbative QCD.
These states are also applied to show that the leading order, forward scattering IR
divergences cancel in the 4-gluon vertex diagram in "qq - qq + 2 gluons." Cancel-

lation in sums of separate topological sets for non-Abelian class of graphs in quark
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scattering in a color singlet external potential to order g5 is shown in Sec. IV and

the Appendix.

II. TREATMENT OF NON-ABELIAN ASYMPTOTIC
DYNAMICS IN INFRARED REGION

In this approatchl’3 the asymptotic S-matrix operator in the usual Fock space,

H;

B is defined as

Sg(tl, t2) = JciToo Uas(t1)+exp [-iH(t1 -tz)]Uas(tz) ()

1

t,+-

2
where the operator U, s(t) satisfies

~du as(t)
I — = Has(t)Uas(t) (2)

with Has(t) the Hamiltonian which describes the asymptotic dynamics in the inter-

action representation. This can be re-expressed as

So(t), ty) = lim e Spt)s tole (3)
t1->oo
tz'*—oo
QT(t) = -Q(t) , anti-Hermitian

where SD = exp (-iH(t 1—t2)) is the usual Dyson S operator. Therefore, we consider

the initial asymptotic states in the space

A, = lim exp [20) 1A ¢ %)

as = e

where
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t t T
Qt) = -if Vas('r)d'r -%f d‘rf do [Vas(T)’ Vas(o) ]
t AT o
+ (g f de dcf dpl:Vas(T), [V,(©), V_ () ]]
31 t T T :
+(-1) 15| dt| dof ds [Vas('c), Vas(o)], Vas(S)

+eue (5)

and in % g We use the usual Dyson S operator.
The asymptotic Hamiltonian Has(t) is obtained from the usual QCD

Lagrangian
Y- & o) + L

2
Vv \Y AY) - .
= -%(BuAa- ] A:-gf AEAC) - Yu(-18u+gtaA§)+m]¢

abc

(6)

where "..." denote the ghost and gauge-fixing terms. We work in the 't Hooft-

Feynman gauge

[ewyt0r o] e
2 ah @) | = - 68, $ED %

but will not explicitly display the ghost terms as their combinatorial character is
the same as that of the gluons. In the interaction representation, the fields Y(x),
Aua(x)’ and Y(x) are decomposed in the usual momentum representation, then the

limit |t | + <is taken and, as discussed in Ref. 1, terms with exp [ iit(q°+p°ik°) ]
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are discarded versus terms with exp [ +it(q®-p®+k®) 1 since q°,p° > m. This yields

the asymptotic Hamiltonian

Has(t) H + Vas(t) (8)

il

Vas(t)

il

Vf(t) +V C(t) + Vq(t) 9)
-'-
Vas(t) = Vas(t)

where
_ik_'E t

p
V) = 2—)§7— f ¢’k S‘-E a0 (P ° Lhe. (10)

with
oa® = S [b*(p, _b(p, s) - d' (p, 9t 1d(p, s)] : (11)
S

Since the quark mass m is chosen not to vanish as [t | + =, the asymptotic
Hamiltonian H a S(t) is somewhat simpler than that for the complete theory because
the quark-gluon interaction does not contain qq creation or annihilation pieces. In
QED and gravitation this and the Abelian structure enable an exact solution of
H as(t). However, in QCD there is no simplification, only a time-ordering, of the

self-gluon couplings from the cubic and quartic gauge field terms. We find
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8ape [k 32

V() = i TR T

c 1 4(21r)3 12 0 o
i(k o lo-m o)t
o

itk +2 +n )t
2 1 i o "0 o
- aau(k)abv(ﬂ,)acn(n) 3 V]J \m(k, 2, n)' 72-n0 e }

x { al (ay (Rag, M2V, | (K, -2, -m) e

+ h.c. (12)

an (k,q,r) = [gw(k - q)n + g\m(q . r)u +g IJn(’r - k)\) I (13)

and the prime denotes three momentum conservation, -l:+c_1> +T = 0, which also
specifies the dependence (in the V.(t) integrand) of the third four-momentum on
the other two. Note that the time-ordering yields a factor of 1/3 for the weight of
the three-gluon annihilation relative to that for two-gluon annihilation. Similarly
we find

2 3 3 3
Vi - - B 3[/gkk/gp/gq
q w(2m) o” “Po” %%

itk +p -g_-r )t
bcd itk +p_-q
x{ azu(k)ag\)(P)aCG(q)adp (r)v:\)gp (k’ Ps -9, -l')' 77?(;e 00 0 0

i(k -p_-q _-s )t}
-+ 2 ,,abcd 1 i o0 o0
* aau(k)abv(p)aco(q)adp(s) 3 Vuvop (k, -p, -q, -s' 775: €

+ h.c.

