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ABSTPJCT 

The properties of exactly integrable two-dimensional quantum systems 

are reviewed and discussed. The nature of exact integrability as a 

physical phenomenon and various aspects of the mathematical formalism are 

explored by discussing several examples, including detailed treatments of 

the nonlinear Schradinger (delta-function gas) model, the massive 

Thirring model, and the six-vertex (ice) model. The diagonalization of a 

Hamiltonian by Bethe's ansatz is illustrated for the nonlinear 

SchrBdinger model and the integral equation method of Lieb for obtaining 

the spectrum of the many-body system from periodic boundary conditions is 

reviewed. Similar methods are applied to the massive Thirring model, 

where the fermion-antifermion and bound state spectrum are obtained 

explicitly by the integral equation method. After a brief review of the 

classical inverse scattering method , the quantum inverse method for the 

nonlinear Schradinger model is introduced and shown to be an 

algebraization of the Bethe ansatz technique. In the quantum inverse 

method, an auxiliary linear problem is used to define nonlocal operators 

which are functionals of the original local field on a fixed-time string 

of arbitrary length. The particular operators for which the string is 

infinitely long (free boundary conditions) or forms a closed loop around 

a cylinder (periodic boundary conditions) correspond to the quantized 

scattering data and have a special significance. One of them creates the 

Bethe eigenstates, while the other is the generating function for an 

infinite number of conservation laws. The analogous operators on a 

lattice are constructed for the symmetric six-vertex model, where the 

object which corresponds to a solution of the auxiliary linear problem is 
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a string of vertices contracted over horizontal links (arrows). The 

relationship between the quantum inverse method and the transfer matrix 

formalism is exhibited. The inverse Gel'fand-Levitan transform which 

expresses the local field operator as a functional of the quantized 

scattering data is formulated for the nonlinear Schrodinger equation, and 

some interesting properties of this transformation are noted, including 

its reduction to a Jordan-Wigner transformation in the limit of 

infinitely repulsive coupling. 
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I. INTRODUCTION 

The state of an isolated system of particles or fields which is 

evolving in time can usually be characterized by the values of certain 

conserved quantities such as total energy and momentum. For most 

interacting systems, a more detailed kinematical description of the state 

will not be preserved in time. For example, the Fourier components of a 

field or the momentum distribution of a many-body system will generally 

have a complicated time dependence, often exhibiting a tendency toward 

thermalization of the system. A familiar exception to such stochastic 

behavior is the case of free fields or noninteracting particles. In this 

case the full momentum distribution function is conserved, and one may 

construct an infinite number of ordinary constants of motion (e.g., the 

moments of the momentum distribution). A theory which exhibits 

nonstochastic behavior of this sort is said to be exactly integrable. A 

remarkable fact which has emerged in recent years is that the phenomenon 

of exact integrability is not restricted to free theories, but arises in 

a variety of physically interesting models with nontrivial interactions. 

The criteria for exact integrability are not understood well enough to 

provide a complete list of integrable quantum field theories or a 

deductive way of testing a particular theory for this property. However, 

the list already includes some of the most interesting two-dimensional 

field theories, and recent speculation that gauge theories in four 

dimensions might be exactly integrable provides additional incentive for 

studying these two-dimensional theories and trying to identify the 

important concepts. It is possible to entertain great hopes for the 

future role of exact integrability in quantum field theory, but much work 

remains to be done. In this paper we review some of the developments 
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which have led to our present understanding of this phenomenon. 

The history of the subject is a rich one which extends over fifty 

years and includes some of the major achievements of mathematical 

physics. The seminal work of Bethe (1931) on the isotropic Heisenberg 

spin chain with nearest neighbor interaction provided the first 

nontrivial example of an integrable quantum system. The method devised 

by Bethe for constructing the eigenvectors of the spin chain Hamiltonian 

has since been successfully applied to a number of models in statistical 

mechanics and quantum field theory. A Bethe ansatz was applied to the 

anisotropic XXZ spin chain by Orbach (1958) and Walker (1959) and more 

generally by Yang and Yang (19661. A somewhat different application of 

the method was discovered by Lieb (1967a,b,c) who used a Bethe ansats to 

diagonalize the transfer matrices of the ice, F, and KDP models, which 

are special cases of the symmetric six-vertex model. The general 

six-vertex model was soived by Sutherland, Yang, and Yang (1967). A 

separate thread of development began with Onsager's (1944) solution of 

the two-dimensional Ising model. AS described by Schultz, Mattis, and 

Lieb (1964), this solution consists of a Jordan-Wigner transformation to 

convert Pauli matrices into fermion operators followed by a Bogoliubov 

rotation to diagonalize a quadratic form in the fermion operators. A 

similar technique was applied to the XY spin chain Hamiltonian by the 

same authors (Lieb, Schultz, and Mattis, 1961). These various 

developments in soluble lattice models and spin chains were impressively 

unified and extended in the very important work of Baxter. After 

formulating a Bethe ansatz solution of the most general symmetric 

six-vertex model, (Baxter, 1971), he went on to solve the symmetric 

eight-vertex model (Baxter, 1972a; 1973a,b,c). This model includes as 
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special cases the previously solved ice models of Lieb as well as the 

two-dimensional Ising model (more precisely, two decoupled Ising models). 

In addition, Baxter showed that the general anisotropic XYZ spin chain 

Hamiltonian could be obtained as a logarithmic derivative of the 

eight-vertex model transfer matrix (Baxter, 1972b). As a result, these 

operators are both diagonalized by the same set of eigenvectors, and 

Baxter's solution of the eight-vertex model also solves the XYZ spin 

chain. 

Direct applications of the Bethe ansatz method to continuum quantum 

field theory began with the work of Lieb and Liniger (1963) who solved a 

many-body problem of bisons interacting by a two-body &-function 

potential. As a field theory this is the quantum nonlinear SchrBdinger 

model. In addition to constructing the eigenvectors of the Hamiltonian, 

Lieb and Liniger employed periodic boundary conditions to obtain an 

integral equation for the conserved ground state density function (see 

Sec. II-A), and Lieb (1963) extended this integral equation method to 

include excitations above the ground state. More recently these methods 

have been used to treat certain relativistic field theories. Models 

which have been solved by a Bethe ansatz now include the massive Thirring 

model (Bergknoff and Thacker, 1979a,b) and the equivalent quantum 

sine-Gordon equation (Sklyanin, Takhtajan, and Faddeev, 1979) as well as 

the Gross-Neveu (Andrei and Lowenstein, 1979, 1980a) and SU(2)-Thirring 

(Belavin, 1979) models. In these theories the physical vacuum is 

constructed as a many-body state in a manner analogous to the ground 

state of the finite density A-function gas. Particle and bound state 

energies are computed by Lieb's integral equation method. 



There are two major lines of development which have led to our 

present understanding of exact integrability in quantum systems. One was 

the development of soluble quantum models as described above. The other 

was the discovery of the inverse scattering transform method for solving 

certain classical nonlinear wave equations. (For a review see Scott, 

Chu, and McLaughlin, 1973.) The original work of Gardner, Greene, 

Kruskal, and Miura (1967) showed that the initial value problem for the 

nonlinear Korteweg-deVries equation could be reduced to a sequence of 

linear problems. The relationship between integrability, conservation 

laws, and soliton behavior was clearly exhibited by this technique. 

Subsequent work by Zakharov and Shabat (1971) and by Ablowits et al. 

(1973), revealed that the inverse scattering method is applicable to a 

variety of nonlinear equations, including the classical versions of the 

nonlinear Schrodinger and sine-Gordon equations. The fact that the 

quantum nonlinear Schrodinger equation could also be exactly solved using 

Bethe's ansats suggested a deep connection between inverse scattering and 

Bethe's ansats. Such a connection was partially confirmed by studying a 

higher conserved quantity as a quantum mechanical operator (Thacker, 

1978). The relationship between inverse scattering and Bethe's ansats 

for the nonlinear Schrodinger equation was fully realized by the 

development of the quantum inverse method (Sklyanin and Faddeev, 1978; 

Sklyanin, 1979; Thacker and Wilkinson, 1979; Honerkamp, et al., 1979). 

It was already known that the classical inverse method could be regarded 

as a canonical transformation to action and angle variables. These 

variables are constructed from the scattering data a(k) and b(k) of a 

linear eigenvalue problem and have a trivial time-dependence. The 

analogy with Fourier transformation for linear systems has often been 
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noted. In the quantum inverse method, the quantities a(k) and b(k) 

become operator functionals of the local fields of the system. The 

operator b(k) is found to create eigenstates of the Hamiltonian. The 

states constructed in this way are identical with those of Bethe's 

ansatz. The operator a(k) commutes with the Hamiltonian and is the 

generator of an infinite number of conserved quantities. Thus, the 

quantum inverse method may be viewed as an algebraization of the Bethe 

ansatz method. This relationship will be discussed in detail in Section 

III. 

Like Fourier transformation, the classical inverse method consists 

of both a direct transform and an inverse transform. The direct 

transform expresses the scattering data as functionals of the local 

fields, and the inverse transform expresses the local fields as 

functionals of the scattering data. The latter transform is accomplished 

via the Gel'fand-Levitan integral equation for the linear eigenvalue 

problem (Gel'fand and Levitan, 1953). In the quantum inverse method, the 

construction of the operators a(k) and b(k) comprises the direct 

transform. Recently the operator inverse transform for the nonlinear 

Schriidinger equation has been constructed by a quantum generalization of 

the Gel'fand-Levitan method (Creamer, et al., 1980a). The inverse 

transform expresses the field $(x) as an expansion in powers of the 

quantized reflection coefficient R(k) = b(k)a-l(k) and its hermitian 

conjugate. An expansion for the charge density $"(x)$(x) is also 

obtained. Term by term analysis of these expressions has revealed some 

interesting properties. In the strong coupling limit cc0 (impenetrable 

bosons), the operator R(x), the Fourier transform of R(k), satisfies 

canonical anticommutation relations. In this limit the Gel'fand-Levitan 



10 

expression for 4(x) exponentiates into a Jordan-Wigner transformation 

relating the boson field @(xl to the fermion field R(x). This result 

sheds some light on the nature of the quantum inverse transform. The 

Gel'fand-Levitan expression for the charge density operator also has an 

interesting structure. It is closely related to the spectral integral 

equation for the finite temperature &-function gas derived by Yang and 

Yang (1969). In the zero temperature limit this reproduces the 

excitation spectrum derived by Lieb. Thus, the integral equation 

technique for calculating the spectrum also falls naturally within the 

province of the quantum inverse method. These developments are discussed 

in Section III-C. 

The organization of this review is neither historical nor logical 

but, it is hoped, pedagogical. It seems likely that explicit Bethe 

ansatz methods will eventually be subsumed by the quantum inverse method. 

Nevertheless, before presenting the full apparatus of the quantum inverse 

method we consider in Section II some explicit Bethe ansats solutions. 

This provides some insight into the structure of the eigenstates which 

should be helpful in understanding the more elegant algebraic methods 

which will be reviewed in Section III. 
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II. BETHE'S ANSATZ 

In this section we consider several soluble models which illustrate 

the workings of Bethe's ansatz. Our first discussion in Section II-A 

deals with the nonlinear Schradinger (6-function gas) model. In addition 

to being an instructive toy model, this system provides a paradigm for 

other applications of Bethe's ansatz in field theory and has been a 

central inspiration in the development of the quantum inverse method. 

After some elementary considerations in the two-body system, we describe 

the N-body ansatz, periodic boundary conditions, and the integral 

equations for the ground state and for the excitation spectrum. In 

Sec. II-B similar methods are applied to the massive Thirring model. 

This model illustrates the application of Bethe's ansatz methods to 

relativistic quantum field theory. The filling of the Dirac sea and the 

calculation of the excitation spectrum are reviewed. Field theory models 

with internal symmetry are briefly discussed in Section II-C. In 

Section II-D we introduce the soluble lattice statistics models, 

beginning with the six-vertex (ice or ferroelectric) model and then 

including the full Baxter eight-vertex model. The discussion in 

Section II-D is primarily intended to introduce the definitions and 

formalism of two-dimensional lattice models. Only general features of 

the Bethe ansatz solutions are mentioned since the details are much more 

elegantly treated by the quantum inverse method, which will be done in 

Section III. 
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A. Nonlinear Schrbdinger Model 

The nonlinear Schrodinger model in one space dimension is defined by 

the Hamiltonian operator 

H = J [a,$*a,+ + ~4*4*$4$x (2.A.l) 

where $(x) is a nonrelativistic boson field with canonical equal time 

commutation relations, 

[$lCX) ,c$*(Y)] = 6(x-Y) (2.A.2) 

Note that Hq.(2.A.l) is in the standard form of a many-body problem with 

the second term corresponding to a two-body delta-function potential. 

The Hamiltonian (2.A.l) commutes with the particle number operator 

N=jo*$ dx, and we may therefore consider each N-body sector of the 

Hilbert space separately. 

Before constructing the Bethe ansats solution to the model, it is 

amusing to study the two-body system by more conventional means. In 

old-fashioned time-independent perturbation theory, we may construct "in" 

eigenstates of H by expanding the Lippmann-Schwinger equation, 

/Y(kl,...,kN)>in = ic 
ll=o 

Go(Wk)V]NIkl,...rkN> , (2.A.3) 

where G 0 is the free particle Green's function operator 
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1 

w-Ho+is 
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(2.A.4) 

and Ho and V are the first and second terms in (2.A.l) respectively. In 

(2.A.3) the state Ikl,...,kN> is an eigenstate of Ho constructed by 

repeated application of momentum space creation operators 

al = ldx eikx$*(x) (2.A.5) 

The energy of the state is 

ak = -$ k; 
i=l 

(2.A.6) 

The terms in the expansion (2.A.3) may be represented graphically in the 

usual way. For N=2 the graphical expansion is a simple sum of bubbles 

shown in Fig. 1. The first term in (2.A.3) is just the free state 

Ikl,k2> which we write as 

I dxldx2e 
i (klxl+k2x2) * 

$ (xl)@*k2)/o> . (2.A.7) 

The second term gives 
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dq dp2 
.r-- 2ll 2n i 

1 
kt+ki-pi-pi+ie (4c)(2n)6(k 1 +k 2 -p 1 -p 

2 
)a+ at 

P1 P2 
IO> , 

Idxldx20(x2-xl)e 
1 (klxl+k2x2) * 

@ (x,)+*(x,) IO> 

(2.A.8) 

where we have taken k <k 
1 2’ 

The higher order terms have the same structure 

as (2.A.8) with extra factors of ic/(kl-k2) from the loop integrations in 

Fig. 1, 

2c 
s 

dpl/2n 
z-E.- 

k:+k:-pf-p:+ic kl-k2 

Writing 1=0(x1-x2)+8(x2-x1) in (2.A.7), the coefficient of 0 (x2-x1) in 

the wave function sums up geometrically, 

,+,(&) + 2(2& + . . . = E5:::i:E E eiA(k2-k1) 

Thus, the full two-body in-state for kl<k2 is 

/‘Wl,k2Pin = j-dxldx2 0(x1-x2) 
i 

t @(x2-x1) 

iA(k2-kl) 
xe 

3 

i(klxl+k2x2) * 
e a (x1)$*(x2) IO> 

(2.A.9) 

(2.A.10) 
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It is not hard to show that for kl'k2 (2.A.10) is an out eigenstate. 

From this we find that the in state and out state are related by a phase 

IY(kl,k2Pin = e 
iA(k2-kl) 

kklrk2Pout r (2.A.11) 

and hence e iA is the two-body S-matrix. The in- and out- states are the 

properly normalized eigenstates of H, which follows from the fact that 

the right hand side of (Z.A.3) may be written as U(O,-'9 Ikl,...kN> where 

U is the unitary time development operator in the interaction picture. 

The orthonormality of these states may also be checked directly (Thacker, 

1977). Another normalization which is often convenient is obtained by 

multiplying (2.A.10) by a factor [ltic/(k2-kl)], giving the unnocmalized 

eigenstate 

I@(kl,k2P = 1 + ~]~Y(kl,k2Pin 
k2-kl 

= jdxldx2 - ++ ~(x~-x~)]e~'~~~~+~~~~'~*~~l~~*~~~~ IO> 
12 

(2.A.12) 

. 

The fact that (Z.A.10) or (2.A.12) is an eigenstate of H may be verified 

directly by applying the operator (2.A.l). Using integration by parts to 

bring the derivatives in Ho onto the wave function, we find 

Hl@(kl,k2P = (k;+k;l I@(kl,k2P . (2.A.13) 
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Note that terms involving 6(x1-x2) coming from kinetic energy derivatives 

acting on the ~(xl-x2) in (2.A.12) cancel against terms from the 

interaction Hamiltonian V applied to the State. 

In addition to the scattering states with kl and k2 real, we may 

also construct a two-body bound state for the case of attractive coupling 

c<O by allowing the k's to be complex. To avoid a wave function which 

blows up when xl or x2 becomes large we keep the total momentum K=kltk2 

real and choose (kl-k2) such that the quantity in the square brackets in 

(2.A.12) vanishes for one ordering of the x's, viz. kl-k2=ic, giving 

%(x1-x2) $iK(xl+x2) 
2jdxldx2 e(x2-xl)e2 e ~*(x1)~*(x2) IO> 

(2.A.14) 

For cc0 this is a bound state with a normalizable internal wave function 

JI,$r x2) +/X1-X21 = e (2.A.15) 

The energy of the state (2.A.14) is E=k:+k:$(K2-c2), i.e. the binding 

energy is - $2'. 

The two-body eigenstates (2.A.10) or (2.A.12) were easily 

constructed by conventional means. The penetrating insight of Bethe 

(1931), adapted to the nonlinear Schradinger model by Lieb and Liniger 

(19631, was that exact eigenstates of H for the N-body system could be 

written down by a rather natural generalization of the two-body case. 

The Bethe ansatz for this model is most easily written in the 

unnormalized form which generalizes (2.A.12), 
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I@(kl,...,kN)> = 

1 

1- ic 
i< j<N 

k,-k, E(xi-xj @*(xl) . ..$*(y.$ IO> 
1 3 

(2.A.16) 

By applying (2.A.l) to (2.A.16), it is again found that, by virtue of 

cancellations between &-function terms from H 0 and &-function terms from 

V, the state (2.A.16) is an eigenstate of H. 

