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ABSTRACT 

The equilibrium thermodynamics of the non-linear Schrsdinger model at finite 

temperature is calculated by means of the quantum inverse method. Working 

directly in an infinite volume we derive the equation of state and the integral 

equation which determines the excitation spectrum. This integral equation is found 

to be closely related to the Gel’fand-Levitan expression for the charge density 

operator. 
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I. INTRODUCTION 

Exact solutions to certain completely integrable quantum field theories 1-4 

have revealed that the vacuum and other physical states of these theories have a 

nontrivial structure which is most conveniently described in terms of many-body 

distributions. For example, in the massive Thirring model1 the vacuum is a Dirac 

sea with a nonuniform distribution of filled negative energy modes while the 

description of excited states entails a “backflow” function which expresses the 

response of the Dirac sea to the excitation. The technique which has been used to 

determine these distribution functions, and thus calculate the energy spectrum of 
E 

the theory, is patterned after the treatment of the 6-function Bose gas by Lieb..’ 

First the system is placed in a box of length L and periodic boundary conditions 

(PBC’s) are either imposed on the Bethe ansatz wave functions or obtained from the 

algebra of scattering data operators in the quantum inverse method.6-10 For finite 

L, the PBC’s are a complicated set of transcendental equations which restrict the 

allowed values of rapidity or momentum for the filled modes. Fortunately, in the 

limit L + m, the PBC equations reduce to fairly simple linear integral equations 

which determine the vacuum distribution and backflow functions. In the 

relativistic models which have been studied, these integral equations can be solved 

explicitly by Fourier transformation, leading to exact spectral results. 

Although the periodic boundary condition method is quite powerful and leads 

to exact results, there now appear to be compelling reasons to re-examine the 

details of the method with a view toward eliminating the use of a finite box 

entirely. In addition to the obvious aesthetic objection to using a box to compute 

quantities which ultimately have little to do with the presence or nature of the box, 

serious practical problems arise in the formulation of the quantum inverse method 
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in a box of finite length. In the infinite volume case L = m, the algebra of the 

scattering data operators a(c) and b(c) is especially simple and leads to elegant 

properties for the reflection coefficient operator R(t) IT b(c)a-l(<). [ See Eqs. 

(1.6). 1 Although the algebra of a and b operators can be derived for finite L, it is 

more complicated than the L = - case (e.g. an extra exchange term appears in the 

a - b commutator), and simple relations for the R-operators are not obtained. In 

fact the utility of the R operator seems to be entirely destroyed by the 

introduction of a finite box. Since the simple properties of the R operator are at 

the heart of the Gel’fand-Levitan transformation 10 (which is the inverse part of the 

quantum inverse method), it is apparent that the use of a finite box has serious 

drawbacks. It would be reassuring and perhaps enlightening if the spectral integral 

equations which are usually obtained from Bethe ansatz periodic boundary 

conditions could be derived directly in the infinite volume theory without resorting 

to a box. In this paper we will show that for the s-function gas (quantum nonlinear 

Schrodinger model), such a derivation is not only possible but leads to new insight 

into the structure of the Gel’fand-Levitan transformation. We find that the 

Gel’fand-Levitan expression for the charge-density operator jo(x) = @*(x)+(x) is 

closely related to the spectral integral equation for the finite temperature 6- 

function gas first derived by Yang and Yang. II 

The connection between the spectral integral equation and certain almost- 

forward matrix elements of the charge density operator was pointed out some time 

ago in the course of a graphical calculation of the partition function (see Ref. 12, 

eq. (4.14) -seq.). At the time no means were available for studying these matrix 

elements directly, and the calculation was carried out by an indirect method using 

unitarity of the M@Ier wave operators. Although the calculation in Ref. 12 
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demonstrated that the spectral integral equation and partition function of the IS- 

function gas could be obtained without introducing a finite box or periodic boundary 

conditions, it required a delicate treatment of the ic+ 0 limit in certain singular 

denominators. The method discussed in this paper utilizes a direct calculation of 

matrix elements of jo(x) starting from the Gel’fand-Levitan expression for that 

operator. It requires no delicacy in the treatment of is’s (which may in fact be 

ignored throughout) and exposes a remarkable correspondence between the 

expansion of jo(x) in powers of the R and RX operators and the expansion of the 

spectral integral equation in powers of its kernel. 