-i(k_+p_+q +t )t
1l ,abcd 1 i 0*Po*tts
* 82,y (Placo(@ag 0 g Viwep & Pr & V' e

+ h.c. (14)
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abcd

11\) ap t

(k, p, q, 1) abe cde(guog\)p upg\)O)

face bde(g g -8 H pgvo )

+

fatde cbe(guog\)p gu\) gpc ) (15)

From these expressions, it is possible to easily calculate the first few terms in the

series for (t). As in the Abelian case,

t
Slf(t) = - f Vf(T)dT = Rf(t)

ik—'Et -ik—'Et
- —8 [ 28 P (P)[ T (k)e Po -a_(k)e Po ]
@02 Pk a
3 2
xd’pdk/vV2k (16)
t S
2,0 = yzf dsf dT [ Vyls), V(1))
= sz(t) +i <I>f2(t) (17)
0 - E f ST N L R
f m [(p-q) -m_“m _“|? o
P q
x d3p d3q + (mass renorm. term, proportional to t) (18)

where R ,(t) vanishes in the Abelian case, but not in the non-Abelian gauge theory.
f
Note that because of the e(t), ¢ 2(t) has the property
f
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lim @ (t) = -lim @ (1)

t+o f t>-0 f
and so there is a lowest order (trivial) generalization of the cancellation1 of such
an IR divergent exponent with the well-known Coulomb phase in QED and gravi-
tation. In the non-Abelian theory, with a mass A(IR cut-off) for the gluon, to

lowest-order

S8 —1im[1+i0o.0)1s 1+id0 (A (19)
R RS
2 .
-1 ()() -1 T()T()
<I>f2(>\) = —%ln(kto)z( (p. pl)tc1 C] (qq)t Uy
i#
1 (1) T(j)
(Pt ) (20)

whereas the virtuals (that are responsible for the divergent Coulomb phase) yield a

factor ,7 for each divergent pair of fermions in the initial or final state,

[1 * f;v'l(pnpm)gﬁgrcnln (/A )] (21)
N8t Cn » quark
- 8t , antiquark

with N, = Ny = +1 for outgoing, ingoing, fermion respectively. Here, the relative

velocity

¥a
v(p, q) = [1 -m ,m 2/(p‘q)z:l
q

P
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and A= l/to (UV cut-off). In the non-Abelian theory, in Q(t), as given by Egs. (5)
and (6), we find that generalizations of this type of term, but with a more
complicated t structure occur in the case of states with several charged quarks or
antiquarks. These appear as contributions from the Lie elements of third degree or
higher in Eq. (5).

In the "R(t) terms" we assume that the contributions from the lower limits of
integration must vanish (in the Abelian case this is necessary so that  (t) commutes
asymptotically with the total momentum opet‘a‘cor).l In these terms, we adopt as a
working "ansatz" the replacement of

il%E t
azu(k)e ° a:u k) = z eflm)a-; (22)

where eu(m)(k), m = 1,2 are transverse polarization vectors with "i" denoting "a"
for the color gauge-group index, "k" for the gluon four-momentum, and "m" for the
polarization, and we make a similar replacement in the terms arising from the self-
gluon couplings (i.e. replace the exponential of [ i (energy difference) t] by one).
Again, in the Abelian case this "ansatz" has been justified and shown to be
relativistically and gauge invariant, and %Zs has been shown to be t independent
and to contain a Lorentz and gauge invariant subspace with nonnegative metric.1

Therefore, we obtain

2

- f d°pd kp () z (’”(k)a ®) + 2 sWy* a-r(k)
ool 4=

h
I

(2)
gpe (23)

%
[2(217)3k0] pek

s
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as in the Abelian case, but now obtain also higher-order terms due to the non-

Abelian structure of the theory.

sz = - [ d3pd3kd3 !Z,pc(p) z [aj+(ﬂ,)ai(k) ?ji(p)

2,m

+ (0 (07,(0) + ,(2,008,@ + af (D] e |

™|

1 (SL) o(m) +k
ji T i padi (k)sm(g’)p K+ ¢
= L (m)
Y - Lig, s! )(k)S ™) SR (24)