H(Q(kl,...,kN)> = (2.A.17) 

Equation (2.A.17) may be verified directly by showing that the wave 

function in (2.A.16) satisfies a many-body SchrGdinger equation (Lieb and 

Liniger, 1963). The wave functions have also been obtained by summing 

Feynman graphs (Thacker, 1976). In Section III a particularly simple 

derivation of the result (2.A.17) will be obtained by the quantum inverse 

method. 

As before, we may construct bound states for cc0 by letting the ki's 

in (2.A.16) become complex. TO obtain an N-body bound state we keep the 
N 

total momentum K= 1 ki real and arrange the ki's to be spaced by ic in 
i=l 

the imaginary direction, i.e. 



kl = t + $(N-1)ic 

k2 = { + $(N-3)ic (2.A.18) 

kN+ i(N-1)ic 

Such a configuration of modes is called an "N-string" and is shown in 

Fig. 2. By the choice (2.A.18) we cause one or more of the factors in 

the curly brackets in (2.A.16) to vanish unless the xi's are arranged in 

one particular order, X1<X2<...<XN. After symmetrization, the N-body 

bound state wave function in the rest frame is 

QB(x1,x2, . . . . xN) = exq? fc l;<NIxi-xj 1) 
- 

The energy of the bound state is 

E = fl: k! = 2~~’ _ Nf-l) =2 
i=l ’ 

(2.A.19) 

(2.A.20) 

For repulsive coupling 00, the wave function ansatz (2.A.16) may be 

used to study a system of particles at finite density. In the remainder 

of this section we discuss the periodic boundary condition method for 

studying the ground state and the excitation spectrum for a finite 

density system. Similar methods will be used for spectra1 calculations 
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in the massive Thirring model in the following Section II-B. In this 

approach a finite density system is constructed as an N-body system in a 

box of length L, with periodic boundary conditions (PBC's) imposed on the 

N-body wave functions. In the limit Too with the density N/L fixed, the 

PBC's reduce to linear integral equations which determine the spectrum of 

the theory. In Section III we return to the nonlinear SchrBdinger model 

and show how these spectral techniques fit naturally into the quantum 

inverse formalism. 

We consider the states (2.A.16) in a periodic box of length L, 

identifying the points x=L/2 and x=-L/2. The many body wave function 

$(X1’X2’.’ XN) = <OI~(Xl)~(x2)...~(~)l~(kl,...,kN)> 

(2.A.21) 

must then satisfy periodic boundary conditions 

L 
$ (- 7,x2 I..., 5' = $($x2 ,..., XJ . (2.A.22) 

Pericdicity in the other arguments follows from Bose symmetry. The 

condition (2.A.22) restricts the allowed values of the kits in a state. 

From (2.A.16) we find that (2.A.22) becomes 

-ikiL/2 
e (2.A.23) 
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ikiL 
e = n e 

iA(kj-ki) 
, i = 1,2,...,N , (2.A.24) 

j#i 

where A is the two-body phase shift. The most useful form of the PBC's 

is found by taking the logarithm of (2.A.241, for which we must choose a 

branch of the function 

a 1 & A(k) = -ilo ktic . 

If the log of (2.A.24) is written 

kiL = c A(kj-ki) + 2701~ , ni = integer , 
j#i 

(2.A.25) 

(2.A.26) 

then a change in the branch of (2.A.25) is equivalent to a redefinition 

of ".'S. 1 We adopt the convention that A,(k)+0 as k- and that A(k) has no 

discontinuity along the real axis, as shown in Fig. (3a). Note that with 

this choice of branch, A(k) is not precisely the phase shift due to the 

interaction. FIX example, as c+O, A(k) goes not to zero but to a step 

function -2lr(-k). The interaction phase shift is A(k), Fig. (3b) which 

vanishes in the c+O limit for all k but has a discontinuity of -211 at k=O 

for any finite c. The physical effect of this definition of the phase 

shift is to introduce a fermionic description of the spectrum in terms of 

the nils in Eq. (2.A.26). To see this consider the case of two particles 

in a box. The two equations (2.A.26) may be added and subtracted to give 

the condition that the total momentum k +k 1 2 must be 2TI/L times an integer 

while the relative value k12zkl-k2 must satisfy 
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k12L 
= A(-k12) - A(k12) + 2”(nl-“2) 

= -4t.&k12,‘c) + 2T(“l-“2) r (2.A.27) 

where +2<tan-la/2. Equation (2.A.27) has a solution k12 for each 

choice of (nl-n2). But for nl=n2 the solution is kl2=0 and the state 

(2.A.10) or (2.A.12) vanishes identically. Thus, the state n1=n2 is 

excluded as it is in a free fermion system. In fact (2.A.27) shows that 

in the limit C+OD (impenetrable bosons) the spectrum is identical to that 

of free fermions. A similar result holds for N-body states. The hard 

core repulsive interaction has the same effect on the density of states 

as the exclusion principle has in a fermion system. 

The ground state k-distribution is obtained from (2.A.26) by 

choosing the nits to be as closely spaced as possible, i.e. n. 1+1 =nitl. 

Subtracting the PBC's for adjacent ki’s gives 

k itl -ki = $ A(kj-kitI'-A'kj-ki' C 2 
1 

(2.A.28) 

AS Lw, the ki’s become infinitesimally spaced, and the quantity 

PWi) = L(k i+:-ki, (2.A.29) 

approaches a continuous function. The sum in (2.A.28) can be replaced by 

an integral 
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1 
L . ..--+ 

j I kF 
dk p(k)... , (2.A.30) 

-kF 

where kF is determined from the particle density N/L by r": p(k)dk=N/L. 
F 

Equation (2.A.28) becomes an integral equation for the ground state 

density p(k), 

1 
kF 

21p(k) = 1 + K(k-k')p(k')dk' , 

-kF 
where the kernel K is given by 

K(k) = dno = -kc.- 
dk k2+c2 

. 

(2.A.31) 

(2.A.32) 

The ground state energy is obtained from the solution to (2.A.31), 

EO/L = k2p(k)dk . (2.A.33) 

The excitations above the ground state consist of "particles" which 

are filled modes above the Fermi surface and "holes" which are empty 

modes below the Fermi surface. For simplicity let us consider a single 

particle-hole excitation formed by removing a mode from below the surface 

at k=kh and placing it above the surface at k=k as show" in Fig. 4. In 
P 

response to such an excitation, the Fermi sea will shift slightly in a 

manner described by the PBC's. Each mode in the sea shifts only by an 

amount of order L -1 , but since the number of modes is of order L, the 
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shift or "backflow" of the sea makes a finite contribution to the 

excitation energy. Denote the k values of the sea modes in the excited 

state by k;. These will satisfy the PBC's. 

k;L = 1 A(k;-k;) t A(kp-k;) - A(kh-k;) +2nni. 
j#i 

(2.A.34) 

Subtracting from this the corresponding ground state PBC gives 

(kj-ki)L = z: b(k;-k;)-A(kj-ki)] t A(kp-kf) - A(kh-k;) . 
j 

(2.A.35) 

AS L-, the left hand side of (2.A.35) approaches a continuous function 

which we denote by w(k), 

(k;-ki)L + w(ki) . (2.A.36) 

Then (2.A.35) reduces to 

I 

kF 

w(k) = K(k-k’)[w(k’)-w(k)]P(k’)dk’ + A(kp-k) - A(kh-k) . 

-kF (2.A.37) 

Using (2.A.31) and defining w(k)p(k)-F(k), (2.A.37) simplifies to 

I 

kF 

2irF(k) = K(k-k')F(k')dk' + A(kp-k) - A(kh-k) , 

-kF (2.A.38) 

The excitation energy E-EOEEl is found by subtracting eigenvalues, 
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El = kgk; + zlkj2-kf) 

I kF 

= k2-k2 + 
p h 

2k F(k)dk . 
-k 

F 

(2.A.39) 

Thus, the excitation energy may be regarded as the sum of the bare energy 

of the particle and hole and a backflow energy of the sea, the latter 

being written as an integral over the function F(k). Equations (2.A.38) 

and (2.A.39) are the essential results of the Lieb analysis. A further 

simplification of these results may be obtained by adapting an argument 

of Yang and Yang (1969). We write Eq. (2.A.38) as 

f 

kF 
$ [2lw(k-k') - K(k-k')]F(k') = 

-kF 
J 

k 
P 

K(k-k') F 1 

kh (2.A.40) 

where (2.A.32) has been used. Equation (2.A.40) can be abbreviated as 

k 
P 

(1-K)F (k) 
dk' - 

kh 
K(k-k'12,, (2.A.41) 

Next consider a quantity L(k,q) given by 

L(k,q) = [(1-K)-lK](k.q) = K(k-q) + 
I 

kF F K(k-k')K(k'-q) + . . . 

-kF (2.A.42) 

Then applying (l+L) to both sides of (2.A.41) and using (l+L)(l-K)=l and 

(ltL)K=L, we obtain 



k 
P 

F(k) = 
dk 

L(k,k’)F . 

k” 

The excitation energy (2.A.39) can now be written 

k 

= k2-k2 t 
El ph 

' dk' S J kF 

zi- ZkdkL(k,k') . 

kh -kF 
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(2.A.43) 

(2.A.44) 

For reasons which will become clear we define a function E(k) which is 

the solution to the integral equation 

e(k) = k2-bO+ 
c 

kF 
g K(k-k')E(k') . (2.A.45) 

‘-kF 

Here uO=chemical potental is a constant which is fixed by the requirement 

E(*kF)=O. (Note that E(k) is an even function of k.) Differentiating 

both sides of (2.A.45) and integrating by parts we get an equation for 

d 
E'(Wx E(k), 

I kF 
E'(k) = 2k + dk' F K(k-k')E'(k') . 

-kF 

(2.A.46) 

Using the same sort of procedure that led to (2.A.43), Eq. (2.A.46) can 

be solved, giving 

c 

kF 
I' = 2k + L(k,k')Zk' $ . (2.A.47) 

J-k F 
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Equation (2.A.44) becomes 

k 
= k2-k2 + 

El ph '[c'(k)-2k]dk = c(kp) - c(kh) . 

kh 

(2.A.48) 

Thus, the structure of the particle-hole spectrum is completely 

summarized by a function c(k) which gives the physical energy (bare 

energy plus backflow) of a single excited mode. The function c(k) is 

determined by a simple integral equation Eq. (2.A.45) which may be 

regarded as the fundamental spectral equation of the theory. The 

generalization of (2.A.45) to finite temperature was obtained by Yang and 

Yang (1969) using a variational method. In Section III we will show that 

the structure of the finite temperature spectral integral equation for 

s(k) is closely related to the structure of the Gel'fand-Levitan 

transform for the charge density operator joint. 

B. The Massive Thirring Model 

Recently it has been found that certain relativistic fermion field 

theories can be exactly solved by techniques which closely parallel those 

used in the nonlinear Schrsdinger model. Early work by Thirring (1958) 

in the massless case and Berezin and Sushko (1965) in the massive case 

considered a wave function ansatz built on an unphysical reference state 

but did not carry out the PBC integral equation analysis needed to reach 

the physical Hilbert space. The massive Thirring model ansatz was 

recently rediscovered (Bergknoff and Thacker, 1979), and the construction 

of the physical states and eigenvalue spectrum was .SlSO carried out. 

This recent work was stimulated by Coleman's (1975) demonstration of the 
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equivalence between the massive Thirring and quantum sine-Gordon models 

along with the emerging connection between Bethe's ansatz and inverse 

scattering methods. This application of Bethe's ansatz was also 

suggested by the work of Luther (1976), who pointed out that the massive 

Thirring model could be regarded as the continuum limit of the XYZ 

Heisenberg spin chain. The method of solution we discuss in this section 

is related to the treatment of the XYZ spin chain and eight-vertex model 

by Baxter (1972a,b: 1973a,b,c) and Johnson, Krinsky and McCoy (1973). 

The connection between the spectral calculations for the two models has 

been discussed (Bergknoff and Thacker, 1979). 

The massive Thirring model consists of a Dirac fermion field with a 

local juju coupling, where j,,=$ $,y,,$ . [ 1 
Choosing a basis in which y 5 is 

diagonal, we may write the Hamiltonian in terms of chiral components $I, 

and '!J,, 

H = dx -i($: 2 JI,-JI: 2 $,I + m,($~$,+$~$,) J[ 

(2.B.l) 

Here we have chosen a certain ordering for the field operators which will 

facilitate the diagonalization of H. The interaction term in (2.B.l) 

differs from conventional ordering by a term proportional to the fermion 

number operator N=~[~;~1+~;~2] dx, which commutes with H. Thus, we will 

get the correct physical spectrum by considering energy differences 

between states with the same value of N, e.g. excitation energies of 

neutral bound states or fermion-antifermion pairs relative to the 
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physical vacuum. 

The form of the Bethe ansatz which diagonalizes (2.B.l) can be 

motivated by first considering the diagonalization of the free 

Hamiltonian H 0, given by (2.B.l) with gO=O. This also serves to introduce 

the idea of complex rapidity which is extremely useful in describing the 

eigenstates of the full theory. To diagonalize HO we first construct 

momentum space creation operators 

a: 2(k) = idx emikx$: ,(x) 

and mix them by a Bogoliubov rotation, 

*f(k) = cos9(k)a:(k) + sin8(k)ai(k) , 

A:(k) = -sine(k + co&(k)az(k) , 

(2.B.2) 

(2.B.3a) 

(2.B.3a) 

where cot28(k)=k/mO. In terms of these operators, the free Hamiltonian is 

diagonal, 

Ho = $k2+m;)1'2[A;(k)Al(k)-A;(k)A2(k)] . (2.B.4) 

Thus, A;(k) and A;(k) create eigenmodes with energies (k +mo) 2 2 m a"d 

-(k2+m;)l'2 respectively. Eigenstates of HO can be built upon a 

reference state IO> which is annihilated by the field operators, i.e. 
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$l(~)~O>=$~(x)~O>=0. This is an unphysical state which has all positive 

and negative energy modes empty. The physical vacuum is obtained by - 

filling the negative energy sea. It is convenient to visualize a state 

as a collection of points in complex rapidity space, each point 

representing a filled mode. Define the rapidity 5 by k=mo sinhc and 

consider a local rotation of the chiral components of the field operator 

with cot2B(<)=sinh<, 

A+(c,x) = COS~(~)$~(X) + Sine(c)$:(x) 

= (ZCOS[) -l/2 
[e 1 

w &) +e-5/2 + JI,Cx)] * (2.B.5) 

It is clear that the positive energy modes (2.B.3a) are obtained by 

taking c=cr=real, 

A:(k) = ldx e 
-ixmosinhcr + 

A (a,~) . (2.8.6a) 

Here and elsewhere we use 5 to denote general complex values of rapidity 

while CL will always be real. Letting c=ir-a with CL real we also obtain 

from (2.8.5) the negative energy modes (2.B.3b), 

A:(k) = ldx e -ixmoSi*haAt ( in-cr x) 
I . (2.B.6b) 
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Thus, a positive energy mode is represented by a point along the real 

c-axis, while a negative energy mode is a point along the line Im 5=*. 

The physical vacuum is the state with all modes on the in line filled, as 

shown in Fig. 5. The density of modes along this line is determined by 

periodic boundary conditions in a box of length L. For the free theory 

this gives a uniform density in k-space, kn=2n"/L. Excited states 

representing fermion-antifermion pairs may be constructed by removing 

modes from the in line and placing them on the real axis. 

NOW let's consider the full massive Thirring Hamiltonian. We 

construct a Bethe ansatz using the rotated local operator A+(<,x) defined 

in (2.8.5). The ansatz is structurally similar to that of Fq. (2.A.16) 

for the nonlinear Schrijdinger equation, 

imoxisinhSi 
l-ii(Ci-<i)E(Xi-xj)) - 

t xA t ($,x~)...A (c,r N x )lO> 

The function h(c) in (2.B.7) is given by 

A(<) = $-gOtanh(C/2) . (2.B.B) 

This corresponds to a two-body phase shift 

(2.B.7) 

A(c) = 2tan-IX(c) = 2ta"-1(cotuta"h+<) (2.B.9) 



31 

where p=-cot(go/2). By applying the Hamiltonian (2.B.l) to the state 

(2.B.7) it can be shown that (Bergknoff and Thacker, 1979) 

Hlo(S l...5N)> = l~Kl...CN)> . (2.B.10) 

As with (2.A.17), this result follows from a cancellation between 

'5 (xi-xj) terms from the kinetic energy derivatives in (2.B.l) acting on 

the E step function in (2.8.7) and similar terms from the interaction 

Hamiltonian. Modes along the real axis give a positive contribution to 

the energy while modes along the irr line, Ifi-, carry negative energy. 

Periodicity in Im< allows us to restrict our considerations to the strip 

-ll<IrnS~lr. In this strip, values of Iti aside from 0 or TI generally lead 

to a wave function which grows exponentially as xt+m. However there are 

special "n-string" configurations in the complex 5 plane for which the 

wave function is exponentially damped as in the case of the nonlinear 

SchrGdinger bound states. In the present case, an n-string configuration 

is determined from the zeroes of the curly bracket factors in (2.B.7). 

This gives a vertical row of equally spaced points at <=ccs+i9,(n-pi,, where 

L=(n-l), (n-3),...,- (n-l) and as is the position of the string along the 

real axis, as shown in Fig. 6. 