The nonlinear SchrGdinger model is described by the Hamiltonian 

H = 
SC 

axe*ax$ + ce*4*w]dX , 

where c$(x) is a nonrelativistic boson field with canonical commutation relations 

[ c$(x), $l*(x’) = 6(x-x’) 1 (1.2) 

The quantum inverse method for this model is implemented through the linear 

Zakharov-Shabat eigenvalue problem 13 

( i& ++c 
> 

Y, = -dnp$ 

i 
a I 

i= -25 Y2 = 
1 

&$*X1 

(1.3a) 

(1.3b) 

The scattering data operators a(<) and b(c) are defined in terms of the Jost solution 

JI (x, 5 ) with the properties 
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1 
( 1 

eiSx/2 
0 

z ( :;;Y;::, ;- ( ::~:~czz ) * (1*4) 

The fundamental operators R(S) are given by 

R(S) = &b(S)a-l(<) 

and may be shown to obey the following simple commutation relations: 

[H, R*(i;l = 5’R*(5) , 

R(S)R(S’) = S@. - C)R@.‘)R(C) , 

R(S)R*(S’) = SK -<‘lR*(<‘)R(C) + 271&C< - 5’1 , 

where H is the Hamiltonian, and S is the two-body S-matrix 

SK -5 ‘) = w 

From these relations we see that the states 1 k,...k,> defined by 

Iki...k,> = R*(ki)...R*(k,) [ O> 

(1.5) 

(1.6a) 

(1.6b) 

(1.6~) 

(1.7) 

(1.8) 

(where IO> is the vacuum state with o(x) IO> = 01, are eigenstates of the Hamil- 

tonian: 
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H 1 kl...k,> = . (1.9) 

These states are identical with those obtained previously by means of Bethels 

ansatz. The inner product between two such states may be easily obtained from 

the commutation relations (1.1). 

The inverse transformation from the R operators back to the Heisenberg field 

o(x) is accomplished by means of the quantized version of the Gel’fand-Levitan 

equation. By using the analytic properties in 5 of the Jost solution x(x, 5 ) with 

0 -iSx/Z the behavior x(x; 5) fl I 
0 

e as x + +m, it was shown in Ref. 10 that the 

components xl and x2 may be expressed as expansions in the operators R(S) and 

R*(S). The asymptotic behavior of xl 

X,(X, 5) eisx" F - q@(x) + 0 4 
+50 ( 1 5 

yields a corresponding series expansion for the field operator a(x). Some properties 

of this expression have been studied in Refs. 10 and 14. In this paper we use a 

similar series expansion for the charge density operator jo(x) = $*(x)o(x) which 

comes from the asymptotic behavior of the other Jest solution component, 

X2(x,t)eiSx’2 - ~-~~mjo(x)&~+O 
5 +m X 

From this and eq. (40) of Ref. 10, we obtain the result 

job4 = 2 jo(“)(x) , 

(1.10) 

(I.lla) 
M=O 

where 
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(pM+I - kM+I - ic) 
i=l 

x R*(pM+,)...R*(P,)R(k,)...R(kM+l) (I.llb) 

In Section II the expansion (1.1 I) will be used to calculate the partition function of 

a finite temperature gas. The combinatorics of the series is reduced to an integral 

equation which is just the equation of Yang and Yang. In the T+ 0 limit this 

reduces to the results of Lieb. Section III contains some concluding remarks. 

