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Abstract

We discuss the use of the operator product expansion in computing
nonleptonic weak decays. The estimation of "penguin" contributions is
improved by a careful treatment of the u-c cancellation. Using the
vacuum insertion technique and equations of motion to estimate the operator
matrix element we find the penguin contribution is only -i%- of the

experimentally observed AI=] amplitude in kaon or hyperon decays.
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Much of the recent work on AS=1 nonleptonic weak decays(i’z’?’) has

used the operator product technique to sum radiative corrections to the

basic Born graph. The resultant effective AS=1 lagrangian has the form(z)
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where the coefficient functions may depend on the W boson mass, M and

any other mass scales m together with the strong coupling constant g and

the operator rencrmalisation point u2.

- The operators 0* are ordered according to their dimension and those

with dimension € 6 pick up large logarithmic corrections « log(—) which
. _ ¥
may be summed by means of the renormalisation group. Operators of dimension

> 6 arise, for example, from a diagram like that in Fig. 1(a). To

2 .
O(m@) the dominant part of this graph comes from the part « 1 inthe

5

expansion of the W boson propagator -t _ s the residual graph, Fig. 1(b),
' ' (k™44 ) :

being convergent. If, as in Fig. 1(b), this graph only involves light
quarks the scale &f loop momentum is small and +this part is normally
identified as part of the matrix element of dimension < 6 operators.
Unfortunately this is not t\;holly corvé’ect as there are confributions of this

M

type which are not corrected by n{-7) terms and thus may not be included

H
in the dimension 6 operator contribution. They genuinely correspond to
higher dimension operators. It is hoped tﬁeir contribution will not be
significant (they contribute both tc AI=3 and Alzg transitions). One |
possibility is they have small matrix elements in the valence approximation.
If the residual graph involves a heavy quark, mass mqh, in the loop, it will

generate a coefficient « (m )-2' for a dimension (6+42%) cperator.



.- Thus it is usual only to include dimension € 6 operators in

-

eq.(1) to obtain the leading contribution to AS=1 nonleptonic decays.
Operators of dimension € Lt are not present after renormalisation.
‘A list of candidate dimension 6 operators Al=% is given in

ref. (3) and these may be reduced by use of equations of motion

to the following set (2
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Here X" are SU(3) colowr matrices and is the gluon

field tensor.

In the standard model only the operators 01 and 02 arise through
the W boson Born graph. This gives (1,2,3) 01 = -1, C,2 = % . In first

order in the strong coupling constant 8q the operators O and 05, the
so-called penguin operators, arise through the graph of Fig.?2.

Note that .‘this gF'aPh gives the op;:'z'a'tor sY,, l_édeGiv which is related
by an equétion of motion to 0 5.' The fact that the momentun flowing
through the g_luon g can be soft does not affect this eq;%tion of motion

[4]. Also note that the contribution of Fig.? is « 2,n(_.§) and vanishes

m
i

if mo=m due to the cancellation of the u and ¢ contributions in a
theory with the conventional GIM currents. Higher order graphs such as
those in F:Lg3,fl contribute terms involving large logarithms and
these we Wlll sum uéing fenormlisation group techniques..

: o
In order g > 0. does not occur. Its leading contribution comes

in order gg, and may be expected to be small ‘2. We discuss this
operator elsewhere (10) . The anomalous dimension matrix for the set
of operators {01, 0ys 055 0y Og 5 06}_‘ is

Y(}Jf"x) = (;‘i‘%:.)f

where
L 0 o0 ]
0 -2 0 0 o0
- 32
p = 0 2 3% 3% (3)
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The solution of the renormalization group equations for the

coefficient gives
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where g (Mw s M, £, U) is the colum vector of coefficient functions

2 2 2,
Cz(Mw s My gy U)o
"% means the exponential is drdered._. and é(QQ) is the usual running

coupling constant defined by
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ng is the nunber of quark flavours. 2
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Equation (4) sums the leading logs of the form log(-—%—). The
2 ' Yo
Mg :
identification of — requires some care.
u
o)
The leading log corrections to 01 and D? arise from graphs ofzthe

u
form shown in Fig.3 and explicit calculation shows the argument (—12)
. Ho



2
= (g-) . The inclusion of "penguin" diagrams involves graphs of
. ,
the form shown in Fig.4. Explicitly eva%uating the con‘é:r'ibutions to
m
05 and 06 we find terms involving (log ——-—) and (log —31), but no
m m_?
% 2
mixed terms of the form log Ma log mg that would evidence an enhancement
2 1
Like (log ——)% - (log % after the G.I.M. cancellations.
m ™
This persists in higher order as may be seen from the general

(5}
form of the Feynman integral expressed in terms of Feynman parameters.

logarithms come from minimising the denominator function D which has the form
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where o and d% are the Feynman parameters associated with the W boson

propagator and the guark propaga%or respectlvely. The dependence of D on My
will be negligible unless o § X

i

Integrating with respect to aw in this region gives logarithmic terms
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together with the new dencminator
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Here we have written
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Further logs of Mi come from the region ¢’ by

(10}

The first log term

gzm‘ rJEj o

in eq. (7) will give either EnQMa or £n2m§ terms. The second log term

in eq. (8) gives only anF (uz)z.nmi,. Clearly this argument may be repeated
for further zeros of C".