To construct the physical vacuum we must fill all the negative 

energy modes along the in line just as in the free fermion theory. (The 

fact that this state is the correct vacuum may be inferred from the 

observation that all other states in the neutral sector have positive 

excitation energy.) The filling of the Dirac sea is accomplished by the 

Same PBC integral equation method used for the finite density 
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delta-function gas. Imposing PBC's op. the wave function for the state 

(2.B.7) and following the same procedure which led to (2.A.24), we find 

that the set of ci 's in a state must satisfy 

e~p(+oLsinh<ij fl [l+ih(6i-<j)] = 

j#i 

exp( +noLsinht;i) n [l-ih(:i-Sj)] 

j#i 

(2.B.11) 

Before addressing the problem of the Dirac sea, consider first the case 

where ci is a member of an n-string. If O<Imsi<r there is an adjacent 

mode in the string with [j=[i-2i(n-p) for which h(ci-cj)=i. Thus, the 

left hand side of (2.8.11) is zero while the right hand side vanishes as 

L". Similarly, for -IT<I@~<O with 6 in an n-string, there is a 5. which 
1 

causes the right hand side to be zero while the left hand side vanishes 

exponentially. This is just a restatement of the observation that an 

n-string configuration yields an asymptotically damped wave function and 

thus satisfies the periodic boundary conditions as O=O. Notice that this 

argument also restricts the length of an n-string to lie within the strip 

-ll<Imsi<TT, since otherwise the side of (2.B.11) which is not identically 

zero will grow exponentially instead of vanishing. Let us denote regions 

of the coupling u by an integer r, where 

(2.B.12) 
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Then the length restriction on an n-string imposed by (2.B.11) is n5rt2. 

For example, the free fermion case u=+ lies on the boundary between 

regions r=O and r=l. On both sides of this boundary, l- and 2-strings 

are allowed, while 3-strings become allowed for u>:. As p increases 

toward pi, strings of increasing length enter the spectrum. 

To calculate the energies of the physical states we must take into 

account the behavior of the Dirac sea. (Note that the previous 

discussion about the PBC's for n-string modes is unaffected by the 

presence of sea modes.) To determine this behavior we consider (2.B.11) 

when ci is a mode in the sea. In this case both sides of (2.B.11) will 

generally be nonzero, so we take the log, giving 

-moLsinh<i = A(ci-Sj' + 27rni , 

j 

(2.B.12a) 

where A is given in (2.8.91, which can be written 

A(c) = -i ln[-,:~~~:~~~:~] . (2.B.13) 

For the vacuum state, all 6,'s are on the irr line. As L-W, Eq. (2.B.12a) 

reduces to an integral equation for the ground state density p(c) of 

modes along the in line, 

Znp([) = -mocosh< - dC'K(S-S')p(S') . (2.B.14a) 
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Since [=cc+in with a real, this may be written 

2rpl(a) = mOcosha - da'K[a-a')pl(a') (2.B.14b) 

where pl(a)=p(a+in). (The change in relative sign of the terms in 

(2.8.14) compared with (2.A.31) is related to the fact that ci=ai+in in 

(2.B.l2a), requiring the nits to be defined as shown to form an 

increasing sequence.) The kernel is given by the phase shift 

derivative, 

K(a) =$= sin211 
cosha-cos2v (2.B.15) 

In (2.8.14) we have introduced a rapidity cutoff h which is needed to 

regularize ultraviolet divergent mode sums. These divergences will be 

absorbed by mass renormalization. Equation (2.8.14) can be solved 

explicitly for large A by Fourier transformation. When expressed in 

terms of the renormalized fermion mass %,~~(a) is found to be finite and 

given by ~~(a)=% coshya where y is defined below in !Zq. (2.B.38). We 

omit the details of the calculation, since they are identical to the 

solution of F.q. (2.B.24) for the spectral function E(C) which will be 

discussed in detail. 

The physical particle states in the neutral sector of the theory are 

constructed by removing modes from the ia line and placing them in 

n-string configurations about the real axis. We will consider first a 
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simple excitation obtained by removing a mode from the ia line at ch and 

placing it at a point F,, as shown in Fig. 7. We study the response of 

the vacuum to such an excitation by subtracting ground state from excited 

state PBC's for a mode along the in line. Note that the PBC's for the 

vacuum modes do not require the excited modes to form an n-string. (This 

requirement comes from the PBC's for the excited modes themselves.) 

This allows us to consider the vacuum response for a single excited mode 

at arbitrary 5 . 
P 

The construction of multiple excitations and n-strings 

will then be straightforward. Just as in the derivation of (2.A.38) for 

the nonlinear Schradinger model, we define a function w(c) which measures 

the shift of a sea mode due to the excitation and subtract PBC's to 

obtain an integral equation for the backflow function FC<)=w(~)pC~), 

J 

A+in 
2nFK) + K(<-S',F(5',dc' 

-Atin 
= ACE-C,,-AC<-6,) . (2.8.16) 

In terms of Fl(a):F(a+iB), the energy of the excitation relative to the 

ground state is given by 

J 
A 

E = mocosh< 
P 

- mocoshch + m. 
-h 

sinha Fl(a)dcr . (2.8.17) 

Following the same line of argument that led to (2.A.48) we define a 

function ~~(5) as the solution to the integral equation 

Em = mocoshS - p. - J 
h+in c.c 

-A+in " 
K(S-5')EoK')* (2.8.18) 
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where uO is chosen to give ~~(+A+iaj=O. In terms of this function, the 

energy (2.8.17) assumes a simple form 

E = ~otcp, - EO(Ch, . (2.B.19) 

It is convenient to eliminate the constant u. from (2.B.18), which can be 

done in the limit h* by defining 

E(S) = Eo(CJ + a , (2.8.20) 

where a is a constant which will be chosen to simplify the integral 

equation for E(S). Substituting (2.B.20) into (2.B.18), we use the fact 

that 

I 

A+in 
K(<-5')s d- Cl + C2 coshS s 

-A+in 
(2.8.21) 

where cl and c2 are cutoff dependent constants independent of 5. The form 

of (2.B.21) follows from the asymptotic behavior of the kernel K(<-6'). 

NOW choosing 

a = Po/(l+cl) , (2.8.22) 
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and defining 

ml = m. + ac2 , 

we find that the function E(C) satisfies the integral equation 

J 

A+in 
E(<) = mlcosh< - 

-Atin 

(2.B.23) 

(2.8.24) 

Note that the energy (2.B.19) retains its simple form, 

E = ~(6~) - E(ch) . (2.B.25) 

The constant ml in (2.B.23) is a resealed bare mass which can be 

expressed in terms of no and the finite coupling parameter 1-1 by 

ml = no/y (2.B.26) 

where y is defined below in (2.B.38). The easiest way to see this is to 

write an integral equation for E'(<)=de(c)/d<. Differentiating (2.B.18) 

and using Eo(+Atin)=O, we get 

I 

A+in 
E,'(C) = mosinhc - 

-Atin 
K(S-C')WE')$ . (2.B.27) 
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Equation (2.B.26) follows by comparing solutions to (2.B.24) and 

(2.B.27), which will be discussed below. 

We wish to construct the solution to (2.B.24) for any complex value 

of 5 in the strip -r<I~$<n. Our discussion will be restricted to the case 

n/2cU<B, i.e. go positive. This is the range of coupling for which the 

fermion-antifermion interaction is attractive and the spectrum contains 

one or more bound states. In the sine-Gordon equivalence of (Coleman, 

1975) this corresponds to the range O<82<4n. (The case p<n/2 has also 

been discussed (Bergknoff and Thacker, 19791, although some problems 

remain for u<z/3.) To solve (2.B.24) for general 5, we begin by 

considering the case in which 5 is along the in line. The continuation 

to general 5 will then be obtained by inserting this result back into the 

integral equation. Writing c=cctin and defining 

El(a) = E(atin) , (2.B.28) 

Es. (2.B.24) may be written 

I 

h 
El(a) = -mlcosha - 

dcz' 

-A 
KO-a’)El(a’,2a . 

NOW we apply 

J 

A & siay 
-A 2n ". 

(2.B.29) 

to both sides of (2.B.24). The limits of the CL integration in the last 

term can be taken to infinity because the kernel K(C%a') falls off 

exponentially as cx+?rm. Defining 



J 
A 

Sl(Yl = ,laY E (“)~ 
-* 1 2n ' 

I 

A 
C(Y) = 

-iZe 
lay cosha E 2n ‘ 

K(Y) = g , 
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(2.B.30) 

(2.B.31) 

(2.B.32) 

Eq. (2.B.29) gives 

Q(Y) = 
-~C(Y) 

l+iY(y) * 
(2.B.33) 

The Fourier transform of the kernel may be evaluated by contour 

integration from (2.B.15) and (2.B.32), which gives 

K(Y) = 
sinh(n-Zp)y 

sinhiry 

The function'C(y) given by (2.B.31) may be written 

C(Y) =C+(Y) +c-(Y) I 

where, for A-, 

A(ltiy) 
'*(') = yn(l*iy) * 

(2.B.34) 

(2.B.35) 

(2.B.36) 
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The function cl(a) is recovered from (2.B.33) by inverting (2.8.301, 

EIW = 

ml m cc I dy e -iay sinhrry ,A (l+iyl 4n -a I[ Zsinh(n-p)y coshuy l+iy 1 
(2.8.37) 

In the limit A-w, this integral is dominated by the y-plane poles nearest 

the real axis. Since we are considering u>n/2, these poles are at y=+iy, 

where 

Ti 
y=z; - 

From (2.B.37) we find 

cl(a) = -%coshycc , 

where % is the renormalized fermion mass 

m yeNl-Y) 

"F = &) tann-r * 

(2.B.38) 

(2.8.39) 

(2.B.40) 



To determine s(6) for arbitrary complex 5, we write Eq. (2.B.24) 

using the solution (2.B.39), to determine the right hand side. Note also 

that y<l for u>n/2, and hence with mP held finite, ml+0 as A+-. ThUS 

Eq. (2.B.24) may be written 

I 

m 

Etc.1 = % 
do' K(S-u'-in)coshyo r , 

-m 
(2.B.41) 

where we have let A+m in the limits of integration because the integral 

is convergent. 

For c=a+is with CL real, it is EISY to verify that (2.B.41) 

reproduces the result (2.B.39). Using (2.B.41) to compute E(S) for 

general values of 5 requires care in the definition of the kernel K(c) 

for complex 5. It is not correct to simply replace the real variable CL in 

(2.8.15) by 5. X(c) is defined as the derivative of the phase shift A(<) 

given by (2.B.9) or (2.B.13). As in the nonlinear Schrodinger model, the 

choice of branch for A(S) is correlated with the choice of integers ni in 

the PBC equations (2.B.12). The appropriate branch structure for ouz 

choice of n i 's is shown in Fig. 8. Letting 5=atio and regarding A.(atio) 

as a function of a, it is seen from Fig. 8 that this function is 

continuous for -2(s+)<U<2(7r+) while it has a step discontinuity of 

(-7-W at a=0 for -1T<u<-2(7r-u) and for 2(7l-u)<o<X. (The behavior of A(<) 

over the entire complex plane is specified by its behavior in the strip 

-Tr<Inl~<lT along with periodicity in II&.) Thus, the properly defined 

kernel X(c) will acquire a delta-function term for IIm~)>2(X-u). Defining 

the continuous function 



Kc(S) = 
sin2" 

coshc-cos2u ' 

we see that, in the strip -v<o<n, the kernel is given by 

K(atio) = Kc(atiu), lo1<2m-P) , 

= Kc(a+iu)-2n6(a), lu1>2m-P) . 
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(2.B.42) 

(2.8.43s) 

(2.8.43b) 

Values outside the strip -n<o<_rr are obtained by periodicity. 

To provide a complete understanding of the spectrum, we must 

describe the phenomenon of "hole trapping" which occurs when an excited 

mode 5 
P 

enters the region 

lIms,I < al-77 , (2.8.44) 

which is the shaded region shown in Fig. 9. The unshaded regions in 

Fig. 9, n>In15~>2u-n and a-2u>Im~p>-n may be regarded as a single region, 

31r-2u>Im~p>2u-lr, by periodicity. When < 
P 

is above the "threshold line" 

Im[p=2u-n, its position relative to the hole et 5, is unrestricted, as 

shown in Fig. 9s. If the mode is pulled down below the threshold line 

into the shaded region (Fig. 9b), the associated hole is suddenly forced 

to be directly above it, i.e. Rech must equal Re< 
P 

. We will find that the 

bound complex (mode + hole) thus formed is just the fundamental boson of 

the quantum sine-Gordon model. To see the effect of crossing the 

threshold line, consider the PBC's (2.B.12) for a mode in the sea. After 
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separating off the excited mode 5, from the rest of the sum, we may write 

the PBC's in continuum form as 

-mosinhc = 3(<-(')pp(5')d< + $ACC-6,) + -h(S) 

where (2.B.45) 

2nn. 
hKi) = e , 

and pp(<) is the density of modes along the in line for the excited 

state. In the ground state there are no holes on the in line, meaning 

that the nils are closely packed, nitl-ni=l. For a" excited state 

"i+l i -n =l+n h where n h 
is the number of holes between mode i and mode i+l. 

Thus, 

2nnh 
h(Si+l) - hEi) = % + y I (2.8.46) 

which can be written in continuum notation as 

JyL PpK) + PhK1 I (2.B.47) 

where ph([) is the hole density. An analogous function was considered by 

Yang and Yang in their derivation of the thermodynamics of the 

delta-function gas at finite temperature. For the case of a single hole 

at Eh=uhtii' which we consider here, the hole density may be written 



Ph(S) = $5 (aah) , 
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(2.B.48) 

where c=a+in. Differentiating (2.B.45) and using (2.B.47) end (2.B.48), 

we get an equation for pp(<), 

2TPp(5) + K(5-5’)Pp(S’)dS’ = 

-mocoshS-$(S-Sp)- $ (airh) . (2.B.49) 

By studying the singularities of this equation we will demonstrate the 

phenomenon of hole-trapping. Consider first the case shown in Fig. 9a 

with 5 
P 

above the threshold line, 111$~>2u-rr. Taking c=atiri in (2.B.49) we 

See that, for this case, K(S-Spl has no delta function piece since 

Im(S-Spl <2 W-p). The integral term on the left hand side also gives no 

delta-function contribution. Thus, the density pp(c) must be of the form 

pp(a+in) = f(a) - i 6(a-ah) , (2.B.50) 

where f(a) is continuous in the sense that the integral c+' f(a')da' 

over a small but fixed range A is given by a continuous function of a 

plus terms which fall off faster than l/L. The result (2.B.50) may be 

seen more directly by writing the formal solution of (2.B.49), 



1 
Pp(S) = p+w 

-1 -mOcosh<+K(<-,: ,-% ('Y-cx~) . 
'P L I 
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(2.B.51) 

The first two terms give a continuous contribution to p . For the last 
P 

term we write (l+K) -l=1-K(l+K) -l giving a delta function and a continuous 

piece from 1 and K(l+K)-1 respectively, as can be seen by doing the 

Fourier transform implicit in (2.8.51). This shows that (2.8.50) is the 

correct form when 5 is above the threshold line. 
P 

In the language of 

discrete modes, the second term in (2.B.50) simply means that there is an 

unoccupied mode on the in line at cwh+in. Now consider what happens when 

5, 
moves below the threshold line (2.B.44). By (2.B.431, the kernel 

K([-[p) acquires a delta-function piece, 

KC~-~,, = K,(S-<,I - 2n6(W1~) I (2.8.52) 

where a=Re< and crp=Re< . From (2.B.51) we find 
P 

that the mode density 

along the irr line becomes 

pp (a+inl = f(a) + ; G(a-ap) -; 6(cr-ah) , (2.B.53) 

where f(a) is again continuous. Just as a subtracted delta-function 

represents an unoccupied mode on the in line, the second term in (2.B.53) 

represents the placement of an additional mode on an already filled line. 

But this is not possible because of Fermi statistics. (Specifically, if 

two modes in the Bethe's ansatz wave function (2.B.7) have the same 5, 

the wave function vanishes identically.) The only way to avoid this 
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problem and construct a legitimate state is choose cr "1 so that the last 
P h 

two terms in (2.B.53) cancel. The excited mode and its hole must bind 

together when the mode moves below the threshold line, as depicted in 

Fig. 9b. 

After all these preliminaries, we are "0" ready to evaluate the 

function ~(5) from (2.B.41). In the unshaded region around the irr line, 

3n-Z!DIm[>Z~-n (Fig.ga), the kernel has no delta-function piece and is 

given by (2.B.43a) and (2.B.42). The evaluation of the right-hand side 

of (2.B.41) by contour integration is essentially the Same as for the 

case <u+in. This gives 

E(S) = -%coshy(S-in) , (2.B.54) 

for 3n-2u>ImQ2U-i7. If we wish to remain in the strip -a<Im&r, 

periodicity of E(C) allows us to write (2.B.54) as 

E(5) = -%coshy(C-ir) , 2U-lr < 1ms < 71 , - (2.8.54a) 

= -%coshy(S+in) , -71 c II& < rr-2&l . (2.B.54b) 

Now let us consider the case where IItiI<2~r-n, as in Fig. 9b. In this 

region, the kernel K(<ir'-in) in (2.8.41) acquires a delta-function piece 

according to Eq. (2.B.43b). Letting C-a+iX, CL and X real, we write 

K(t-al-in) = Kc(<a3-in) - 2*6(~~~) . (2.B.55) 

Substituting this into (2.B.41) gives 



E!S) = “F K (c-a'-iV)coshYo's'- mFcoshYa , 
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(2.B.56) 

which, by (2.B.54a) may also be written as 

E(a+iX) - r(atilT) = mB du' 
K (a-a'-i(n-X))coshyu' ?;;- , 

(2.B.57) 

for lh1<2V-n. But this is also the region in which hole trapping occurs, 

i.e. a mode in this region at cp=a+ik must have a hole attached to it at 

ch=a+in. The combination on the left hand side of (2.B.57) is the same 

combination that appear-s in the expression for the excitation energy, 

Eq. (2.B.25), and may be regarded as the energy of an elementary boson, 

EB(atih) = E(a+ih) - e(Cx+iv) . (2.B.58) 

Evaluation of the right hand side of (2.B.57) is straightforward. It is 

interesting to compare it with the corresponding calculation in the 

region IX1>2&r which led to the result (2.B.54). In either case we must 

evaluate the integral 

,,,~~~c(a-al-i(n-A) ) CoWa’ z’ s I+ + I- , 

where 

?yCY' 
I sin2p e dcr' 

cosh[cx-a'+i(rr-A)]-cos2v %- * 

(2.B.59) 

(2.B.60) 
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The integrand has two sequences of poles atcx'%g where 

~1 - i(n-A) * 2iu + 2im . (2.B.61) 

When Ix/>~~-II (the unshaded region in Fig. 9), the poles in the upper 

half-plane are at cr: for "=0,1,2,..., and at a, for n=1,2 ,. . . The 

integrals (2.B.60) are easily evaluated, 

I+ 
-1 ycr 

= -5 mFe 
e-iy (n-X) 

i 
(lte 2iyn +...) - (e2iv+e4iv+...) 