II. PARTITION FUNCTION OF 6-FUNCTION GAS 

The purpose of this section is to compute the partition function 

~(8, ,,) = Tr e8(‘NN-H) f (2.1) 

where N = ,/ dx$*(x)o(x) is the number operator, H is the Hamiltonian, B is the 

inverse temperature, and 1-1 is the chemical potential. Actually we will compute 

the extensive quantity In Q, which was shown in Ref. 12 to have the representation 

In Q = $ Tr Y(q)eBO-‘N-H) 

where the operator Y(q) is defined by 

s 
m 

Y(q) =emiqK N-l dxjo(x)eiNqx 
-0) 

, (2.2) 

(2.3) 
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Here K = Idx x$*(x)$(x) is the GaIilean boost operator with the property 

eiqKR*(k) = R*(k + q)e iqK . Note that formally the limit q+ 0 of Y(q) is the unit 

operator, and that in diagrammatic language the effect of taking the limit q + 0 

outside the trace is just to pick out the connected pieces which go to make up In Q. 

In the quantum inverse method this representation of In Q is very convenient since 

equation (1.11) expresses jo(x) in terms of the fundamental operators R and R* 

which have simple commutation relations with the Hamiltonian. The operator Y(q) 

commutes with the total momentum operator P = C/dx$*x@, and so when we 

take the trace the x integration in (2.3) becomes trivial yielding a factor 2n6(0), 

which we interpret as the spatial extent L. Using the expansion (1.11) for jo(x) we 

then find that the pressure p= B-ialn Q/aL may be written as 

(2.4) 

where the operator J is given by the expansion 

J = J(M) 

M=O 

. (2*5) 

i=l 

That the limit in (2.4) is nonzero is due to the denominators in (2.5), some of which 

become of order q when we take the trace. In order to compute this trace we need 

to evaluate the quantity 
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ACM)(q) = Tr emiq%*(p M+,)...R*(p,)R(kl)...R(kM+,)eB(uN-H) , (2.6) 

which is shown in the Appendix to be given by 

M+I 
n (-,)y eniB(u-ki2) 

i=l 

1 

x <kM+, + nM+l%‘.. kl + nIq IpM+l.“pl>{ 1 + o(q) \ 

1 

* (2.7) 

The additional terms of order q have no effect as q + 0 and will be omitted in the 

following. 

Let us use this result to evaluate the contribution to the pressure of the first 

few terms of (2.5). The zeroth term gives 

1 
s c” 

dkl m -1 nlenlB(W12) 
=..- - 

B 2n 
nl=l “1 

E(p -k,‘) 
, (2.8) 

which is just the well-known expression for the pressure of a free fermi gas. This is 

at first surprising since the explicit powers of c in the expansion (2.5) might 

indicate that it is a small coupling expansion, so that the zeroth term should give 

the pressure for a free bose gas. In fact however we shall find that due to the 
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implicit c-dependence of the operators R, the higher order terms are actually an 

expansion in the kernel A(p - q) given by 

A(p - q) = 2c 

(p - qj2 + 2 
(2.9) 

which vanishes as c + m but gives 2n1S (p - q) as c + 0. 

To see this pattern begin, let us consider the next term J (I) . m the series for 

J. Before taking the trace it is convenient to symmetrize the integrand of J (I) 

over kl and k2 and over pL and p2 and then use the commutation relations (1.6) to 

recover the original ordering of the R’s and R *I s in each term. In this way we 

obtain 

$1) = c s 
dk,dk2dpldp2 R*(p2)R*(pl)R(kl)R(k2)(pl + p2 - k, - k2)(kl - k2)(p2 - p,) 

2 (2n14 (p 1- kl)(pf - k2)(p2 - kl)(p2 - k2)(kl - k2 + ic)(p2-’ (2.10) 