The simplest terms arising from the self-gluon couplings are

0, - f S 2( s -1 -m)2a] (a(2)ay m)

£mn
Sy, 25 W a0ey (D ) + ac. (25)
where
S.. (ky&,1n) = —B 2 el(‘g)ef’m) ;n) on 46 2 (26)
ijk ™ 4(2“)3/2/8k0£0m0 [k +L +n]

and also
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Q q° f d3kd39,d3q z ( Sijk R,(k’ P, -4, -r)a;. (k)a;- (p)ak(q)a z(r)
2 mno

+ Stk P, <q, -9) § (02, (play (a)ay () + anc.

+ Sijk R,('k’ -py ~q, -1) -é— ai(k)aj(p)ak(q)agl(r) + a.C. ) (27)

where

~ 2 e(.Q,)e (m)e(n)e (O)Vade (&, p, q, )"
Si.kz(k, ) - & ap— 1 u \)[k O P Uvop : . (28)
J "2 036Polo ot Pot9+Tr,

The diagrams associated with the matrix element of interest, such as those

displayed in Figs. 2-4, are given meaning by expanding
B = exp [-(=) ISy exp [Q (-=)] (29)

inserted between the chosen initial and final states. The significance of the
exp [-(+=)] and exp [ (-=)] operators is that they automatically generate the set
of graphs3 with the desired signs and weights such that the matrix-element is
infrared-finite. This is discussed in detail in Secs. IIl and IV. Because of the time-
ordering, the state contributions resemble that of time-ordered perturbation theory
but with the contributions of one end of the time integration omitted.

In the non-Abelian gauge theory a simple "c-number" exponentiation of the IR
structure will only occur in special cases, unlike in QED where it and the associated
Poisson distribution is a more general IR property (but c.f. Ref. 1). Chung's states,
Ref. 2, but with eAu in QED replaced by gtaAf:l have been used in some

phenomenological calculations in QCD in Ref. 8. This is only the first term in the
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expression for Q given by Magnus' Theorem in Egs. (5) and (6) above. In the cross
section approach, Appelquist and Carazzone have emphasized5 the importance of
grouping together the IR divergent contributions from the different unitarity cuts
of each distinct topological diagram. That IR cancellation might occur in distinct

3,6 but the

topological diagrams in the amplitude approach was observed earlier
only complete proof was3 that in order g5 the leading order non-Abelian class of IR
divergences cancel off separately in quark scattering in a color-singlet external

potential.

III. FORWARD PROCESS qq + qq + gluon

The treatments of forward scattering IR divergences in qq * qq + gluon, or in
the process of single gluon bremsstrahlung by a quark scattering in a color singlet
external potential, are quite different in the cross section and in the amplitude
approaches. Unlike the treatment of quark scattering in a color singlet external
potential, the two approaches to cancelling the leading order IR divergences in the
calculation for this process are not related by transformations in the perturbation
expansions between the diagrams of one approach and those of the other where
both sets of diagrams are of the same order in the coupling constant. In the cross
section approach Sachrajda showed9 that in lowest order perturbative QCD,
ignoring contributions from virtual soft gluons, the cross section for single-gluon
radiation in quark-quark scattering is quadratically divergent, i.e. vl /)\2, where A
is a gluon mass IR cut-off. Radiation from an internal gluon line via the 3-gluon
vertex was found to contribute to this divergence. However, in the cross section
approach, Matsson and Meuldermans later showedlo that the forward quark-quark
cross section including second order virtual and real radiative corrections in QCD is
not IR divergent. Our purpose here is to show, using the asymptotic states

constructed in Sec. II for the non-Abelian gauge theory, that there is a cancellation
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of the leading-order forward scattering IR divergences in the matrix element to
lowest order in perturbation theory, and that this occurs separately for each
topological set of diagrams.