I 

=+# y K-in) 
(S=a+ih) , (2.B.62) 

with a similar result for I-, leading to (2.B.54). But when the excited 

mode moves into the shaded region Ix[<~"II, the pole at a;%+iX-i(2ua) 

crosses from the upper to the lower half-plane, with the result that 

I+ + _ $ “Fey K-in){l+,2iyrr) 

= -mpsnY ey5 = $ %eYr , 

where 

s = -2vcos1ry = 2mFsink (2y-l)] , 

(2.B.63) 

(2.8.64) 
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which is the mars of the elementary sine-Gordon boson. A similar result 

holds for I -* To summarize, the function E(C) in the strip -WImc<n is 

given by 

E(S) = -mPcoshy(5-in) , 2u--n c IrnS 2 n 

= -mPcoshy(~+in) , -77 < Im< < n-2u 

(2.B.65a) 

(2.B.65b) 

EB(6) = E(6) - E(ReS+iir) = mgcoshyc, IWI < 2!.l-rr 

(2.B.65~) 

Knowing the function e(c), it is an easy matter to construct the 

spectrum of physical states. The PBC's for the excited modes require 

that these modes be placed in n-strings, i.e. in vertical arrangements 

5, = as + i.Q.(n-U) , (2.B.66) 

where il=(n-1), (n-3),..., -(n-l), as shown in Fig. 6. If n<r where r is 

determined from the coupling by (2.B.12), than all of the modes in the 

n-string lie within the region jIm<1<2u-n. Each of the modes has a hole 

stuck to it at crs+in, and the energy of the full n-string + n-hole 

complex is 

En = $ mgcoshy$ = 
mBsin[T(2y-111 

sin[:(2y-l)] cOshycrs 

= 2mFsin[y(2y-l)]coshycls , (2.B.67) 
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which is just the familiar Dashen-Hasolacher-Neveu (1975) formula first 

obtained by semiclassical quantization of the "breather" mode of the 

sine-Gordon model. (A similar formula was obtained for the XYZ spin 

chain spectrum by Johnson, Krinsky and McCoy (1973). The connection 

between the two results was pointed out by Luther (1976).) 

For the two longest strings, n=r+l and n=r+2, the two end modes at 

the top and bottom of the string at I<*("-l)(nv) are within the region 

IImgI>2!J-, as shown in Fig. lob. Thus, two of the n holes may be 

located anywhere on the in lines. Let the positions be ccl+in and cL2+iv. 

The other (n-2) holes, those associated with the modes inside the shaded 

region I II$~<~u-v, must be directly above the string. The energy of the 

state may be written as the sum of three contributions. The (n-2) modes 

inside the shaded region, along with their holes, contribute 

2yin 9 
[ 

(2y-1) 
3 

coshya s ' (2.B.68) 

just as in (2.B.67). The contribution from the two end modes is obtained 

from (2.B.65a) and (2.B.65b), and is given by 

-mFcoshy (n-u) -iv 
1 

- mFcoshy 
C 
crs-i(n-1) (n-u)+irr 

1 

= -2%sin y (2y-1) 1 coshyas (2.B.69) 

This exactly cancels the contribution (2.B.68). The net energy of the n 

modes and (n-2) holes is zero, and the parameter cxs completely disappears 
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from the expression for the energy of the state. The energy of the state 

is given entirely by the contribution of the two unbound holes, 

E= mEcoshyal + mFcoshya 2 ' n = r+l, rt2 . (2.B.70) 

From this result we infer that the two longest n-strings represent states 

of an unbound fermion-antifermion pair with physical rapidities yal and 

ya2. It is worth reemphasizing that the position of the n-string, aS’ 

does not appear in the energy (2.B.70). This is somewhat surprising, 

since as does appear in the corresponding eigenstate. This presumably 

does not reflect a real degeneracy, but rather a subtle invariance 

property of the eigenstate. 

Following the same steps which led to (2.8.67) and (2.B.70), one may 

calculate the physical values of other conserved quantities for a given 

state. Calculating the physical momentum in this way leads to similar 

expressions with coshyo replaced by sinhya, giving a Lorentz covariant 

energy-momentum relation. Finally we note that the spectrum also 

includes compound excitations consisting of several n-strings plus holes. 

The totality of such excitations is believed to provide a complete set of 

states, although this has never been demonstrated explicitly. 

C. Field Theories with Internal Symmetry 

A major advance in the technology of Bethe's ansats was made by Yang 

(19671, who developed a method for treating the many body problem with 

delta-function interaction which imposed no limitation on the symmetry of 

the wave function. This method provides a solution not only for the case 
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of identical bosons discussed in Section II-B, but more generally for a 

system consisting of several different particle species (which will be 

referred to as "colors"). The only requirement is that all colors have 

identical mass and interact via a color invariant delta-function two-body 

potential. In field theory, this sytem is described by a multicomponent 

nonlinear Schrodinger equation, with the Hamiltonian 

$*a $ +c~@~@~@aob xaxa 
=,b 

(2.C.l) 

where the sums run from 1 to N c' the number of colors. Recently, a Bethe 

ansats solution for the chiral invariant Gross-Neveu model has been 

formulated by Andrei and Lowenstein (1979, 1980), using Yang's technique 

to handle the internal symmetry. This model has a multicomponent fermion 

field interacting by a color invariant four-fermion interaction of the 

form g [(ii+) 2- (?y5W '1. It is an important model in that it has nontrivial 

renormalization group properties and exhibits asymptotic freedom and 

dynamical mass generation. A similar model, the SU(2) Thirring model, 

has been discussed by Belavin (1979). The study of exactly integrable 

field theories with internal symmetry seems likely to provide additional 

insights in the future. Kulish (1979) has shown that the Yang method for 

the multicomponent nonlinear Schrodinger model (2.C.l) finds a natural 

place in the quantum inverse method, and a similar discussion of the 

Gross-Neveu model has been presented by Kulish and Reshetikhin (1979). 

An outstanding problem of major importance is the application of Bethe 

ansats or quantum inverse methods to the nonlinear sigma models. Much 

work has been done in the investigation of exact integrability for these 
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models, but so far they have not been analyzed by the methods we are 

discussing here. 

In this subsection we will briefly review Yang's method in the 

context of the multicomponent nonlinear Schrodinger model. Relativistic 

fermion models are treated in a similar way, with the finite density 

system of the nonlinear Schr6dinger model again serving as the analog of 

the physical vacuum in the relativistic theories. We begin by 

considering the two-body system for the Hamiltonian (2.C.l). Denoting 

the colors of the two particles by al and a2, we try to construct a 

two-body eigenstate of the form 

/kl,k2> = ~dxldx2$'(xl,x2)$'~ (X I'$* (X2) lo> 
1 1 =2 

. (2.C.2) 

The Bethe ansatz for this problem is a generalization of the identical 

boson wave function (2.A.12) 

Jib 1’5) = ~[Q,P]@(xQICxQl)exp i[kplxQl+kP2xQ2] 
P,Q 

e(xl(X2){[12,12]e 
i (klxl+k2x2) 

= +p2,21]e 
1 (k2x2+klx2) 

+ B(x2<x1) [21,12]e 
l(klx2+k2x1) 

+[21,2iJe 
i (k2x2+klx1) 

(2.C.3) 

where 8(x<y)Z8(y-x), Q and P are permutations of (1,2), and the 

coefficients [Q,P) are to be chosen so that (2.C.2) is an eigenstate of 

H. Continuity of the wave function demands that 
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L-l2,12] + [12,21] = [21,12] + [21,21] . (2.C.4) 

The state (2.C.2) will be an eigenstate of (2.C.l) provided that 

delta-funtion terms from the kinetic energy and interaction Hamiltonians 

are made to cancel. (This is sometimes stated equivalently as the 

condition that the first derivative of the wave function should have a 

discontinuity of 2c at x1=x2.) This condition, combined with (2.C.4), 

may be written in an elegant form by collecting the coefficients [Q,P] in 

a 2x2 matrix and denoting the columns by 5,. This allows us to write the 

stated conditions as 

521 = y12512 

where 

y12 
-%2 

=z+ 
1 -9 

12 1+A12 12 * 

Here, 

x 
12 

=ic , 
kl-k2 

(2.C.5) 

(2.C.6) 

(2.C.7) 

and 9 12 is the permutation operator which interchanges the two 

components of the column vector 5 12' Thus, (2.C.5) is written explicitly 

a* 
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(;:::;, = G$:::::;)+ iTi$::;, . (2.C.8) 

It is easy to check that with the conditions (2.C.8) the continuity 

equation (2.C.4) is satisfied, and that the state (2.C.2) satisfies 

H]kl,k2> = (k;+k;) Ikl,k2> . (2.C.9) 

Equation (2.C.8) can be interpreted physically in terms of the two 

body scattering process in a way which leads naturally to the 

generalization of this result to any number of particles and colors. 

Imagine the particles arranged on a line in x-space. The permutations Q 

and P may be regarded as the arrangement from left to right of the color 

labels and (pseudo) momentum (ki) labels respectively. A coefficient 

[Q,P] can be interpreted as the amplitude for an arrangement of colors 

and momenta, e.g. [21,12] is the amplitude for finding the first particle 

with color a 2 and momentum k 1 and the second with color a 1 and momentum 

k2' For definiteness assume that kl>k2. As in the case of identical 

bosons (Thacker, 1977), the time development of the system may be traced 

from the incoming configuration of momenta P=(l2) to the outgoing 

configuration P=(21), with an elementary perturbative interaction 

represented by a factor of -A 12, Es. (2.C.7). When the ordering of the 

momenta interchanges, i.e. when the fast particle kl passes the slow 

particle k2, one of two things may happen to the color. Either the 

colors al and a 2 are exchanged between the fast and the slow particle, in 

which case the color ordering Q remains the same, or else the color a 1 
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remains on the fast particle and a2 remains on the slow particle. The 

former may happen only if the space particles interact at least once, 

while the latter may happen whether or not they interact. The first and 

second terms on the right-hand side of (2.C.8) describe these two 

possibilities. 

With this interpretation of (2.C.8), it is now easy to generalize 

(2.C.5) to the N-body case. Let Q and P be elements of the permutation 

grow sN and write the N-body wave function as 

I$ = p~[~,~]6(~Ql<...<~Q )exP(i$ kpixQ,) . 
IN 1 

(2.C.10) 

Then the state 

Ikl... k$ = j-dx 1 . ..d~~(xl...XN)~~l(Xl)...~~(~i lo> 

(2.C.11) 

is an eigenstate of H provided that 

5 =Y i,i+l 
P' 'i"i+l 5, (2.C.12) 

where 5, is a column vector of the N!xN! matrix [Q,P] and P' is the 

permutation obtained from P by interchanging Pi and Picl. The Y-operators 

are defined by 

s;;=&+a l+Xij Rm ' I 
(2.C.13) 
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where pLrn is the permutation operator on 5 
P 

which interchanges Qa, and 

Q m' The mutual consistency of the equations contained in (2.C.12) may be 

established using the identities 

Y.y$ = 1 , 

YabYbcYab = Y bc ab bc 
]k ik 1, Y Y, ij ik ]k - 

(2.C.14) 

(2.C.15) 

We note the analogous roles played by i,i+l the operators Ypipitl and 

gi i+l when acting on 5,. The first interchanges Pi and Pit1 (nromentum 

labels) while the second interchanges Qi and Qitl (color labels). The 

periodic boundary conditions which emerge from the wave function (2.C.10) 

can be easily understood from this point of view. The periodic boundary 

conditions relate the amplitude for finding a particle with a particular 

color and momentum label at one end of the box to the amplitude for 

finding a particle with the same color and mOmenturn at the other end of 

the box. For an N-particle system, all N such conditions may be written 

in terms of a standard vector 5, defined as 5, with P=identity. It is 

convenient to define an operator 

xij = .YjY;;= 
1-.9i.xi. 

lth.. ' 
iI 

(2.C.16) 

which has the effect of interchanging both momentum and color labels. 

Thus, the PBC's can be written as 



xj+l jxj+2 j".x N,jxl,jx2,j"' X 
I , j-l,jcO 
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(2.C.17) 

where 

'j = ' 

ikjL 
(2.C.18) 

Equation (2.C.17) for j=l ,...,N provides N matrix eigenvalue equations 

for the vector 5,. It can be shown (Yang, 1967) that the N matrices on 

the left-hand side all commute with each other. Before proceeding to 

discuss (2.C.17) in general, we mention two special cases. For identical 

bosons, yip=1 for all i and j (i.e. the wave function is symmetric). In 

this case (2.C.17) reduces to the usual PBC's Eq. (2.A.24). If the 

particles are identical fermions, Pij=-1, and (2.C.17) reduces to the 

PBC's of a noninteracting theory, oj=l. This was to be expected because 

single component fermions cannot interact by a delta-function; their wave 

function vanishes when any two coordinates coincide. 

One of the most remarkable aspects of Yang's method is its treatment 

of the matrix PBC's (2.C.17). As shown by Yang and extended by 

Sutherland (1967), the PBC's can be solved by a second application of 

Bethe's ansats, or more generally by a nested series of Ansatse. The 

operators 9 ij acting on the vector 5, form an N!xN! representation of 

the permutation group SN. This may be written as a sum of irreducible 

representations by considering 5, 's of various symmetry types. Choosing 

one particular irreducible representation reduces the PBC's (2.C.17) to a 

matrix equation with the dimension of that representation. The choice of 

representation is reflected in the symmetry properties of the 

corresponding wave function. For example, as we already mentioned, the 
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one-dimensional symmetric and antisyrmnetric representations produce wave 

functions for identical bosons and fermions respectively. Higher 

dimensional representations correspond to systems with two or more 

species (colors) of particles. We denote an irreducible representation R 
a 

by a Young tableau [n1,n2,...,nII] where 1 ni=N. Graphically this tableau 
1 

has n1 boxes in the first row, n2 boxes in the second row, etc. For each 

R there is a conjugate representation R obtained by interchanging rows 

and columns. Figure 11 shows the conjugate representations 5,3 and 

22 211: 2312 I , , , , . If R represents a boson system with n1 particles of 

color 1, n 2 particles of color 2, etc., then R describes a fermion system 

with the same color content. The periodic boundary conditions for 

conjugate representations are related in a simple way. The eigenvalue IJ. 
I 

0" the right hand side of (2.C.17) may be regarded as a function of the 

representation chosen for the gij's and written oj(R). Now write another 

eigenvalue equation 

x;+l,jxj+2,j”’ X’ .X’ .X’....X! 
N,I 1~1 21 I-l,j o=ujo I 

where 

1+ .5? .A.. 
Xij = 13 iI 

1+x.. . 
11 

(2.C.19) 

(2.C.20) 

The eigenvalue nj is also a function of the representation. Then we see 

that 

aj(R) = uj(R) . (2.C.21) 
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This follows by noting that rows and columns in a Young tableau represent 

symmetrization and antisymmetrization respectively, and thus the change 

of sign in (2.C.20) compared with (2.C.16) is equivalent to using the 

conjugate representaion in (2.C.17). 

As an example we consider a system with two species of fermions, 

e.g. M red ones and N-M blue ones. The appropriate symmetry for (2.C.17) 

is R= 2”,lNw2” L I* By (2.C.21) we may instead consider (2.C.19) with 0 

having the symmetry R= N-M," . 
-II 1 

The key to Yang's method is to regard the 

vector @ as a wave function describing M identical particles and N-M 

vacancies on a lattice and to write a generalized Bethe ansatz for @: 

Q = c a(P)F(A 
PESM p1 

,Y~)F(A~ 21y2) . ..Wp ,Y ) 
M " 

r (2.C.22) 

where the yi's are integers which denote the lattice site and satisfy 

1p1<y2<. . .'y&N. It is found that the ansatz (2.C.22) can be made to 

simultaneously diagonalize the N operators in (2.C.19) (for j=l,...,N) if 

we choose 

F(~,Y) = 
I 

* 
(2.C.23) 

The periodic boundary conditions for the new ansatz (2.C.22) restrict the 

A's to satisfy 

- 5[[y”rl:::] =I$$$] - (2.C.24) 
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The factors on the right hand side are just the two-body phase shifts 

associated with the coefficients a(P) in the ansatz (2.C.22). Finally, 

the eigenvalue pj in (2.C.19) which is obtained from (2.C.22) is 

Using (2.C.211, the original matrix PBC's Eq. (2.C.17) reduce to 

eikjL = y :$f$ . 
[ I 

(2.C.25) 

(2.C.26) 

In the limit Lw with N/L and M/L fixed, these equations reduce to a set 

of coupled integral equations for two density functions p(k) and a(A): 

2,dA) = - K(A-A')u(A')dA' + 2 K(2A-2k)p(k)dk 

2np(k) = 1 + 2 K(2k-2A)u(A)dA . 

(2.C.27) 

(2.C.28) 

The functions p(k) and o(A) are respectively the total density and the 

density of red particles, 

$Wk = N/L , 

o(A)dA = M/L . 

(2.C.29) 

(2.C.30) 
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Our discussion has followed Yang's original treatment of the case 

-c 1 R= N-M," . Notice that for this case, the original ansatz (2.C.10) 

described a system with two particle species (colors), leading to 2x2 

matrix PBC's. The second ansatz (2.C.22) used to solve these PBC's 

involved only a single color (i.e. identical particles) on a lattice. 

Roughly speaking, the dimension of the problem was reduced by regarding 

the N particles as lattice sites on which the color wave function is 

defined, with red particles treated as occupied sites (i.e. the particles 

of the second ansatz) and blue particles as vacancies. Sutherland (1968) 

has extended this method to include the treatment of an arbitrary number 

of colors, using a hierarchy of AnsBtze. with each successive ansatz, the 

dimension of the problem is reduced by treating the particles of one 

color as vacancies and writing a wave function for the remaining colors. 

D. Vertex Models, Transfer Matrices, 
and Spin Chain Hamiltonians 

All of the models we have discussed so far have been continuum field 

theories involving operators defined on continuous space and time. One 

of the most remarkable aspects of Bethe's ansatz is that it also provides 

an exact treatment of certain lattice models for which operators are 

defined on discrete lattice sites. In fact the original ansatz of Bethe 

was applied to such a model, the isotropic Heisenberg spin chain. 