Thus the logzsurmation appropriate to diagrams as in Fig.u
has the afgument (%2) approximately given by (I—n-—-—%'-). All other terms
_ a,
cancel between the u and ¢ contributions. This gives zero mixing between

dJu u)s and 05, 05 since m 2~m 2. For the mx:mg between :Cr’_ <, c ;" '

.2 q1 9 m 2
and 05, 06 we choose % = é— _c2 where the constant of

u
pr'opor'tlonalrty = 1is chgsen jz'o take account of the fact that the argument

of the logs is not quite —% For example Fig.? gives
M
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having a factor a < %#. In higher order this will not be the same factor

but we expect some similar suppression of u2 relative to ug.

. - - p . . e

Since only d [l_ch.( s, mixes to 05 and 06 the relevant initial
 coefficients necessary to calculate the penguin contribution are those
corresponding to this operator:C, = -1, C, = +

Then we find from eq.(4)
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In table 1 we tabulate these coefficients for two choices of
gz(uz)/qﬁ, and two choices of a.

Before we can compare our effective lagrangian with experiment it is

necessary to estimate matrix elements of the contributing operators. One

(6,2)

technique that has been widely used is to factorise the operators,

or operators related by Fierz transformations, in all possible ways. Thus,
for example, L .

. = 32@ -4 - i o
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The remaining matrix elements are estimated via equations of motion

e.g. . _ | . , .
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In writing eq. (11) and eq. (12) no mention has been made of the operator
normalisation u2 ~ yet this is important.

0y, for example, is not invariant under a change in u2 and this is

reflécted in eq. (12) by the fact that the quark masses used should be

2
those relevant to the scale yw . What are reasonable values for these masses?

Current algebra gives a value for —— Tu,d e ;—0 (8) . This ratio is approximately

5 S

valid for u® much greater than symmetry breaking effects. The absolute

value of m is normally taken from mass differences between members h of a

unitary multiplet using the relation‘®’

'm{ 2 eowt * m_,(,}) ES(pty2p (1)



Obviously before ms(uQ) can have a meaning fhe relative normalisation
of m_ and ss must be defined. If u2 is chosen to be of the same order as
the mean momentum squared as that found in hadron h it should be reasonable
then to use for <ss> a bag mdel estimate. Such a calculation gives
<§.'3.>1_l = 0.48 N where Ny is the number of strange valence quarks in h.
Assuning the current algebra ratios work at the same scale givesca)

~ 300 MeV, my A 15 MeV, m, ~ A 8 MeV. With the values for Cg and C6 given

2

in Table 1 (for p° = (0.7 cen)?) together with the operator matrix elements

evaluated as above we find the operators O and O can account for only (_%1_ - %_g}
to (— -5 ) of the Al=3 amplitudes observed in kaon and hyperon decay
(correspondmg to 5-2(—11)— = tand 2.4 r'espectlvely) . The contribution of the
operators 01 and 02 is essentially unchanpged from previous énalyses and, in

the factorisation approximation, contr'lbutes about (1) to (3 ) of the observed
amplitudes in kaon decays. For the case %— (U ) = 2ttre perturbation
expansion probably breaks down near uz. We include it as an upper

estimate of the calculable contribution to 0,

. . 2 2
It is amusing to ask what happens for a different choice of p”, m(u™)

2 . : . )
decreases as | increases approximately as .

z.f
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For ui = 2(3e\l2 this increases the estimate of the matrix elements of

05 and 06 by a factor of 2.5 to 4. However calculation of C5(u2) and Cs(pz)
for this new subtraction point (cf Table 2) shows they are suppressed by
factors of %- to % The product CO is reasonably constant (it would be

exactly so if the factorisation technique were exact) and remains too small

to explain the large AI=1 amplitude.



Of course the factorisation technique for evaluating matrix elements
is suspect and it is important to look for other methods. One recent approach
uses PCAC plus the bag model(g). It suffers from serious difficulties in
continuing to the soft pion limit but the results are broadly in agreement
with the factorisation results. We also note that with the normalisation of

(8)

the s quark given above charm PCAC gives a value form, ~ 1.7 GeV. This

is in reasonable agreement with the determination of m, from the { mass N
assuming free field matrix elements for ¢ operator matrix elements normalised

at the scale mc.

~ In conclusion we have re-e¢xamined the operator product analysis for
AS=1 noﬁleptonic weak decays. The operator ordering according to dimension
is not justified by short distance arguments alone and requires assumptions
about the relevant operator matrix elements. Evaluation of the contribution
of the dimension 6 oper'atofs suggests that the penguin contribution is too
small to account for the large AI=3 enhancements found unless important
contributions to the coefficient fumctions arise from the non-short distance
parts of the integrand. In this case the contribution of other operators

such as 071 may be impor'tant.(m’li)
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gz(u‘?) (Equivalent A a C, 02 'CS Ce
L (Gev))
3 .25 3 | -2.33 | o0.13 | -0.052 | -0.013
2.4 .5 1 ~3.68 0.10 | -0.089 ~0.031
2.4 .5 1 -3,68 | 0.10 | -0.239 | -0.058
Table 1

Coefficients 'Cl’

various values of the strong coupling constant and scale factor a.

Cz, CS’ C6 calculated for u = .7 Gev, Mw = 100 Gev and
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