The possible contributing diagrams in the topological set with the 3-gluon
vertex which could contribute to "qq + qq + gluon" can be grouped according to the
number of vertices contributed by the states. Examples of such diagrams are
shown in Fig. 3. Explicit expressions for these graphs are obtained by expanding s8
of Eq. (29). For no state vertices, to lowest-order in g there is only one diagram,

that of Fig. (3i) and it is the usual Feynman graph. We find
3 — NV =
T, = -2g7f,, t cti){ e+ (p, - pyulp3) Yy ulp Julp,)y, ulp,)

+ Up e+ Yu(p P o) - TPy o NP e Yulpy) |

-1 -1
x ([PI-P3]2->\§) ([pz-pq_]z-}\rg) (30)

2

=A =A with

2
m

2N

where this amplitude has been regulated by insertion of A

2 >\2 >0 for the radiated gluon.

k

If the gluon masses are allowed to vanish, then 22 - [p 1" p3] 2 vanishes only
when 2'11 vanishes, so 33 is paraliel to El and 2'11 is "soft.” But then, ku =m, and
since k2 = 0, m2 = [p2 - Py ]2 also vanishes, so m uvanishes and ;4 is parallel to ;2.
To study this forward scattering IR divergence, we adopt the procedure of assuming
a finite mass for the virtual and radiated gluons to regulate the contributing
amplitudes in the topological set. By letting regulator masses vanish, we then

consider each of the physical unitarity cuts of Ti and show for each that any

leading IR divergence has been cancelled by contributions from additional
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amplitudes involving state vertices, i.e. from amplitudes for Figs (3ii) thru (3v). As
discussed in Sec. II, the amplitude approach is based on the behavior of the total
Hamiltonian operator for |t| + « so it is reasonable to use unitarity cuts to
separate and collect contributions to the leading IR divergences. However, the
assumption of a finite mass for the virtual and radiated gluons excludes some
diagrams with state vertices (see next paragraph), so for consistency, in collecting
the contributions at the unitarity cuts the regulator masses must be allowed to
vanish in such a manner as to not produce unitarity cuts which would correspond to
any of these excluded diagrams.

For one and two state vertices, there are 18 possible contributing diagrams
(including diagrams with gluon self-coupling effects in the states). However,
energy-momentum conservation for the covariant graph part implies that it is
impossible to satisfy the mass-shell constraints for all 3 particles at a qg-gluon
trilinear vertex (2m2> Az > 0) and similarly at a 3-gluon vertex (equal finite
masses). Hence, only the 4 diagrams displayed in Fig. (3ii) to Fig. (3v) are non-

vanishing. We find

T, = -2g3fabctcti){e. (p, - P,)U(p,ulp Jup,)B3u(p,)

+es pBG(pB)u(p I)G(p4)KU(P2)

- P3* ku(pylulp Julp, e~ yulp,) }

-1

"P1,0P3,0 -1 2_,2 I et
x —920 12915, 01 e([p3-pl]°)([p2—p4] -xm) ; T =P377)
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T. 2g3f {e-(p - p,)u(pulp Ju(p,)p,ulp.,)
iv abc C b 2 4 3 1 477172
+e.p 1G(p 3)u(p1)a(p4)KU(p2)
- pyekilp,)ulp il e yulpy) |

YP| oP -1 N
1,073,0 -1 2 2 +
X _‘Lm_'L' [29,0[)1‘2,] 6( [Pl 'P3]°) ([Pz'Pg] ')\m) s L= Pl P3 (32)

and similarly for T ;. and T, . Here & =4! = /AZR’ + (m3)2 =

For three state vertices, SD = 1 so the anti-Hermitian property of § implies
that the total contribution from diagrams with three state vertices is zero.

We find that ’I'ii and Tiv serve to cancel the leading IR divergences of 'I'i
which arise from the unitarity cuts associated with the ( [p 1- p3] 2. A 5 )
denominator vanishing in forward scattering as }\2 + 0, then )\i+ 0 with A?n finite

since
-1 -1 -1
([pl-pBJZ-Aﬁ) - {16, -p°-a] -[(;-py°+al b2

o L » ! o [
{-py08( tps-py] )/zzop3 v-py o0 Py -yl )/zzop3 L)

x { 1+0 [\E/2(E% - m?) ] } ) (33)

in center of mass frame where E = P1,0=P2,0° Similarly, T and T are found to
cancel the leading IR divergences of T, which arise from the unitarity cuts
associated with the ([p2 -Py ]2 - )\fn) denominator vanishing in forward scat-

tering as A 2, 0, then Azm + 0 with A 5 finite.
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For quark-antiquark scattering with the antiquark the 1 to 3 line, both ‘l"ii and

Tiv obtain an opposite overall sign since szf has an opposite sign for antiquark

absorption or emission, relative to the sign for a quark. However, in the forward

scattering region, the helicity conserving piece at the antiquark vertex in Ti contri-

butes and it also has an opposite sign in the case of an anti-quark line.