Subsequent developments included solutions to the anisotropic XXZ spin 

chain, (Orbach, 1958; Yang and Yang, 1966) ice and ferroelectric 

(six-verte x) models, (Lieb, 1967a,b,c; Baxter, 1971) and finally the 

full XYZ spin chain (Baxter, 1972b) and Baxter (eight-vertex) model 

(Baxter, 1972a). Solutions to the two-dimensional Ising model (Onsager, 

1944, Schultz, Mattis, and Lieb, 1964) and XY spin chain (Lieb, Schultz, 
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and Mattis, 1961) should be included in this list, since they are 

subsumed by the Baxter method. In the remainder of this section we will 

survey the subject of exactly soluble lattice models. These models are 

not only interesting in their own right but also as further examples of 

the applications of Bethe's ansatz. It has recently been found that 

certain operators which emerge in the formulation of the quantum inverse 

method are directly related to operators which arise naturally in lattice 

models, e.g. the transfer matrix. In fact, the most elegant derivation 

of the algebra of scattering data operators, which is central to the 

quantum inverse method, is patterned after Baxter's discussion of 

commuting transfer matrices in the eight-vertex model. Thus, the study 

Of soluble lattice models provides important new insight into the nature 

of exact integrability in quantum systems. 

Our discussion in this section is intended to introduce and define 

the soluble vertex models and spin chains, discuss the relationship 

between them, and briefly indicate the nature of their solution. (A more 

extensive review has been given by Kasteleyn (19751.) In Section III we 

return to this subject armed with the techniques of the quantum inverse 

method, which considerably simplify the original solutions based on 

explicit Bethe Ansstze. All the models to be considered can be obtained 

in one way or another from the Baxter eight-vertex model, and we begin by 

defining that model. Consider a square lattice with horizontal and 

vertical bonds connecting nearest neighbor lattice sites. An arrow is 

placed on each bond in such a way that each lattice site (vertex) has an 

even number of arrows entering and leaving it. Thus, only the eight 

vertices shown in Fig. 12 are allowed. A typical configuration of arrows 

for a 3x3 lattice with periodic (toroidal) boundary conditions is shown 
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in Fig. 13. To each of the eight vertex types we assign an energy 

Ei,i=1,...,8, and an associated Boltzmann weight 

-BEi 
wi = e (2.D.l) 

There is no loss of generality in requiring that 

E5 = E6 , E7 = Es . (2.D.2) 

To get the symmetric eight-vertex (Baxter) model, we also impose the 

"zero-field" condition 

El = E2 , E3 = E4 . 

The vertex weights are then written 

w1 = w2 = a , w3 =W 4=b r 

w5=w =c , 6 =W w7 8 
=d . 

(2.D.3) 

(2.D.4) 

The partition function is defined as the sum over all allowed 

configurations of arrows, with each configuration weighted by a product 

of Boltzmann weights (2.D.l) for each vertex. The calculation of the 

partition function is reduced to an eigenvalue problem by introduction of 
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the transfer matrix, which describes the operation of adding an extra row 

of vertices to the lattice. It is convenient to introduce a matrix 

notation for an elementary vertex. Denoting a right- (left-) pointing 

arrow on a horizontal bond and an up (down) arrow on a vertical bond by 

+(-I I and with the indices defined as shown in Fig. 14, an elementary 

vertex can be written as 

4 
L(a,B;X,W) = cw.oi ui 

i=l 1 4 &I ' 
(2.D.5) 

where i u ,1=1,2,3, are Pauli matrices and 4 u =ldentity matrix. The 

coefficients wi in (2.D.5) are given by 

“1 +d) , W2 = +d) , 

“3 
= $(a-b) , w4 = +(a+b) . (2.D.6) 

For our considerations, it is useful to regard the vertex (2.D.5) as a 

2x2 matrix in the horizontal indices (X,1.1), the components of which are 

spin operators in the space of vertical arrows. Thus, the vertex is 

written 

(2.D.7) 
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where the subscript n indicates that the u-matrices act on the vertical 

arrow at the nth site in a row. The transfer matrix for a lattice with N 

sites in a row and periodic boundary conditions is given by 

T = tr{LlL2...LN } , (2.D.8) 

where the trace is taken over the horizontal indices. The partition 

function for a lattice with M rows is given by 

Z=Tr(?} , (2.D.9) 

where the trace is taken over the Hilbert space in which the transfer 

matrix acts, i.e., the ZN-dimensional space spanned by vectors of the 

form 

lk>1 P 1e2 B . . . fqt> N , (2.D.10) 

denoting the configuration of vertical arrows in a row. Because of 

(2.D.9), the free energy 

for a large lattice is determined by the largest eigenvalue of the 

transfer matrix. The problem is thus reduced to that of diagonalizing 

the transfer matrix, which is accomplished in these models by explicitly 
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constructing its eigenstates. 

At this point it is worth considering some specific examples of 

eigenstates for a special case of the Baxter model, namely, the 

six-vertex or generalized ice model obtained by setting the "eight of 

vertices 7 and 8 in Fig. 11 to zero, i.e., d=O or w =W 1 2' The basic 

vertex becomes 

L = n 
3 4 

"3'n + "4'n 2w1u; 

Z"lG+n 3 4 
-"3'n + "4"n 

\ 

I. (2.D.11) 

The six-vertex tie1 transfer matrix has an important property which 

makes the construction of its eigenstates considerably simpler than in 

the general Baxter model. Because vertices 7 and 8 are not allowed, the 

number of down arrows (or up arrows) is conserved from row to row under 

application of the transfer matrix. This follows from the observation 

that, with the definition (2.D.8) and using (2.D.l1), T can be written as 

a sum of terms each of which contains the same number of u +, s as u -'s and 

thus does not change the number of down arrows in a state. In 

particular, the state with all up arrows, 

IO> = 1+>1 c3 I+> 2ti3... I+>N , (2.D.12) 

(and also the state with all down arrows) is an eigenstate of the six 

vertex model transfer matrix. The eigenvalue associated with (2.D.12) is 

easily obtained by noting that 
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“4+“3 
2w1u; 

Lnj+7 = n c J In' 
t> 

0 
“4-“3 

which means that 

TIO> = (w4tw3)N + (w4-w3) NlO> . 1 

(2.D.13) 

(2.D.14) 

The construction of the remaining eigenstates can be accomplished by a 

Bethe ansatz , using (2.D.12) as a reference state and treating down 

arrows as the "particles" of the ansatz. For example, eigenstates of T 

with a single down arrow are given by 

N ikl!L 
jkl> = ce 

i=l 
UJO , (2.D.15) 

where kl must satisfy the periodic boundary condition 

e=klN = 1 (2.D.16) 

The fact that (2.D.15) is an eigenstate of T may be verified directly, 

using (2.D.8) and (2.D.11). It is convenient to introduce Baxter's 

parametrization of the vertex weights (specialized to the six-vertex 

case), 



“1 = “2 
= $Osin2q , 

“3 
= pOsin q co6 v , 

“4 
= pocos q sin v . 
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(2.D.17~~) 

(2.D.17b) 

(2.D.17~) 

The parameter p. enters the transfer matrix trivially as an overall 

normalization factor N p 0' We choose it for convenience to be 

Po = [sin(v+il)sin(v-rl)]-1'2 . (2.D.18) 

For the following discussion, it is helpful to think of v as a variable 

and 11 as a constant. It is sometimes useful to define a change of 

variables vtk by 

ik e = sin(v+qj 
sin(v-q) ' 

(2.D.19) 

This relation between k and v is a lattice analog of the relation between 

momentum and rapidity. The eigenfunctions of T with n down arrows are of 

the Bethe form, 

Ikl,...,kn> = 1 fc&l,...,&n)u, . ..u. IO> , 
lIkl<. . .< k&N 1 n 

(2.D.20) 

where 
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f(P. lr...rk,) = )7 a(P)exp if: k 
PESn [ j=l Pjej] * 

(2.D.21) 

In place of the variables ki, we will often use v. 
1’ 

which is related to 

ki as in (2.D.19), 

ik i sin(vi+q) 
e = 

sin (vi-'l) ' (2.D.22) 

The coefficients a(P) are defined up to an overall normalization as 

follo"s. If P and P' are permutations which are identical except for the 

interchange of two adjacent elements, i.e., P'( . ..i.j...) and 

P'=( . ..j.i...), then 

m= sin(vi-v.+2n) 

=(P') sin(vi-vj-2n) ' (2.D.23) 

The quantity on the right-hand side is the two-body phase shift. For 

(2.D.20) to be an eigenstate of T, the ki's or v.'s must satisfy periodic 1 

boundary conditions, 

* (2.D.24) 

j#i 

Under conditions (2.D.23) and (2.D.24), the states (2.D.20) satisfy the 

eigenvalue equation 
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T(v) Ikl,...,kn> = j [:::i;:;;]"" j$::;::$::] 

+ [z;;;;“;;r’2 ~~:~~:,:r:~~]lk,.....*, 

(2.D.25) 

The explicit demonstration of the results (2.D.24) and (2.D.25) is quite 

tedious, involving prodigious cancellations among "unwanted" terms (Lieb, 

1967a; Baxter, 1971). Fortunately, the advent of the quantum inverse 

method has obviated much of this calculation. As we will see in the 

Section III, the results (2.D.24) and (2.D.25) are direct consequences of 

a simple operator algebra. Moreover, the quantum inverse method provides 

an elegant treatment of the full Baxter model. We will return to this 

subject in Section III. 

We conclude this section by remarking that there is a direct 

relationship between the Baxter model and the anisotropic (XYZ) 

Heisenberg spin chain (Baxter, 1972b). The vertex weights wl,w2,w3, and 

"4 in (2.D.5) can be expressed in terms of parameters p, 11, v, and an 

elliptic modulus k, using an elliptic function parametrization which 

generalizes (2.D.17) (See Section III-D). Regarding the transfer matrix 

T(v) as a function of v with p,n, and k fixed, it may be shown that the 

Hamiltonian of the XYZ spin chain 

t J JOY 
Y j j+l 

t J CT%? 1 z]]+l ' (2.0.26) 

can be written as a logarithmic derivative of the transfer matrix with 
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respect to v evaluated at v=n. Since transfer matrices T(v) and T(v') 

commute for any Y and v' (Baxter, 1972a), the operators H and T(v) have 

the same v-independent set of eigenstates. The general equivalence 

relation between the spin-spin couplings Jx, J , and Jz, and the vertex 
Y 

weights w1 has been given by Baxter (1972b). Here we merely note two 

special cases of interest: (1) The six- vertex model (d=O or wl=w2) is 

related to the XXZ spin chain (Jx=Jy). (2) If the vertex weights (2.D.6) 

satisfy ab=cd, the Baxter model reduces to two decoupled Ising models, 

and the corresponding spin chain Hamiltonian (2.0.26) is the XY chain 

(Jz=O). 
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III. THE QUANTUM INVERSE METHOD 

The inverse scattering method was developed as a technique for 

solving certain nonlinear evolution equations (classical field theories). 

The method devised for solving the Korteweg-de Vries equation (Gardner, 

Greene, Kruskal, and Miura, 1967) was subsequently generalized to provide 

solutions of other interesting equations including the nonlinear 

SchrGdinger equation (Zakharov and Shabat, 1971) and the sine-Gordon 

equation (Ablowitz, et al., 1973; Takhtajan and Faddev, 1974). The 

Cauchy initial value problem for the nonlinear equation is reduced to a 

sequence of linear problems. In special cases, the method yields 

explicit solutions to the nonlinear equation, e.g., N-soliton formulas. 

The essential idea of the classical inverse scattering method is to 

construct a transformation from the local field variables to a new set of 

variables which are defined in terms of the scattering data of a linear 

eigenvalue problem. In this eigenvalue problem, the original field 

serves as the scattering potential. Thus, for example, the nonlinear 

SchrGdinger field a(x) at a fixed time t, is mapped into a set of 

scattering data a(k) and b(k). It is found that, for a judiciously 

chosen linear eigenvalue problem, the nonlinear time evolution of the 

field $(x,t) translates into a trivial time dependence for the scattering 

data a(k) and b(k). The final observation which completes the solution 

of the Cauchy problem is that the scattering data at a given time 

uniquely determine the scattering potential, i.e., the field Q(x). From 

the values of a(k) and b(k) at time t', one can reconstruct the field 

@(x,t') and solve the initial value problem. In Section III-A we will 

review the classical inverse method for the nonlinear SchrGdinger 

equation, concentrating on those features which are important in the 
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treatment of the quantized theory. More thorough reviews of the 

classical methods are available (Scott, Chu, and McLaughlin, 1973; 

Ablowitz, 1978). 

Recent investigations have led to the realization that the inverse 

scattering technique which had been developed in classical field theory 

could be formulated as an exact operator method for solving quantum field 

theory (Faddeev and Sklyanin, 1978; Sklyanin, 1979; Thacker and 

Wilkinson, 1979; Honerkamp et al., 1979). Moreover, the quantum inverse 

method is closely related to the Bethe ansatz technique discussed in 

Section II and provides an elegant algebraic formulation of those 

results. Thus, we obtain a unified understanding of methods which arose 

in quite different areas of physics. The remarkable connections which 

emerge serve to emphasize the universal nature of exact integrability. 

In this section we will review the quantum inverse method and 

discuss some of its applications. Our main focus will be on the 

nonlinear Schradingee model, which provided most of the impetus in the 

development of the method and remains the most well-studied example. In 

particular, it is at present the only model for which a Gel'fand-Levitan 

transformation has been formulated for the quantized theory (Creamer, et 

al. 1980). In the classical theory, this is the transformation which 

reconstructs the local field from the scattering data, an essential step 

in the solution of the initial value problem. In the quantum field 

theory, it is relevant to the study of Green's functions. The 

formulation of the Gel'fand-Levitan transformation for other models is 

currently under investigation. 



75 

The quantum inverse method for the nonlinear Schrcdinger model is 

introduced in Section III-B, where operator equations for both the direct 

and inverse transforms are obtained. In Section III-C, some interesting 

properties of the quantum Gel'fand-Levitan equation are noted and 

discussed. The quantum inverse method for models of lattice statistics 

is presented in Section III-D. The diagonalization of the transfer 

matrix for the symmetric six-vertex model (Thacker, 1980) is discussed, 

using a lattice version of the quantum inverse method. The solution of 

the full Baxter model (Faddeev, 1979) is also briefly discussed. These 

results illustrate the deep connection between the quantum inverse method 

and the transfer matrix formalism for lattice models. 

A. The Classical Inverse Method 

Before discussing the quantum inverse method, we will briefly review 

the classical formalism. To introduce the idea of the inverse scattering 

transform, we consider the example of the nonlinear Schrzdingee equation, 

ia,@ = -a$ + ZC]+~*@ , (3.A.l) 

where $(x,t) is a complex classical field. In this theory, Poisson 

brackets are defined for any two functionals a and 6 by 

{cr,Bf = i j dx & ,~~(x) - 'a B 
s+* (x) 6$(X) 

(3.A.2) 

The equation of motion (3.A.l) may be written in Hamiltonian form as 



a,$ = iw/, 

where the Hamiltonian is 

H=jdx 
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(3.A.3) 

(3.A.4) 

The inverse method for solving the initial value problem for 

Eq. (3.A.l) was introduced by Zakharov and Shabat (1971). The method is 

based on a transformation at time t=O from the field @(x,0) = C)(X) to a 

set of scattering data associated with the linear eigenvalue problem, 

- i k ‘y(X,S) = Q(x,S)Y(x,C) . (3.A.5) 

Here Q(x,<) is a 2x2 matrix which depends on the field variable at the 

point x, 

Q(x,S) = (3.A.6) 

For simplicity, we consider only the repulsive case 00. To completely 

define a solution Y of (3.A.5), we must specify a boundary condition. If 

we assume that /$(x)1+0 as x+?=, then for c+k=real, Y may be specified by 

the asymptotic behavior 



Y(x,k) ry V(x,k) , 
x+-= 

where 

V(x,k) = 

iikx 
e* 0 

-&kx 
0 e* I * 

Then it is easy to show that Y can be written 

Y= 6, ‘9, 
l -1 $* G* ’ 
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(3.A.7) 

(3.A.8) 

(3.A.9) 

where Ql(x,k) = $i(x,k) and $*(x,k) = $;(x,k) (Here we will follow 

essentially the notation of (Creamer, Thacker, and Wilkinson, 1980).) 

The scattering data for (3.A.5) are defined by the asymptotic form of Y 

for x++m. Writing 

Y(x,k) = V(x.W G(x,k), 

G has a finite limit as X-H-J, 

GrV 
x++= 

a(k) b*(k) 

b(k) a*(k) 

(3.A.10) 

(3.A.11) 

Note that from (3.A.5) and (3.A.10), G satisfies the equation 
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-ik G(x,k) = Q(x,k) G(x,k) . (3.A.12) 

Denoting the asymptotic form of Q by Qo, the matrix Q in (3.A.12) is 

given by 

0 Jc@emikx 

4cc$*eikx 0 

(3.A.13) 

Eq. (3.A.12) may be written as an integral equation, 

G(x,k) = I +ijdy e(y<x) Q(y,k) G(y,k) , (3.A.14) 

where e(y<x) 2 8(x-y) is a step function. By iterating (3.A.14), one may 

generate series expansions for the components of G, and in particular, 

for the scattering data a(<) and b(c). These have the form 

a(k) = ltc~dxldy19(xl<yl) e 
ik (xl-yl) 

o*(xl)$*(Yl) + . . . 

(3.A.15) 

& b(k) = jdxl e 
ikx 

' $*(~~)tc~dx~d~~dy~~(~~<Yl<~~) 

lk (x1+x2-yl) 
xe $*(Xl)$*(x2)@(yl) t . . . (3.A.16) 

By constructing action and angle variables from the scattering data, it 

may be shown that a(c) and b(c) have simple Poisson brackets with the 
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Hamiltonian (Zakharov and Manakov, 1974) 

{H.a(k)/ = 0 

{H-b(k)} = ik*b(k) . 