After this symmetrization the contributions to the pressure coming from the two 

terms of the matrix element <k2 + n2q, kl + nLq( p2pl> in the trace A (l)(q) are 

equal, so that we may rep1 ace this matrix element by 

2(2 d2S(p1~,-n1q)6(p2~2-“2q). We see that possible poles as q + 0 are cancelled 

by two powers of q in the numerator so that the limit q + 0 is finite and given by 

p(l) = &I% 2 (kl -zj2 + c2 i 

nL,n2=1 

ni:ni2 x i (-l)nienia(‘-ki2) 

i=l 

s 
!.& &(k, -k2) -f $1 i (-Ljni eni8(U-ki2) 

n1,n2=1 i=l 

s dkf dk2 
=- 

i 2n -yq A.(kf - k2) (2.11) 
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Note that by combining p(O) and p(f) and expanding in the fugacity z = e BP 

(and multiplying by 2n&(O)g) we recover the well-known result for the second virial 

coefficient 

Ai(kl - k2) - n6(kl - k2) 
-B(k12+k22) 

(2.12) 

Let us now consider the general Mth term in the series. Although the details 

are somewhat complicated the essential pattern of the computation is the same; 

after symmetrizing over kL...kM+, and over pI...pM+I the limit q + 0 is seen to be 

finite and the c-dependence appears only in the form of M kernels A(ki - kj). 

Explicitly we find” 

,.9(M) = 1 
dkl...dkM+,(-l)M+l 

B / (2dM+f(M+I)! 

9 
(2.13) 

where $?M IS the set of all collections of M pairs [ki, kj} with i f j such that each 

ki appears in at least one of the pairs Ikit kj}. The integers mi’ 1 indicate the 

number of pairs {k. k.} which contain ki. 
1’ I 

For example, the M = 2 term may be 

written explicitly as 

~(2) = _ 1 

s 

dkldk2dk3 
3 (2nj33 ! 

i ;I (-fnieni8(u-ki2) 

n,,n2,n2=1 i=l 

(n1A12A13 + “2 43’21 + n3A31A32) (2.14) 
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where Aij 5 A(ki - kj). Summing (2.13) over M from zero to infinity and using the 

symmetry in the ki and ni to replace Cni by (M + I)n, we obtain the desired 

expression for the pressure: 

9 = $ c (-lr;’ 
M=O 

dkl”*dkM+l c t’ (-l)ni e”iB(u-ki2)nimi-2 
c2#+’ ni=l i=l 

x n1 n A(ki - kj) 

ti,j IC FM 

(2.15) 

We now show that this result may be expressed in terms of a certain non-linear 

integral equation. Let us define q(k 1, n,) to be the above expression but with the 

integral dk1/2n and the sum over nI suppressed, and let y(k,) be y p(k,, n,). 

Also we introduce a quantity o(kf) which is essentially those term:‘:: p(k,, n,) 

with m = 1 and external factors omitted, i.e. 1 

o(kl) = $ 
i F (-l;i e niB(V-kfJn,mi-2 

1 
M=l 

n2 

. ..nM+f=l i=2 

x n 
{i, j}CF’ 

d(ki - kj) 
M 

, (2.16) 

where $?I M IS that subset of gM with ml = 1. Then it is a simple combinatorical 

exercise to verify that these quantities obey the coupled equations 
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a(kL) = - $ 
s 

dk2 
2n Ak,- k2)pCx2) , (2.17) 

and 

p(k 1 (-I) 
n1 nlB(u-ki2) 

1, n,) = -- 
e 

8 “I 

‘1 n 8 I we1 
=-B n, 

p-kf2-u(kl) 

so that 

11 
Combining these results we find that the pressure 9 is given by 

$2’ = $ 
s 

g ,,., [1 + eh’-k2-u(k)j] 
f (2.20) 

where u(k) obeys the non-linear integral equation 

u(k) = -b 
s 

gA(k-q)ln [, + .d w12-+ 1-j , 

7’ (2.18) 

(2.19) 

in agreement with the result first obtained by Yang and Yang using a variational 

method. The quantity a(k) used by these authors is related to our u(k) by 

(2.21) 

a(k) = k2 - !.I + u(k) (2.22) 
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We emphasize that our original expansion (2.4), (2.5) for the pressure, which follows 

directly from the Gel’fand-Levitan expression for the charge density, corresponds 

term by term to an expansion of (2.20) in the kernel A(ki- kj). 