We next consider the non-vanishing diagrams in the topological set of Fig. 1

which contribute to the bremsstrahlung of one gluon in quark-quark scattering.

These diagrams are shown in Fig. 2 and, when evaluated and regulated by inserting

2
m

2 2

8 mz, A > 0 with k™ = A™ > 0 for the radiated gluon, give

’I'i = -tatbt'bﬁ(pB)e-Y(pSB + ¥+ m)yHulp I)G(P4)‘Yu U(Pz)

-1 -1
X (2p3-k+6m2) ([pl‘—pz]z— Afn)

e»

T, = tatbti)a(p3)Yuu(pl)a(pQ)Yu u(p,) (—

- — 1
Tu = -tatbti)u(pB)e- v(p+ K+ m)yu ulp l)u(p['t)u(p l) 2_p3- "
Y Py oP e
4,082,0 -1 [
x —IE [ 2k puek 170([p, - py1°) 5 k=D, - p,

i = ~tatpthulPgles vy - K + m)yuu(p Pulpulp;) 2?31-_k

vV Py oP e
4,072,0 -1
_m;L [zkgpz.kl] 9([P2-P4]°) 5 -ﬁ' :pz-p4

(34)

-1
3 2 2
E;_k) («tp,-pp%-22) ) 09

(36)

(37)

The forward scattering leading IR divergence of T, due to the unitarity cut

associated with the quark propagator ()\2 ~+ 0, then Gmé-*O with )‘r2n> 0) is
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cancelled by Tii’ and the IR divergences arising from the unitarity cuts associated
with ([ Pq"Pz]z - A?n) vanishing are cancelled by the T;;. and T, contributions.
Finally, as a simple extension, we consider those lowest order diagrams for
the radiation of two gluons in quark-quark scattering which are in the topological
set with the 4-gluon vertex. In this set there is one additional diagram, that shown
in Fig. 4, besides the analogues to those in Fig. 3 which are obtained by replacing
the 3-gluon vertex in Fig. 3 with a 4-gluon vertex in which both real gluons are
radiated into the final state. The contribution from diagram (4i) is now needed
because the IR divergence of (3i), the usual covariant graph, in the region where
both virtual gluons are near their mass shell, with 10 =(p 1" p3)° >0 and
m = (p2 —pl‘)0 >0, is cancelled both by the (3iv) contribution and again by the
(3v). From Eq. (29) it again follows that the (4i) contribution is of the proper sign
and weight so as to correctly compensate for this, and thereby remove the IR

divergence arising from this allowed kinematic region.

IV. QUARK SCATTERING IN AN EXTERNAL POTENTIAL

We next show that a cancellation of leading IR divergences occurs in separate
topological sets of diagrams, or at least in the sum of such sets, in low orders in
perturbative QCD for the non-Abelian class of graphs for quark scattering in a
‘color-singlet external potential. Usage of Magnus' Theorem in Sec. II to construct
the asymptotic states has summed over state contributions to different topological
sets and so except for special cases, as in Sec. III, it is simpler to explicitly verify
the cancellation for sums of such separate topological sets.

3 and use the asymptotic states listed in Eqs. (8)

We consider orders g3 and g
and (9) of Ref. 3 where the technique of dimensional regularization was employed.

To order g3 the IR divergences cancel in the vertex-correction set as the equal
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contributions from the virtual and one gluon disconnected diagrams cancel the one
real gluon diagram's contribution. Here "real gluon" refers to a mass-shell gluon
bridging the graph and an initial, or final, state part. Similarly for the initial (final)
quark line self-energy-correction set, the equal contributions from the virtual and
gz initial (final) state diagrams cancel the one real gluon diagram's contribution.

In order g5 » in the appendix we consider the four non-overlapping summations
of the amplitudes for the diagrams of the separate topological sets. These are
respectively the sum of the higher-order self-energy-correction sets for the initial
quark line, the sum of the sets with gz self-energy-corrections for both the initial
and final quark lines, the sum of the sets with a vertex-correction and a self-
energy-correction on the initial quark line, and the sum of the sets with two gluons

connecting the initial and final quark lines. The leading IR divergences are found

to cancel in each summation.

ACKNOWLEDGMENT
The author wishes to thank the members of the Fermilab Theory Group, in
particular W. Bardeen and C. Quigg, for their hospitality while this work was
completed. This work was partially supported by the Department of Energy and

partially by the National Science Foundation under Grant No. 78-09617.