(3.A.17) 

(3.A.18) 

Thus, if @(x,t) evolves in time according to Fq. (3.A.l), the scattering 

data Of the linear problem (3.A.5)-(3.A.6) has a simple time dependence, 

a(k,t) = a(k,O) 

2 
b(k,t) = b(k,O)ebik 'C . 

(3.A.19) 

(3.A.20) 

The Poisson brackets among a, b, a* and b* may also be obtained, using 

properties of the Wronskian for Q. (3.A.5) (Zakharov and Manakov, 1974). 

a(k) rb(k’) = k-kC-iE 
> 

a(k)b(k') R (3.A.21) 

a*(k),b(k') 
> 

= - k-kFtiE a*(Wb(k') , (3.A.22) 

{ 
a(k),a(k') 

1 { 
= a(k),a*(k') = 0 , 

{ 
b(k),b(k') 

l 
= 0 , 

b(k) ,b*(k') 
> 

= 2rri a*(k)a(k)6(k-k') . 

(3.A.23) 

(3.A.24) 

(3.A.25) 

All these Poisson brackets may be checked order by order, using (3.A.4), 

(3.A.15), and (3.A.16). 
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Having mapped the field .!J(x) into a set of scattering data whose 

time dependence is given by (3.A.19)-(3.A.20), the final step in the 

solution of the initial value problem is the reconstruction of the field 

from the time-evolved scattering data. The essential method for 

accomplishing this was devised by Gel'fand and Levitan (1953) and adapted 

to this problem by Zakharov and Shabat (1971). In addition to Y, defined 

by (3.A.7), we define another solution X(x,k) of (3.A.5) with asymptotic 

behavior 

X(x,k) - V(x.k) , 
z-E+- 

(3.A.26) 

with components given by 

(3.A.27) 

where the column vectors X and x are related in the same way as $ and 5, 

i.e., Xl(X,k) = Xi(x,k) and g2(x,k) = Xl(x,k). The Gelfand-Levitan 

integral equation is a dispersion relation for an analytic function 

@(x,6) which is constructed from the Jost solutions of the linear 

eigenvalue problem. Denoting the columns of (3.A.9) by $ and $ and those 

of (3.A.27) by y and X, we see that the asymptotic conditions (3.A.7) and 

(3.A.26) allow continuation of $(x,6) and x(x,<) into the lower half 

S-plane and of J, and j; into the upper half S-plane. (Note that for 

complex 5, the conjugate solutions are related by 9,(x& = $,*(x,5*), 

S*(X,S) = +,5*), etc.) We will construct a function 0 which is equal 

to fe -i&d* In the upper half-plane. To motivate the choice of 0 in the 
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lower half-plane, we observe that, for real k, the Jest solution 9 may be 

written as a lineaar combination of X and x, 

$(x,k) = a(k))((x.k) + b(k)X(Xrk) - 

Defining the reflection coefficient 

R*(k) = & b(k)a-l(k) 0 

we can write (3.A.28) as 

Jla 
-1 - = x - i/g R*X . 

This suggests the following definition: 

1 
- -iCx/* x= In<>0 

@(XL) = 
Ga-le-iSx/2 In<<0 

(3.A.28) 

(3.A.29) 

(3.A.30) 

(3.A.31) 

The discontinuity of @ across the real axis is then i& R*X. For 

simplicity, we are considering only the case 00, for which a(E) is 

analytic and non-vanishing in the lower half-plane. For 60, a(E) will 

generally have a number of zeroes which represent bound states of the 

linear problem and correspond to solitons of the nonlinear equation. The 

use of the Gel'fand-Levitan equation to construct N-soliton formulas is 

an interesting part of the classical treatment, but we will not discuss 

it further here. 
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Thus, for c>O, @(x,6) is analytic in the cut c-plane. Since @(x,c)+l 

as l<l+m, which follows from its definition (3.A.31) and the properties 

of the Jost solutions, the function @ may be reconstructed from its 

discontinuity across the real axis, 

1 0 R*(k')x(x,k')e -ik’x/2 

O(x.S) = dk' 
0 k'-<-iE 

(3.A.32) 

Letting 5 approach the real axis from above, c+k+iE, we obtain an 

equation relating the Jost solutions X and jz, 

-ikx/2 = 
1 

x(x,k)e 0 VG 
-ik’x/2 

0 + !rr 
dk' R*(k');!:;k;;e 

(3.A.33) 

The first component of (3.A.33) and the complex conjugate of the second 

component provide a pair of coupled integral equations for xl and xi, 

VG 
/ 

m 
-ik'x/2 

xi(x,k) e 
-ikx/2 

=l+z -m dk' 
R*(k')xl(x,k')e 

k'-k-ic , 

(3.A.34a) 

xl(x,k)e 
ikx/2 

= 2 I 

m 

dk' 
yl(x,k’)R(k’)e 

k'-k+iE -m 

ik’x/2 

(3.A.34b) 

Equations (3.A.34) determine xl and xi in terms of the reflection 

coefficient R*(k). The field $(x) is then easily recovered from the 

asymptotic form of xl as k-w, 



Xl(x,k)eikx'*-- 
k- 
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(3.A.35) 

which follows from eigenvalue equation (3.A.5) for the Jost solution X. 

The direct transform and the inverse transform, defined respectively 

by the integral equations (3.A.14) and (3.A.34), are the central concepts 

in the classical inverse method. For the direct transform a Jost 

solution is constructed from the field $(x) by solving Sq. (3.A.14). and 

the scattering data a(k) and b(k) are obtained from the asymptotic form 

of that solution as Xw, Fq. (3.A.11). For the inverse transform a Jost 

solution is constructed from a(k) and b(k) by solving Sq. (3.A.34). and 

the field is obtained from the asymptotic form of the solution as k-, 

ECq. (3.A.35). 

8. Quantum Inverse Method 
for the Nonlinear Schradinger Model 

We now formulate the quantum version of the classical methods 

discussed in the preceeding section and discuss their relationship with 

the Bethe ansatz technique of Section II-A. The starting point is a 

normal ordered operator version of the Zakharov-Shabat eigenvalue 

equation (3.A.5). 

-ig=:QY:, (3.B.l) 

where normal ordering for this theory means moving o*'s to the left and 

o's to the right. In components, (3.B.l) reads 



84 

aYl -i - = i c$, ax +fi$,$, (3.B.la) 

a+2 -i a~ = -fi @V,- + 0, , (3.B.lb) 

and similarly for $. The Jost solutions which satisfy Fq. (3.8.1) are 

operator functionals of the fields I$ and c$*. As in the classical case, a 

particular solution to (3.B.l) must be specified by a boundary condition. 

Before discussing the finite density gas, we will first consider the case 

of an unbounded system with a finite number of particles. This 

corresponds to the classical case o(x)+0 as Xt+m. However, in the quantum 

theory, one must be careful to interpret o(x)+0 in the sense of weak 

convergence, i.e., as a condition on the physical matrix elements. In 

dealing with operators, this means that only normal ordered products may 

be set to zero, e.g., $*(x+a)$ (x)+0 as xem, but $(x+a)Q*(x) must be 

written $*(x)@(x+a) + 6(a) + 6(a). In particular, the specification of an 

operator Jost solution by an asymptotic condition like (3.A.7) must be 

done with care. 

Let us define a solution G(x,k) for (=k real, which satisfies 

(3.8.1) and the boundary condition 

G(-L/Z,k) = 1 , (3.B.2) 

where the limit L-W will be taken at an appropriate time. Note that in 

the L+- limit, the solution 



'Y(x,k) = G(x,k)V(-L/*,k) I (3.B.3) 
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is analogous to the classical solution y(x,k) defined by (3.A.7). ThUS 

the scattering data operators a(k) and b(k) are defined by introducing 

G(x,k) = V-'(x,k)G(x,k)V(-L/*J) , (3.B.4) 

from which the a and b operators are obtained by letting L- and Xtco, 

G(x.k) - = S(k) . (3.B.5) 

The operator function G(x,k) satisfies a normal ordered integral equation 

of the form (3.A.14), 

&x,kl = I + i 1 dy O(- $ <y+.) : &y,k);(y,k): 
(3.B.6) 

with Q defined in (3.A.13). Eq. (3.B.6) may be iterated to produce 

series expansions for G and for a and b. These are identical to the 

classical results (3.A.15) - (3.A.16) with the terms on the right-hand 

side interpreted as normal ordered operators. 

The central property of the scattering data operators a(k) and b(k) 

is that they satisfy simple commutation relations among themselves, their 

complex conjugates, and the Hamiltonian. These were obtained by two 

different methods, one which generalized the classical Wronskian 

derivation of Poisson brackets (3.A.23) - (3.A.27) (Thacker and 
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Wilkinson, 1979), and one which adapted a technique used by Baxter in the 

eight vertex model (Sklyanin, 1979). Here we will follow the approach of 

Sklyanin, which gives a deeper insight into the structure of the method 

and its relationship to transfer matrix techniques. To obtain the 

commutator algebra of the a and b operators, we consider a 4x4 matrix of 

operators which is the direct product of Jost solutions to (3.B.l) with 

two different real eigenvalues <=kl and k2, 

H12(x) = G(x,kl) @ G(x,k2) = Gl(xl @ G*(x) , (3.B.7) 

where G(x,k) is defined by the boundary condition (3.B.2). Here and in 

the following, eigenvalues kl and k2 will be indicated by subscripts. 

The elements of H12 are operator products of the elements of Gl with the 

elements of G2. The desired commutation relations are obtained by 

comparing (3.B.7) with the direct product of the same two solutions in 

reverse order, 

HZ1(x) = G*(X) C3 GIW . (3.B.8) 

Differentiating (3.B.7) and using the fact that G satisfies the 

Zakharov-Shabat equation (3.B.l), we obtain 

a -i s H12(x) = :QIGl: @ G2 + Gl@ :Q2G2: , (3.B.9) 

with a similar equation for H21 obtained by interchanging eigenvalues 
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kl +k2. Normal ordering of Sq. (3.B.9) may be achieved by moving the I$ in 

Ql past G2 in the first term and the $I* in Q2 past Gl in the second term. 

To do this we must know the commutators of @ and I$* with a Jost solution 

G(x,k). This is easily obtainted from the integral equation (3.B.6). 

Writing 

Q(y) = & esiky $(y) 0’ -6 eikY $*(Y) a- , (3.B.10) 

we see that 

(3.B.11) 

where we have used the symmetric prescription 0(%)6(x) = $5(x). Finally, 

the commutator of I$ with G is obtained from (3.8.12) and (3.B.4), 

Q(x) tG(x,k) 
I 

-i/E - = - 0 G(x,k) . 2 

Similarly, we find 

@*lx) ,G(x,kl 1 -i/F + = -CT G(x,k) . 
2 

(3.B.13) 

(3.B.14) 
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These two results can be used to normal order (3.B.9). which becomes 

-i & H12(x) = : r12 Ix) H12W : r 

where 

r12 =Qlx I+IxQ2-icu + 
xu- 

= 

$kl+ k2) fitI (xl v5$ (x) 0 

-A+*(x) +(kl- k2) -ic dz$ (X) 

-d+*(x) 0 +W2-kl) fi@ (x) 

0 -vG$* (X) 4-$*(x) - +Wl+k21 

(3.B.15) 

(3.B.16) 

By interchanging kl and k2 we also obtain an equation for the direct 

product in reverse order (3.B.81, 

=21 -ix = :r H 21 21: . (3.B.17) 

The most important property of the matrix (3.B.16) is that an 

interchange of the eigenvalues kl and k2 may be accomplished by a 

c-number similarity transformation, 



r21(x) = m,,(x) 2@ -l , 

where CR is a matrix depending only on the eigenvalues k 1 and k2, 

i 

\o 0 0 11 

with 

kl-k2 
a = kl-k2-ic ' 

B= 
-ic 

kl-k2-ic ' 
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(3.B.18) 

(3.B.19) 

(3.B.20) 

(3.8.21) 

Equation (3.B.18) is fundamental. It constitutes a local 

characterization of the exact integrability of the system. 

From (3.B.15), (3.B.17), and (3.B.18) it is seen that .9?H12(x)SRP1 

satisfies the same equation as H21(~). These two quantities are also 

equal at x = -L by virtue of the boundary condition (3.B.2) and the 

definitions (3.B.7) and (3.B.8). Thus, they are equal everywhere, 

BH12 (xl = H21(~)S’ . (3.B.22) 
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We now want to take the limits L- and Xw in (3.B.22) and obtain the 

commutator algebra of the a and b operators defined in (3.B.5). But 

first this equation must be written in a form which is finite in these 

limits. This is done by introducing a function H12(x) which has a finite 

asymptotic behavior, 

H12 (x) = W;;(x) H12(x) WL2 (-L/2) I (3.B.23) 

Where W12(x) is a solution to (3.B.15) with the fields in 1'12 set equal 

to zero, 

(0) W12(x) = exp ir12 x , 
{ i 

(3.B.24) 

where 

0 +kl-k2) -ic 0 

r(O)= 
12 . 

0 0 $(k2-kl) 0 

0 0 0 +k1+k2) 

(3.B.25) 
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The construction of H 12 in (3.B.23) is similar to that of G in (3.B.4). 

Because of the normal ordering term -ic in (3.8.25), W 
12 is not given 

simply by V113V2, i.e., the asymptotic behavior of a product of Jest 

solutions (in the sense of weak convergence) is not the same as the 

product of their asymptotic behaviors. By calculating the exponential in 

(3.B.24), we find 

'(k +k e2 12 )x 

(3.8.26) 

Now noting that.!%W12 = W21.%, we can multiply (3.B.22) by W;,'(x) on the 

left and W12(x) on the right to give 

*OH (xl = ii (X)9, (3.B.27) 
12 21 

for which the limits x, L+- can be taken. The algebra of a and b 

operators is obtained by writing (3.B.27) in terms of the functions G1 

and G 2, using (3.8.4), (3.B.7), and (3.8.23), 



92 

I - 

~~U;:(,~IG~(X)XG~(X)]"~~~-L/Z) = U21(~)[G2(x)xG1(~)]U21(-L/2)~ , 

(3.B.28) 

where 

U12(X) = 
[ 

-1 
v1 (x) x v2 -l(X)] W12 (Xl 

(3.B.29) 

where I is the four-dimensional unit matrix. For XtW and kl # k2, this 

becomes 

U12W = 

1 0 0 0 

0 -ic l- kl-k2 0 
, 

0 0 1 0 

0 0 0 1 

(3.8.30) 

Noting that U;:(m) = U21(+ , we see that the asymptotic form of (3.B.28) 

is 

sm[T(kl) @ S(k2)] = [yPk2) 8 g.(kl)] S9, (3.B.31) 

where S(k) is defined in (3.B.51, and 



% = u21PJ~u21P) = 

with 

( 0 0 oc 1 oy 0 0 0 0 0 0 0 1 0 

kl-k2 kl-k2+ic 
fl = kl-k2-ic " = kl-k2 

i 

t 

93 

(3.B.32) 

(3.B.33) 

From (3.B.31) - (3.B.33) we obtain all the desired commutation 

relations for the scattering data operators (for kfk') 

a(k)b(k') = (1 - &)b(k')a(kl P 

=*(k)b(k') = (1 + &-,)b(k')a*(k) , 

b*(k)b(k') = (k-k')2+c2 b(k')b*(k) , 
(k-k')' 

/-=Wl,=Wll = -a(k) _ - .=*(k')] = [b(kLb(k')] = 0 . 

The commutators of a and b with the Hamiltonian 

[Hdkl] = 0 r 

~,b(k,] = k2b(kl , 

(3.B.34) 

(3.B.35) 

(3.8.36) 

(3.B.37) 

(3.8.38) 

(3.B.39) 
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may be obtained by an operator generalization of the classical argument 

which led to (3.A.17) and (3.A.18) (Sklyanin, 1979). Alternatively, we 

may expand the operator In a(k) for k+zo, 

1" a(k) = c 5 . 
n=l k" 

(3.8.40) 

By studying the integral equation (3.B.6) or equivalently the expansion 

(3.A.15), it may be show" that the Hamiltonian may be written in terms of 

the coefficients C n in (3.8.40) (Faddeev, 1979), specifically 

H=-&C3+c -$ 
2 1 - (3.B.41) 

The commutators (3.B.38)-(3.B.39) follow directly from this result along 

with (3.B.34) and (3.B.37). 

' From the relations (3.8.34) - (3.B.39), we conclude that b(k) is a 

creation operator for eigenstates of H, and that a(k) is the generator of 

an infinite number of conservation laws. The multiparticle states 

created by application of b operators to the vacuum, 

I@(kl,k2,..., kN)> = b(kl)b(k2)...,b(kN)10> , (3.B.42) 

are eigenstates of H because of (3.B.39), 

(3.B.43) 
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By explicit calculation from the series (3.A.16). it has been shown for 

N<3 that the states (3.8.42) are identical to the Bethe ansatz states 

(2.A.16) (up to a trivial overall constant). Recently, the same result 

has been obtained for all N using the Gel'fand-Levitan equation (Creamer 

et al., 1980a). Thus, the quantum inverse method provides an algebraic 

formulation of Bethe's ansatz. The operator a(k) is diagonal on the 

states (3.B.42), as seen from (3.B.34), 

=(kl I@(+.., kN)' = iv!(l - $+'(kl,...,kN)> . 