III. DISCUSSION 

To summarize, we have found that the structure of the charge density 

operator jo(x), when expressed in terms of R-operators by the quantum inverse 

method, is directly related to the spectral equation which describes the 

thermodynamics of the system at finite temperature and density first derived by 

Yang and Yang. Using the Gel’fand-Levitan expression (1.11) for jo(x), the partition 

function was calculated from (2.2) and (2.3). The expansion (1.11) or (2.5) leads to 

the expansion (2.15) for the pressure in powers of the kernel A. This result was 

reduced to a single integral (2.20), where o(k) is the solution of the nonlinear 

integral equation (2.21). The function o(k) is simply related, by eq. (2.22), to the 

quantity c(k) introduced by Yang and Yang. 

Some perspective may be added to these results by recalling that the function 

e(k) describes not only the pressure but the complete excitation spectrum of the 

theory. As shown in Ref. 5, the excitations are of two types, particles with energy 

c(k) and holes with energy -c(k). For multiple excitations the energies are 

additive. In the zero temperature limit these considerations are found to be 

equivalent to the method of Lieb for computing excitation energies above the 

ground state. (Note that eq. (2.21) becomes linear in the limit 8+ -. See Ref. Il.) 

In fact the Yang and Yang method provides a convenient simplification of Lieb’s 

result, with the bare energy of an excited mode and the backflow energy associated 

with the excitation combined into a single quantity c(k). A similar simplification 

may be noted in the calculation of the massive Thirring model spectrum. 192 In this 
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case, the Lieb method is used, and the integral equation for the backflow distri- 

bution can be solved explicitly. The backflow energy associated with each excited 

mode combines nicely with the corresponding bare energy to produce a simple 

result. Again the energy spectrum may be expressed as additive combinations of a 

single-particle function ~(a), which gives the energy of a mode with rapidity a. 

From this similarity one suspects that a method like the one described in Sec. II 

might provide an alternative derivation of the spectral integral equation for the 

massive Thirring model which does not rely on periodic boundary conditions in a 

finite box. Such calculations must await an extension of the quantum Gel’fand- 

Levitan method to this theory. 

In recent investigations of exactly integrable relativistic theories, 1-4 calcu- 

lations have been carried out at zero temperature with emphasis on the 

construction of eigenstates. The method developed in this paper provides an 

interesting counterpoint to the usual approach. Here neither periodic boundary 

conditions nor explicit properties of the eigenstates were used to obtain the 

integral equation which determines the spectrum. Only the Gel’fand-Levitan 

formula (1.11) and the algebra of R-operators (1.6) are used. The role of 

eigenstates is greatly diminished. This may be a useful shift of emphasis for 

integrable relativistic boson theories (e.g. nonlinear sigma models) where the 

explicit construction of eigenstates has not been accomplished. It is also worth 

noting that the use of finite temperature is essential to the results described in this 

paper. This is apparent from the repeated use of the cyclic property of the Hilbert 

space trace for the derivation of eq. (2.7) given in Appendix A. Corresponding 

expressions at zero temperature would involve vacuum expectation values which 

have no such cyclic property. Moreover, the series expansion for c(k) which 

emerges from the Cel’fand-Levitan approach is not term-by-term finite at zero 
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temperature. Only after summing the series in the form of an integral equation 

can the B+ m limit be taken. It may be that, in further investigations of exactly 

integrable theories, finite temperature calculations can provide a useful tool even 

for the study of zero-temperature theories. 