20 FERMILAB-Pub-80/59-THY

APPENDIX

For completeness, we list the contributions from the various diagrams to
show that there is a cancellation of the leading-order IR divergences in each of the
four summations for quark scattering in a color-singlet external potential. We give
the leading IR divergences in the amplitudes as an ordered pair of numbers in units
of Clz;.[g4Mo/ e2(2 “)4] and CpCy [g4Mo/e 2(21r)4] » With M the order-g basic
interaction.

In the higher-order self-energy-correction summation for the initial quark

4 states, (-1/2, -1/4) from

2

line: there is (1/8, 1/4) from g4 virtuals and again from g

one real gluon and gz states and again from one real gluon and g“ virtuals, with

2

(1/4, 0) from g“ virtuals and gz states and (1/2, 0) from two real gluons. In the

summation of g2 self-energy corrections for both lines: there is (1/4, 0) from each

4

of g~ virtuals, gl'l states, gz virtual final line and g2 initial state, and g2 virtual

initial line and g2 final state; (-1/2, 0) from each of the four combinations of one
real initial (final) gluon and g2 virtuals (states); with (1, 0) from two real gluons.
The summation of the sets with a vertex-correction and a self-energy correction on

the initial quark line is to be multiplied by the factor
(1 +e2In [(1+ /L -] /2r (A1)

where r = 1/[(1 - 4m2/q2) ]Vz with fermion mass m and four-momentum transfer q.

4

In this case there is (-1/2, -1/4) from gq virtuals and again from g states, (1/2, 1/4)

3

from one real gluon to final state (order g~ graph) and again from one real gluon

3 initial state), (3/2, -1/4) from one real gluon and

from final line of graph (order g
g2 virtuals and again from one real gluon from initial line of graph (order g2 initial

state), (-1/2, 0) from g2 virtuals and gz states, (-1, 1/4) from two real gluons in
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from initial state, with (-3/2, 1/4) from one gluon disconnected (g2 virtuals) plus
one real gluon in from initial state and another from final state.

The summation of the sets with two gluons connecting the initial and final
quark lines is to be multiplied by the square of the factor in Eq. (Al). In this
summation there is (1/2, 0) from g['L virtuals and again from gu states, (-2, 1/2) from
sum of order g initial state (so g3 in graph) plus order g final state (so g3 in graph)
and again (-2, 1/2) from sum of order g2 initial state with order g final state plus
vice versa, (2, 0) from initial and final states each of order g, with (1, -1) from sum

of order gz initial state (so g2 graph) plus order gz final state (so g2 graph).
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FIGURE CAPTIONS

Fig. 1: A topological set of diagrams contributing to the bremsstrah-
lung of one gluon in quark-quark scattering.

Fig. 2: Non-vanishing diagrams in the topological set of Fig. | which
contribute to the bremsstrahlung of one gluon in quark-quark
scattering. On-shell particles bridge the initial-state, graph,
and final-state parts.

Fig. 3: Non-vanishing diagrams in the topological set with the 3-gluon
vertex which contribute to the radiation of one gluon in quark-
quark scattering.

Fig. 4: Additional non-vanishing diagram in the topological set with
the 4-gluon vertex, besides the analogues to those in Fig. 3,
which contributes to the radiation of two gluons in quark-quark

scattering.
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C.A. Nelson, "Origin of Cancellation of Infrared Divergences
in Coherent State Approach: Forward Process qq +qq + gluon

ERRATUM

H = exp [-R(t)]%

as

In this approachl’3 the asymptotic S-matrix operator is defined as...

SD = exp (-IHI(tI - tz))

A - lim exp [-Q(t)]% (%)

as tH-oo

t
2 = -i f V{dt = Ry

Change g to -g in Eq. (16).

Add to first paragraph:
By Eq. (3), these & terms will generalize Eq. (19) and are expected to cancel
generalizations of the Coulomb phase divergence. Such & contributions are

implicit in Eq. (29) below.

In Eq. (23)
2

-S> s Wga ) + .
%=1

Change i to -i in Eq. (25).



p. 12 Change Eq. (29) to read

S = exp [2(w)]58(e, ~o)exp [ -S-) ]

exp [R]Syexp [-R], modulo @ contributions

p. 12 In text below Eq. (29):

exp [R] and exp {-R]