(3.B.44) 

The commutation relations (3.B.34) - (3.B.36) have been obtained for 

kfk'. A more careful analysis of the limits taken on (3.B.28) shows that 

the (k-k') denominators in (3.B.34) and (3.8.35) should have 

infinitesimal negative imaginary pacts as shown, and that the relation 

(3.B.36) shall have an extra delta-function term (Faddeev, 1979), as 

already indicated by the classical result (3.A.27). It is convenient to 

define the operator reflection coefficient 

R*(k) = j, b(k) a -1Wl , 

which satisfies the commutation relations 

R*(k)R*(k)' = S(k',k)R*(k')R*(k) , 

R(k)R*(k') = S(k,k')R*(k')R(k) + 2nb(k-k') r 

(3.B.45) 

(3.8.46) 

(3.B.47) 
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where S(k,k') is the two-body S-matrix, 

S(k,k’) = “,I;:;;: * (3.B.48) 

The operator R*(k) creates the same set of eigenstates as b(k) but with a 

different normalization. The particular significance of the operator 

R*(k) is that 

I@(+.., kN)> = R*(kl)...R*(kN)[O> , (3.B.49) 

is a normalized in-state if kl<k2<...<kn and a normalized out-state if 

kl>k2>...kN. The fact that R and R* satisfy the simple relations (3.8.46) 

- (3.B.47) will be of central importance in discussing the quantum 

Gel'fand-Levitan transformation (see Sec. III-C). 

so far only a system of particles in infinite space has been 

discussed, i.e., we have not introduced periodic boundary conditions in a 

finite box. In the conventional Bethe ansats analysis of Sec. II, the 

PBC's were essential to understanding the ground state and excitations of 

a finite density system. It might be suspected that by taking the 

infinite volume limit to get the algebra (3.B.34) - (3.8.37) one has lost 

essential information which would prevent any discussion of the finite 

density case. This turns out not to be the case, as we will see in 

Section III-C, where the fundamental spectral equation (2.A.45) is 

obtained directly from the infinite volume algebra without using periodic 

boundary conditions in a box. In the remainder of this section, we will 

describe an approach to the finite density problem which is closer in 
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spirit to the usual Bethe's ansatz methods. It relies on the algebra of 

operators A(k) and B(k) defined in a finite box of length L. These 

operators are defined in terms of the Jest solution G(x,k) which obeys 

the boundary condition (3.B.2). We write 

G($,k) = 
A(k) C(k) 
B(k) D(k) 

zgL(k) , (3.B.50) 

where, for the case under consideration, C(k)=B*(k) and D(k)=A*(k). The 

relation (3.B.22), along with the definition (3.8.7) gives 

*[*L(k) @ SLL(k') 1 = [-SLL(k') 09 YL(k+% , 

where *is the matrix (3.8.19) with 

a(k,k') = kk;?ic 
, 

(3.B.51) 

(3.B.52) 

B(k,k’l = ,-,f:,, . 

From (3.B.51) we obtain commutation relations among the elements of 

S,(k). Of particular interest are the relations 

t A(k) ,A(k'l ] = ~(k),Wk')] = 0 , (3.B.54) 

A(klB(k’l = a(klk,) B(k')A(k) - $-++(k)A(k') R 

(3.B.55) 
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1 8(k',k) 
a(k)B(k') = cr(k,,k) B(k')D(k) + cr(k, k) B(k)D(k') I , 

+ D(k), A(k') + D(k') = 0 . 
I 

(3.8.56) 

(3.8.57) 

The structure of the algebra (3.B.51) or (3.B.54)-(3.B.57) is typical of 

the quantum inverse method in a finite volume. Similar results (with 

different functions CL and 6) are also found for the sine-Gordon model 

(Faddeev, et al., 1979) and the six-vertex lattice (Thacker, 1980). 

Instead of discussing the Hamiltonian , we will construct eigenstates 

of the operator 

T(k) = A(k) + D(k) , (3.8.58) 

which is in a sense more fundamental. This operator is precisely 

analogous to the transfer matrix in lattice models (see Sec. III-D). We 

will show that the states 

IQ+..., kN)> = B(kl)...B(kN) /O> , (3.B.59) 

are exact eigenstates of T(k), provided that the ki's satisfy periodic 

boundary conditions. First we note that the zero-particle state IO> is 

an eigenstate of A(k) and D(k) separately, 

A(k))O> = e ikL/2 o, 
I r (3.B.60) 



D(k)]O> = e -ikL/2 o> 
I ' 
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(3.B.61) 

which is easily seen be writing A(k) and D(k) as normal ordered series 

expansions in I$ and +*. Now we apply T(k) to the state (3.B.59) and use 

the commutation relations (3.8.55) and (3.B.56) to commute A(k) and D(k) 

through the string of B operators. By this calculation, it is found that 

(3.B.59) is an eigenstate, 

T(k) /Q(k lr...tkNl> = A(k ;kl,...,kN)l@(kl,...,kN)> , 

with eigenvalue 

(3.B.62) 

A(k ;k l,...,kN) = e ikL'2 flk - *) + emikL" Dl (1 + & ) , 
i I. 

(3.B.63) 

provided that the ki's satisfy the conditions 

eikiL’2Jjl- &-) = LikiL’2jE(l+ *) , 
1 j 11 

(3.B.64) 

for i=1,2,...,N. Notice that E-q. (3.B.64) are precisely the periodic 

boundary conditions Eq. (2.A.23) obtained from the explicit Bethe wave 

functions. To understand how the result (3.B.62) follows from the 

relations (3.B.54)-(3.B.56), consider the action of A(k) on the state 

(3.B.59). Commuting A(k) through the string of B's and then using 
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(3.8.60) we obtain 2N terms, which may be grouped according to the 

arguments of the N B-operators. Note that the second term on the 

right-hand side of (3.B.55) results in an exchange of the arguments k and 

k' between the A and B operators. Of the 2N terms obtained from A(k) 

acting on the state, one of them contains no exchanges (or equivalently, 

no factors of 8). It is given by 

eikL"il(l- &-)~@~kl.k2.....kN~~ . (3.B.65) 

Combining this with the corresponding term from D(k) gives the right-hand 

side of (3.B.62) with the eigenvalue (3.B.63). Thus, we must show that 

all of the remaining terms cancel. Consider first the terms in which k 

is exchanged with kl in the state. The terms of this form are given by 

x10(k,k2,...kN)> (3.8.66) 

which vanishes provided that the periodic boundary condition (3.B.64) is 

satisfied for i=l. The remaining terms in which ki is replaced by k in 

the state with i=2,3,...,N, may be calculated explicitly, but such a 

calculation is unnecessary. Because of the second commutator in 

(3.8.54), the state (3.B.59) is symmetric in the kits. Thus the sum of 

the terms in which k replaces ki for i>l are obtained from (3.B.66) by 

interchanging kl and ki. All of these terms vanish by virtue of the PBC's 

(3.8.64). This completes the demonstration of Eq. (3.B.62). 
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The essential differences between the infinite volume relations 

(3.B.34)-(3.B.37) and the finite volume relations (3.B.54)-(3.B.57) are 

the presence of the second (exchange) term on the right-hand side of 

(3.8.55) and (3.B.56) and the fact that a and a* commute separately while 

only the combination ACD commutes in the finite volume case. One result 

of this is that the reflection coefficient operator R*(k), Fq. (3.B.45), 

which had simple commutation relations in the infinite volume case is not 

a useful operator for the finite volume system. No operator with 

properties like (3.B.46)-(3.B.47) has been constructed in a finite box. 

As we saw in Sec. III-A, the reflection coefficient plays a central role 

in the classical inverse transform as the kernel of the Gel'fand-Levitan 

integral equation. The same is true in the quantum inverse method, where 

the simple properties of the operators R(k) and R*(k) are basic to the 

structure of the quantum Gel'fand-Levitan transform (see Section III-C). 

Thus the formulation of the inverse transform in the quantum theory (as 

it is presently understood) requires that the infinite volume limit be 

taken ab initio. This turns out to be less of a restriction than it 

might seem, since the finite density spectral results usually associated 

with periodic boundary conditions in a box can be obtained directly in an 

infinite volume using the Gel'fand-Levitan formalism. In this 

calculation the finite box is avoided by introducing a temperature 

parameter, and the finite density results are constructed via a fugacity 

expansion, each term involving matrix elements with a finite number of 

particles in an infinite volume. 
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C. Some P_roperties of the Quantum Gel'fand-Levitan Transform -I_ 

In Section III-A we found that the classical Jest solution x(x,k), 

defined by (3.A.26) and (3.A.27) satisfies a Gel'fand-Levitan integral 

equation (3.A.34). This provided the basic tool for reconstructing the 

field configuration 4(x) from a set of scattering data. Recently it has 

been shown (Creamer et al., 1980a, Gross=, 1979) that a corresponding 

integral equation for operators in the quantum theory is also valid, 

R*(k')xl(x,k')e 
-ik'x/2 

x;Wle 
-ikx/2 = 1 + g Jmdk' 

k'-k-ie 

(3.C.la) 

x~(x,k’)R(k’le ik'x/2 

xl(xrkle 
ikx/2 =G {dk' 

2n -m k'-k+is I (3.C.lb) 

where now the ordering of the operators on the right-hand side is 

important. The derivation of (3.C.l) parallels the classical derivation 

in most respects, though some subtleties arise due to operator ordering 

(e.g., the analytic function @(x,6) is not given by (3.A.33) in the lower 

half-plane). For details we refer to the original paper. Here we 

confine our discussion to two interesting properties of the quantum 

Gel'fand-Levitan transform. 

By iterating Eq. (3.C.l) we obtain series expansions for xl and x; 

in terms of R and R*. Each term in the series is normal ordered in the 

R-operators, i.e., all R*'s are to the left and all R's to the right. 

The field operator $(x) is then obtained just as in the classical theory, 



xl(x,kle 
ikx/2 k-+/$"'x' +o($) . 

k 
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(3.C.2) 

By taking the asymptotic behavior of the other component of the Jest 

solution x2, we also obtain an expression for the charge density operator 

j,(x) = $*(x1$ (xl, 

ikx/2 - 
x2(xtWe -1-7 

k+- I 
xjO(x')dx' + O[>) . (3.C.3) 

The series expansion for the field operator obtained by iterating 

(3.C.l) and taking the limit (3.C.2) may be written 

dpldkldk2 R*(pl)R(kl)R(k2)e 
1 (kl+k2-ql x 

R(kl)e 
ikx - c 

(2n) 3 (Pl-kl-iE)(pl-k2-is) + . . . 

(3.C.4) 

where the general term is given by 

$)(“I (Xl = 

(-q-(fi $)[I 2) ““i;,,“:‘“::;:a::~~~::::‘,“;*i”” 

Ill=1 n m 

(3.C.5) 

Equation (3.C.4) describes an operator transformation from R(k) to @(x). 
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This transformation turns out to have a remarkably simple and familiar 

form in the limit of infinitely repulsive coupling, -. In this limit 

(3.C.4) is just a Jordan-Wigner transformation (Creamer, et al., 1980), 

exp -2 j"= R*(y)R(y)dy R(X) . (3.C.6) 
x 

where R(x) is the Fourier transform 

R(x) = R(k) e ikx * 
(3.C.7) 

Note that in the limit P, the two-body S-matrix (3.B.48) becomes -1, 

and the relations (3.B.46)-(3.B.47) become canonical anticommutation 

relations for fermion creation and annihilation operators. The Fourier 

transform R(x) is a local fermion field with anticommutation relations 

> 
= 6(x-y) . (3.C.8) 

Thus, for the special case of the c- - nonlinear SchrGdinger model, the 

quantum inverse transformation becomes a Jordan-Wigner fermion-to-boson 

transformation. We note that (3.13.6) may be written in another form 

using the general formula for canonical fermion or boson fields a(x), 

$Jt (xl (Grosse, 1979), 

=xp ldy C(Y)$~(Y)$(Y)~ = :exp{Jdy(eG'Y)-l)$i(y)$(y)): 
i 

(3.C.9) 
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WXII (3.C.6), we get 

(3.C.10) 

The demonstration that (3.C.10) is the c- limit of the 

Gel'fand-Levitan transformation involves a" analysis of the general term 

P of the series (3.C.4) (Creamer, et al., 1980b) which will not be 

repeated here. The essential idea can be seen by studying the second 

term of (3.C.4), 

1 (kl+k2-P1) x 

$ (1) (X) = -c r * 
dpldkldk2 R*(pl)R(k,)R(k2)e 

(pl-kl-iE) (pl-k2-iE) 

(3.C.11) 

(That the first term @'O) agrees with (3.C.10) is obvious.) In spite of 

the explicit power of c in front of (3.C.l1), $l(l) (x) has a finite limit 

as cw due to the implicit c-dependence of the R operators. Symmetrizing 

over the integration variables kl and 
k2 

and using the commutation 

relation (3.B.46) we get 

$(l) 
(X) = -c 

dPldkldk2 R*(pl)Wl)Wk2) 

(2X) 2 
(pl-kl-ie)(pl-k2-ic) 

x 
1+S(kl,k21 i(kl+k2-pl)x 

2 e (3.C.12) 

By partial fractioning, changing variables, and combining terms we obtain 
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h(l) (X) = 
.dpldkldk2 R*(p11R(kl)R(k2) i(kl+k2-pl)x 

c2aj3 
(kl-k2&$-kl-iE) e 

The cc0 limit of $(l)(x) can now be taken, 

$ (l) (X) 
dpldkldk2 R*(pl)R(kl)R(k2) i(kl+k2-pl)x 

(2lT) 3 (pl-kl-isI e 

= A(x)&) , 

where 

dpldkl R*(pl)R(kl) i(kl-pl)x 

(2n12 (P1-kl-k)- e 

. 

Analysis of the higher order terms in (3.C.4) shows that 

$(“I (xl = NR{[*(Xl]” R(X)/“!} , 

(3.C.13) 

(3.C.14) 

(3.C.15) 

leading to the result (3.C.6). 

The transformation (3.C.10) may be inverted by noting that 
-* - 
R (x1 R(x)= @*(X)@(X), which leads to 
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R(x) = e~p[-i-rx,*iyl,iyIdy].lix/ . (3.C.16) 

This is a simplified form of the direct Sakharov-Shabat transform c=. 

The same result should also follow directly by taking the cw limit of 

the reflection coefficient expressed in terms of I$ and I$*, but a 

procedure for doing this to all orders has not been developed. 

We now return to the general case of finite c and discuss the 

structure of the Gel'fand-Levitan transform for the charge density 

operator which is obtained by solving (3.C.l) and taking the limit 

(3.C.3). This gives 

joW = i ji”) (x) , (3.C.17) 

n=O 

where 

j:") (xl = (-cl" 5 
n+l dkikpi 
n 

c -Ck e-i(WXklx 

i=l (ml 2 pi-ki-ic) (pi-ki+l-ic) (pntl-kn+l-iE) 

x R*(P n+l)"' R*(pllR(kll...R(kncl) . (3.C.18) 

The Gel'fand-Levitan expression (3.C.17) is related in an interesting way 

to the spectra1 integral equation for the finite temperature 

delta-function gas. The finite temperature results for this model were 

first obtained (Yang and Yang, 1969) by a variational method using 

Bethe's ansatz with periodic boundary conditions. More recently these 



results were rederived (Thacker, 1977) using a graphical formalism which 

had emerged from an analysis of N-particle Feynman graphs (Thacker, 1975, 

1976). In the graphical derivation, it was found that the statistical 

mechanics of the system could be obtained by calculating certain 

almost-forward matrix elements of the charge density operator. The 

object of interest is the partition function 

Q(8,Fc) = Tr e5(pN-H) , (3.C.19) 

where the trace is taken over a complete set of states. The logarithm of 

(3.C.19) is an extensive quantity which may be regarded as the connected 

part of the partition function. It can be shown (Thacker, 1977) that 

this quantity is given by 

, 

where 

Y(q) = e 
-iqK N-1 

j, (~1 e lNqxdx . 1 

(3.C.20) 

(3.C.21) 

In this expression K = jx$*(x)$(x)dx is the Galilean boost operator which 

has the property 

e iqK 
R*(k) = R*(k+q)e 

iqK . (3.C.22) 
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Note that formally Y(q)+1 as q+O, 2nd the right-hand side of (3.C.20) 

would naively give Q. The effect of bringing the limit outside the trace 

is to pick out the connected part of Q. This occurs because a diagonal 

matrix element of Y(q) will vanish unless the state obtained by acting to 

the right with the operator in square brackets in (3.C.21) is the same as 

the state obtained by acting to the left with e -iqK . Thus an equal amount 

of momentum q must be transferred to each particle in the state, which, 

in a graphical expansion, can only occur if a graph is fully connected. 

Matrix elements of Y(q), Eq. (3.C.211, can be computed by using the 

Gel'fand-Levitan series for the charge density operator, Eq. (3.C.17). 

The pressure 9 is obtained from In Q by simply dividing out a factor 

Bx2rrG(O) where 2ns(O) is the infinite volume analog of the size of a box. 

Inserting the expansion (3.C.17) into (3.C.20) and (3.C.21), we get a 

corresponding expansion for the pressure 

(3.C.23) 

The trace in (3.C.20) is taken by summing over a complete set of Bethe 

ansatz states 

R*(kl)R*(k2)...R*(kN)jO> , (3.C.24) 

using the expressions (3.C.18) and the commutation rules 

(3.B.46)-(3.8.47) to compute the matrix elements. The first term S@(O) 

turns out to be the pressure of an ideal fermi gas, 



p(O) =$!g 
5 ln(l+Pk2) ) . 
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(3.C.25) 

The calculation of the general term %' ("I involves a symmetrization over 

the ki's and pi's in (3.C.18) which leads to extra c-dependent factors in 

the integrand, as in the example (3.C.l1)-(3.C.13) for #(x). The first 

four terms in (3.C.23) have been obtained by direct calculation from 

(3.C.18). From these expressions the form of the general term .9 ("I has 

been surmised, but a proof to all orders has not been constructed. From 

the presumed form of 9(n) I the series (3.C.231 can be summed up 

explicitly in terms of the solution to a nonlinear integral equation. 

Defining E(k) as the solution to the equation 

E(k) = k2 - P - i E'K(k-k')ln 
I c 

lte -BE(k’) 1 . 

where K(k) = 2c/(k2+c2), we find that the pressure is given by 

1te -BE(k) 

(3.C.26) 

(3.C.27) 

These are the same results originally obtained by Yang and Yang. By this 

derivation it is found that the integral equation (3.C.26) and the 

pressure (3.C.27) can be obtained from the Gel'fand-Levitan expression 

for the charge density (3.C.17). The expansion of (3.C.27) in powers of 

the kernel K correponds term by term to the expansion (3.C.17) for j,(x). 

Note that if we define a Fermi momentum kF by the zeroes of c(k), 



c(rkFl = 0 , 
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(3.C.28) 

then E(k):0 for ikl:k F. The zero temperature (6-w) limit of (3.C.26) is 

thus 

e(k) = k2-u + $$ K(k-k')E(k') I (3.C.29) 

which is just the spectral equation (2.A.45) for excitations above the 

ground state. In Section II the integral equation for s(k) was derived 

by studying periodic boundary conditions in a box. Here it was obtained 

directly from the Gel'fand-Levitan formalism using the infinite volume 

commutation relations for R and R*. This emphasizes the important point 

that the infinite volume algebra (3.B.34)-(3.B.37) does contain the 

information necessary to treat the finite density system, even though it 

is simpler than the finite volume algebra (3.B.54)-(3.B.57). In this 

regard it is also worth noting that the exchange factor (B/a) in (3.B.66) 

is simply an overall factor which drops out of the periodic boundary 

conditions. 