APPENDIX 

In this appendix we show that A(M) (q), the trace of a product of R’s and RX%, 

defined in (2.6) is Eq. (2.7). One way to do this is to use Bethe ansatz states (1.8) to 

perform the trace at fixed particle number n and then sum over n. Here we will 

adopt a more formal, but equivalent, method which employs the cyclic property of 

the trace. First look at the case M = 0: 

k’)(q; p; k) = Tr emiqKR*(p)R(k)e WN-H) (Al) 

Using the cyclic property of the trace and the algebra of the R operators (1.6) we 

secure the relation 

A(‘)(q; p, k) = zemBk2 {2n6(k + q - p)Tr eeiqKeB(uNWH) -I 

+ S(k + q - p)Tr e -iqKR*(p)R(k + q)e 13 (1~. N-H) 1 , (A.2) 

where z = e’u is the fugacity. Owing to momentum conservation only the zero 

particle state contributes to the trace in the first term so that 

A(o)(q; p, k) = .8b-k2) { < k + q (p> + S(k + q - p) n(‘)(q; p; k + q) 1 , (A.3) 
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where we have used <k + q 1 p> = 2n1S (k + q - p). Iterating this result we obtain eq. 

(2.7) for the case M = 0: 

m 

A(O)(q; p; k) = 1 fn(‘)(q, k)<k + nq 1 p> 

n=l 
, (A.4) 

where 

2 n-l 

f,(‘)(q, k) = znemB k n S(.P,q _ nq)e-e(k+eq)2 

!z=l 

= - (-z)“emnBk 
2 

+ o(q) (A.5) 

We will prove a similar formula for arbitrary M by induction. Assume 

,I(‘-‘)(q; p ,... pM, kl...kM? has the form 

A(“-l)(q; {pi}, {ki}) = c 
Ini}= 

fgT/) (q, {ki} ) x < kb! + nMq-..kl + nlq 1 pM...pl > , (A.61 

where 

M 

f’EI;)(% Iki}) = (-I)” n (-z)~’ e 
-niBki2 

+ O(q) . (A.7) 

i=l 

Consider now 

AcM)(q, {pi) , { ki}) E Tre-iq%*(pM+l)...R*(pl)R(kl)...R(kM+l)eB(uNN-H) . (~.8) 

Generalizing the previous technique, we cycle R(kM+,) to obtain 
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n(“)(q, I Pi} , IkiI ’ = ~ + ‘e -8k’+1 “ri’ S(kM+l + q - pjl 

j=l 

x fi S-l(k M+l + q - kQ)A’“)(q; {Pi} ; kl”.kM, kM+l + 9’ , (A.9) 

R=l 

where 

1 = ze 

M+l 
2n*(k 

M+l + q - Pj) II S(khJ+l + q - Pk) 
j=l 1 =j+l 

x n(“-l)(q; Pl”.Pj_1, Pj+l”‘PM+l; kl”.khn.’ 

-8k’+1 = ze 2 f’iM;i’(q, { k$ ) 

{ni}=l ’ 

i=l...M 

x <kM+, + q, kM + “MCI.-k, + n,q IPM+“-P’> (A.10) 

The second equality follows from the inductive hypothesis coupled with the identity 

M+l M+l 

<qM+‘“*q’ 1 PM+,“+,> = c 2nQM+’ - Pj) fl ‘(qM+l -P,) 
j=l &j+l 

x <q M”‘q1 I PM+I”‘Pj+l? Pj-l***Pl’ , (A.11) 

which itself follows from the algebra of the R operators (1.6). Equation (A.9) can 

now be iterated yielding an infinite series for A 
(Ml . If we note that when 

multiplied by the inner product < kM+,+nM+lq...kl+nlql pM+l...pl > we have the 

relation 
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M 
S(kM+l + nq - pj) 11 S1(kM+, + nq - kQ) = -1 + o(q) 9 (A.121 

j=l !2=1 

then we find 

AcM)h; {pi} {ki}) = 2 f(y,$q, {ki}) <kM+l + nM+lq--ekl + nclq I P~+~...P~> , (A.131 

{nil=1 ’ 

with 

f(~;il = _ ($h+’ ,-“M+lBkh+’ f’y;;j + Ok’) 

M+l 
= (-l)M+’ n ($’ Pki + o(q) 

i=l 
(A.14) 

This completes the induction from M-l to hl. 
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