D. Inverse Method for Lattice Models 

One of the most intriguing aspects of the quantum inverse method is 

its d0E.e relationship to the transfer matrix techniques developed in 

soluble lattice models. This connection was first suggested by the work 

of Sklyanin (1979) whose derivation of the commutation relations for the 
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nonlinear Schrgdinger model was inspired by Baxter's (1972a) analysis of 

the eight-vertex model transfer matrix. The quantum inverse method for 

lattice models has been studied for the XX2 spin chain (Kulish and 

Sklyanin, 1979) and the symmetric six-vertex model (Thacker, 1980). 

Recently, Faddeev (1979) has constructed the quantum inverse formalism 

for the full Baxter model. In each of these examples the inverse method 

provides an elegant algebraic derivation of results which had previously 

been obtained by a Bethe ansatz for many-spin-wave states. 

To illustrate the essential points in a fairly simple context; we 

will consider the quantum inverse method for the six-vertex model. The 

solution for the full Baxter model is briefly reviewed in the latter part 

of this section. In Section II-D we saw that the transfer matrix and 

partition function were constructed from an elementary vertex Ln, given 

by (2.D.7) for the eight-vertex model and (2.D.11) for the six-vertex 

model. The transfer matrix (2.D.8) may be regarded as a string of 

vertices tied together at the ends. To motivate the formulation of the 

quantum inverse method on a lattice, we note that the solution to a 

linear eigenvalue problem of the form (3.B.l) with specified behavior at 

x0 may be written as a path ordered exponential, 

y(x) = :P exp{i[ga(yldy}y(xgl : I (3.D.l) 

where the path-ordering refers to the matrix structure, specifically 

x +A 

x ifxi Qdy if:~~~*QdY if:-AQdY 
P exp i Qdy = lim e e . ..e (3.D.2) 

xO A+0 . 
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In the six-vertex model, an elementary vertex is precisely analogous to 

one of the exponential factors in (3.D.2). The lattice construct which 

corresponds to the path-ordered exponential solution (3.D.l) of the 

linear problem (3.B.l) is a string of vertices contracted over horizontal 

arrows. Thus the analog of the Jost solution G(x) with boundary 

condition (3.B.2) is given by a product of elementary vertices, 

G(n) = LlL2...Ln . (3.D.3) 

In particular, the matrix analogous to 'YL(k) in (3.8.50) is obtained by 

stringing vertices all the way across the lattice, 

A(v) B(v) 
&-p(v) = LlL2...LN = 

C(v) D(v) 
(3.D.4) 

where N is the number of sites in a row. Using a method which parallels 

the derivation in Section III-B, we will obtain commutation relations for 

the operators A, B, C, and D which are depicted in Fig. 15. 

The algebra of the operators defined in (3.D.4) is based on a 

fundamental property of the elementary vertex. We parametrize the vertex 

weights by p, v, and n as defined in (2.D.171, and consider the vertex L " 

as a function of v for fixed p and rj. Then the direct product of two 

vertices with different values of v is related to a direct product of the 

same two vertices in reverse order by a similarity transformation, 

89[L"(") @ L"CVV] = b"(V') @ L"(V+P (3.D.5) 
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where 

il 0 0 o\ 

.%-9?(“,“‘l a 1; ; ” 8) ’ 

with 

r* z L(V,V’) = sin(v’-v) 
sin(v’-vt2q) ’ 

8 E B(v,v') = sin211 
sin(v'-vt2n) ' 

(3.D.6) 

(3.D.7) 

(3.0.8) 

The relation (3.D.5) is analogous to the nonlinear SchrGdinger result 

(3.B.18) and may be verified by direct calculation. The direct products 

in (3.D.5) may be visualized as the contraction of two vertices over a 

vertical bond (i.e., a spin-operator product) as shown in Fig. 16. It is 

interesting that the similarity transformation matrix has essentially 

the same structure as an elementary vertex if the latter is regarded as a 

four-by-four matrix, 

p sin(v+q) 0 0 0 

0 

p 

sin(v-q) 

p 

sin2q 0 

L(v) = L 0 p sin2q p sin(v-q) 0 

0 0 0 p sin(vtq) 1, 

(3.D.9) 
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By an appropriate choice of an overall factor in the definition (3.D.6) 

we find that 

st(V,V') = L(v'-vtrl) . (3.D.10) 

The fundamental relation (3.D.5) has the structure shown in Fig. 17. 

Using (3.D.5) we find a similar relation for the matrix of 

scattering data operators (3.D.4) 

S+P~vl @ PC”‘1 1 = [iWl aW]s * (3.D.11) 

which gives the commutation relations for A, B, C, and D defined in 

(3.D.4). These relations are identical in form to the finite volume 

algebra (3.B.54)-(3.8.57) for the nonlinear SchrGdinger model, but now 

with c( and 8 given by (3.D.7)-(3.D.8). (To agree with previous 

conventions, we have also interchanged the roles of B and C compared with 

the nonlinear SchrGdinger model.) From here the analysis of the 

six-vertex model simply repeats the steps which led from the nonlinear 

Schrtidinger algebra (3.B.54)-(3.B.57) to the eigenvalue (3.B.63) and 

periodic boundary conditions (3.B.64). The operators B(vi) can be used 

to construct the Bethe ansatz eigenstates (2.0.20), 

I+.., kn> = B(vl)...B(v,) lo> , (3.D.12) 

where vi and ki are related by (2.D.22). It is easily seen from (2.0.13) 

that the state IO> with all spins up is an eigenstate of A(v) and D(v) 

separately, 



A(v) = [;:;;;v;!N/2,0> , 

D(vl10> = ~;;i";;ji"'2,0> . 
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(3.D.13) 

(3.D.14) 

By applying the transfer matrix 

T(v) = tr 91~) = A(v) + D(v) , (3.D.15) 

to the states (3.0.12) and using the commutation relations (3.0.11), the 

eigenvalues (2.D.25) and periodic boundary conditions (2.D.24) are 

obtained by a straightforward procedure. 

The quantum inverse method for the full Baxter eight-vertex model 

(Faddeev, 1979) introduces some essentially new features which have not 

been encountered in the previously considered models. The relative 

simplicity of the six-vertex model resulted from the special form of the 

vertex matrix (2.D.U) or (3.D.9) and the commutation matrix 3, 

FQ. (3.D.6) or (3.0.10). By virtue of the ice rule (two arrows in and 

two arrows out), these matrices, written in four-by-four form, have a . 

1-2-l block diagonal structure. In addition to simplifying the 

commutation relations, this also allows one to choose a local spin state 

1 n +> (spin up) which is annihilated by the lower left corner of the 

vertex matrix (Z.D.ll), viz. (2.D.13). For the Baxter model, the vertex 

is given by (2.D.7) which can be written in four-by-four form as 
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L(v) = 

a 0 0 d 
0 b c 0 
0 c b 0 

.d 0 0 a ) 
I (3.D.16) 

where (Baxter, 1972a) 

a = p o(2ll)o(v-illH(v+~l , (3.D.17a) 

b = P @(ZIUH(v-TX@(Wl) I (3.D.17b) 

c = P H(~J?)@(v-Q)~("+~) , (3.D.17C) 

d = P H(Zn)H(v-Q)H("+il) I (3.D.17d) 

Here H and 0 are Jacobi eta and theta functions with elliptic modulus k. 

The parametrization (3.D.17) expresses the vertex weights a,b,c,d in 

terms of p, Q, v, and k. It reduces to the ice model form (2.D.17) by 
. Î  

taking kL“ p=po and letting the modulus k go to zero. By considering the 

vertex (3.D.16) to be a function of v with p, Q, and k fixed, it is found 

that a relation of the form (3.D.5) can be constructed for the full 

eight-vertex model (Baxter, 1972a) with s again being given by (3.D.10). 

The fact that d#O (i.e., wl#w2) means that it is not possible to 

choose a local "vacuum" spin state which is annihilated by the lower left 

corner of (2.D.7). However, there is a certain gauge freedom in the 

choice of the vertex LE which allows us to introduce a gauge equivalent 

vertex 

Li = M;'L$$+l , (3.D.18) 

where the ML's are a set of two-by-two c-number matrices. A s-matrix 



118 

constructed from the vertex (3.D.18) has elements which are linear 

combinations of the operators in (3.D.4), 

S' = L;";..."; = M;l3%+, . (3.D.19) 

By an appropriate choice of the transformation Mn, it is possible to find 

a local spin state which is annihilated by the lower left corner of the 

gauge transformed vertex matrix L'n. In fact Baxter has shown that the 

eight-vertex model is equivalent to a generalized ice model where only 

the six ice vertices are allowed, but where the vertex weights depend on 

both the arrow configuration and on an integer 9,. This equivalence may be 

stated as a local property of the vertex (3.D.16) (Baxter, 1973b). It 

was used to construct a Bethe ansatz for the transfer matrix eigenstates 

(Baxter, 1973c). The quantum inverse method for the Baxter model 

(Faddeev, 1979) is also closely related to this ice-model equivalence. 

The relation (3.D.10) between the vertex matrix and the .% matrix allows 

the commutation relations (3.D.11) to be expressed in a form which 

resembles the familiar case (3.B.54)-(3.8.57) in terms of operators 

Ak,aW, Bk,ll(v), Ck,&(v), and Dk,%(v) which are the elements of the 

matrix 

3k,n. 
= M;h, 

L - (3.D.20) 

From the commutation relations of these operators, the algebraic 

construction of eigenstates can be carried through. For a detailed 
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discussion we refer to the work of Faddeev (1979) and to the original 

treatment of Baxter (1972a,b; 1973 a,b,c). 
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IV. DISCXSSION 

The study of exactly integrable quantum field theories has developed 

rapidly over the past several years, and this development seems likely to 

continue apace for some time to come. In this concluding section we 

collect a few remarks about the present state of understanding and 

possible future directions. 

An important approach to the treatment of exactly integrable quantum 

theories which was not discussed in this review is the study of 

factorizable S-matrices (Zamolodchikov and Zamolodchikov, 1979). In this 

approach one exploits the fact that the presence of an infinite number of 

conservation laws in a two-dimensional theory generally will preclude the 

possibility of inelastic scattering. (Elastic scattering with exchange 

of internal quantum numbers is allowed.) This leads to a factorized 

S-matrix which can be obtained explicitly by symmetry considerations 

along with analyticity and elastic unitarity. The S-matrix of the 

sine-Gordon/massive Thirring model, which was originally obtained by this 

method, has recently been obtained directly from the Bethe ansatz 

eigenstates (Korepin, 1979). Similar results for the chiral invariant 

Gross-Neveu model have also been obtained (Andrei and Lowenstein, 19SOb). 

The connection between the S-matrix and the eigenstates is of great 

interest, particularly in view of the fact that the S-matrix for the O(N) 

nonlinear sigma model is known (Zamolodchikov and Zamolodchikov, 1979), 

while the construction of eigenstates has not yet been accomplished. 

Because of the apparently general connection between exact 

solubility and the existence of an infinite number of conservation laws, 

much effort has been devoted to the construction and study of higher 
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conservation laws for various theories. Models for which higher quantum 

conservation laws have been constructed include the sine-Gordon/massive 

Thirring model (Flume, 1976; Kulish and Nissimov, 1976a,b; Berg et al., 

1976; Flume et al., 1976; Nissimov, 1977; Lowenstein and Spear, 1978), 

the nonlinear Schrodinger model (Thacker, 1978; Oxford, 1979), the ($$) 2 

Gross-Neveu model (Witten, 1978; Neveu and Papanicolao, 1979), the O(N) 

nonlinear o-model (Pohlmeyer, 1976; Polyakov, 1977; Araf'eva et al., 

1978: Luscher and Pohlmeyer, 1978: Luscher, 1978; Iowenstein and Spear, 

1979) and the chiral O(N) x O(N) and SW(N) x SO(N) o-models (Witten, 

1980). It is reasonable to suspect that the u-models should be amenable 

to exact solution methods of the type we have discussed in this paper. 

Although a classical inverse formalism has been developed (Pohlmeyer, 

1976; Zakharov and Mikhailov, 1978), a quantum inverse method for the (J 

models has not yet been constructed. This is a very important unsolved 

problem, especially in view of the interesting analogies which can be 

draw" between D models and realistic four-dimensional gauge theories. 

Even within the scope of models which can presently be studied by 

the quantum inverse method, there are some important questions which have 

not yet been answered. A general method for obtaining Green's functions 

for integrable theories has not been devised, though progress has been 

made in some special cases (Wu, et al, 1976, Vaidya and Tracy, 1979: 

Jimbo, et al, 1979a,b; 1980) The inverse Gel'fand Levitan transformation 

has so far been formulated only for the nonlinear Schrodinger model. For 

other models, only the direct transformation is known. Formulation of 

the quantum Gel'fand-Levitan method for these other models would be of 

great interest. As we discussed in Section III-C, the Gel'fand-Levitan 

transformation for the nonlinear Schrodinger equation, in the limit -, 
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becomes a Jordan-Wigner transformation which expresses the interacting 

boson field in terms of a free fermion field, the latter being the 

Fourier transform of the quantized reflection coefficient. Recently, a 

similar connection has been found for the isotropic XY (i.e., the XX) 

spin chain by studying the direct transform (Fowler, 1980). The 

relationship between the quantum inverse method and the Jordan-Wigner 

fermion-boson transformation is of particular interest in the 

two-dimensional Ising model (which may be treated by the quantum inverse 

method as a special case of the Baxter model). In this model, the 

Jordan-Wigner transformation describes the relationship between order 

(spin) and disorder (kink) variables and is closely related to the 

self-duality between the high and low temperature phases of the system 

(Kramers and Wannier, 1941: Kadanoff and Ceva, 1971). The possibility of 

relating inverse scattering transformations to duality transformations is 

intriguing, particularly since it has recently been suggested that 

four-dimensional SU(N) gauge theory has a self-duality property somewhat 

like the Kramer*-Wannier duality of the two-dimensional Ising model 

(t'Hooft, 1978, 1979; Mandelstam, 1979). The fermion-boson equivalence 

between the massive Thirring model and the quantum sine-Gordon equation 

(Coleman, 1975) may provide some additional insight into the question of 

inverse scattering "is-a-vis Jordan-Wigner transformations. In comparing 

the solution of the massive Thirring model (Bergknoff and Thacker, 1979) 

with that of the sine-Gordon model (Faddeev et al, 1979), the equivalence 

is apparent at the level of PBC's and spectral integral equations, which 

are essentially identical for the two theories. However, the 

equivalences between the operators of the two models (Coleman, 1975; 

Mandelstam, 1975) have not been discussed in the context of the inverse 

method. 
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The discovery of exact integrability in two-dimensional quantum 

field theories raises one question of central importance to the future 

direction of the subject: Is exact integrability an inherently 

two-dimensional phenomenon, or does some analogous behavior occur in 

realistic four-dimensional theories? The answer to this question is far 

from clear at present, but promising developments have been discussed by 

Polyakov (1979). This work draws on an analogy between four-dimensional 

gauge fields and two-dimensional chiral fields; (For the definition of a 

chiral field, see for example Zakharov and Mikhailov, 1978.) In gauge 

theory, the analog of the chiral field is a nonlocal Wilson loop operator 

P exP 4 A dx' 
c 1-I 

where C is a closed contour. The role of x-space in the 

chiral theory is fulfilled by the space of all closed contours ("loop 

space") in gauge theory. The hope is that exact integrability in gauge 

theory will manifest itself by an infinite number of functionally 

conserved currents in loop space. The ideas of Polyakov fit rather well 

with the duality considerations of 't Hooft (1978: 19791, especially in 

view of the suggested connection between self-duality and exact 

integrability in two-dimensional models. 't Hooft proposed that the 

appropriate order variable in gauge theory is the Wilson loop operator, 

which may be interpreted as the creation operator for a loop of electric 

flux, and that the dual disorder variable creates a loop of magnetic 

flux. Whether the formulation of four-dimensional gauge theory in terms 

of loop variables will eventually lead to an exact solution procedure 

remains a matter of speculation, but the parallels with the 

two-dimensional formalism are amusing and encouraging. 
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FIGURE CAPTIONS 

Fig. 1 Sum of graphs for the two-body wave function. 

Fig. 2 An n-string in the complex k-plane, representing a nonlinear 

Schradinger model bound state. 

Fig. 3 (a) Phase shift used in periodic boundary conditions (2.A.26). 

(b) Interactionphase shift which vanishes for c-to. 

Fig. 4 A particle-hole excitation above a finite density ground state 

in the nonlinear SchrMinger model. 

Fig. 5 The physical vacuum for the massive Thirring model. 

Fig. 6 An n-string in the complex rapidity plane for the massive 

Thirring model. 

Fig. 7 Particle-hole excitation in the massive Thirring model. 

Fig. 8 Analytic structure of the two-body phase shift A(c) for the 

massive Thirring model. 

Fig. 9 (a) Excitation of an unbound particle-hole pair. 

(b) Excitation of a bound particle-hole pair. 

Fig. 10 (a) A bound 3-string + 3-hole state, representing the n=3 state 

in Eq. (2.8.67). 

(b) A 5-string state, representing an unbound 

fermion-antifermion pair. Here and in (a), the value of the 

coupling is taken in the range r=3. 

Fig. 11 (a) Representation[5,3]. 

(b) Representation[2,2,2,1,1]. 

Fig. 12 The eight allowed vertices of the Baxter model. 

Fig. 13 A possible configuration of a 3 x 3 lattice with toroidal 

boundary conditions. 

Fig. 14 Arrangement of indices for the vertex defined in Eq. (2.D.5). 
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Fig. 15 The operators A,B,C, and D defined in Eq. (3.D.41. 

Fig. 16 The direct product of vertices L(v) x L(v'). 

Fig. 17 The commutation relation Eq. (3.D.5). 
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