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ABSTRACT 

The operator Gel’fand-Levitan method for the quantized nonlinear Schrij- 

dinger equation is shown to reduce to a Jordan-Wigner transformation in the limit 

of infinite repulsion. This result is used to obtain a representation for the finite 

density correlation function at zero temperature. 
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The extension of the inverse scattering method to the domain of quantum 

field theory 1-5 has provided new insight into the structure of exactly integrable 

quantum systems. The most fully developed example of the quantum inverse 

method is the nonlinear Schrodinger model (6-function gas), where the quantum 

versions of both the direct and inverse scattering transforms have been con- 

structed. The direct transform employs an auxiliary linear eigenvalue problem to 

define quantized scattering data operators a(k) and b(k) as nonlinear functionals of 

the field operators c$(x) and 4*(x). The inverse transform is accomplished by an 

operator generalization of the Gel’fand-Levitan method, which gives the field 

operator $J(x) as a functional of R*(k) s b(k)a-l(k), the quantized reflection 

coefficient of the associated eigenvalue problem. In this paper we derive and 

discuss a remarkable simplification of the inverse transform for the nonlinear 

Schrodinger model in the strong coupling limit c + m (impenetrable bosons). In this 

limit the Gel’fand-Levitan expression for @(xl exponentiates, becoming a Jordan- 

Wigner transformation which gives the boson field e(x) as a functional of a free 

fermion field R(x): 

inlm R+(y)R(y)dy (1) 
X 

Here R(x) is the Fourier transform of the operator reflection coefficient R(k). It is 

perhaps not surprising that the Jordan-Wigner transformation plays a role in the 

case c = m in view of the equivalence of this case to an XY Heisenberg spin chain 

where this transformation is a standard technique. What we wish to emphasize 

here is that the Jordan-Wigner transformation (I) is obtained as a special case of 

the more general quantum inverse method. This result has some interesting 

implications. Relations of the form (1) between auxiliary fermion and boson fields 
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play an important role in the treatment of Green’s functions by deformation 

theory.6 So far these methods have only been applied to “free fermion” theories 

like the c = 0~ nonlinear Schrodinger model, the XY spin chain, and the two- 

dimensional Ising model. The observation that (I) is a special case of a general 

operator transformation constructed by the Gel’fand-Levitan method may provide 

new insight into the problem of constructing Green’s functions for general 

integrable systems. This result also suggests that there is a connection between 

integrability and self-duality. Although our present considerations are restricted to 

the c = - nonlinear Schrb’dinger model, we expect a similar relation between the 

quantum inverse method and the Jordan-Wigner transformation to arise in other 

models, in particular the two-dimensional Ising model. For this model the Jordan- 

Wigner transformation describes the relationship between order, disorder, and 

fermion variables and is closely related to the Kramers-Wannier duality between 

the low and high temperature phases of the system. A more general connection 

between quantum inverse transformations and duality transformations would be a 

welcome development, since the latter are known to be useful in a broad range of 

physically interesting models7 including four-dimensional gauge theories. 899 

The nonlinear Schrodinger model is described by the Hamiltonian 

H = ‘/I axa*ax+ + d*~*@$l dx , (2) 

where $I is a nonrelativistic boson field, 

[ $l(x), @“(xl) 1 = 6 (x - x’) (3) 
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The quantum inverse methodlm3 provides an operator transformation from the 

original field @(xl to an operator R(k) which creates eigenstates of the Hamiltonian. 

The R operator is given in terms of the asymptotic values of the Jost solutions to 

the Zakharov-Shabat linear eigenvalue problem, 

( i&+iE; Y, = -J-“Y2$ 
) 

i 
a I 

ix -25 1 
Y2 = vqJ*Y$ 

(4a) 

(4b) 

More precisely if $(x, 5) is the solution of (4) with the properties 

1 
( 1 

.i5 xi2 

0 ;,_, (;;y;) z-zz ( ::::;;;;2) 
(5) 

then RX is the quantum analog of the classical reflection coefficient, 

R*(C) = &b(S)a-‘(C) (6) 

The operator algebra satisfied by the R-operators is determined by the structure of 

the eigenval ue problem: 

I H, R*(S) 1 = C2R*(5) 

R*WR*(S9 = SK’, 5 )R*(s?R*K) f (8) 

R(c)R*(c’) = S(S ,< ~)R*(c?R(s) + 2*6(5 -5 ‘) , (9) 
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St<,<‘) = WC 
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(10) 

is the two-body S-matrix. From the commutation relation (7), we see that the 

state 

Ik 1, . . . . kn > = R*(k$...R*(k,) IO > (11) 

is an eigenstate of the Hamiltonian (2), 

Hlk ,, . . . . k,> = . (12) 

In Ref. [ 4 1, and also in [ 10 1, it was shown that the states (11) are identical with 

those previously obtained by Bethe’s ansatz. 

The Gel’fand-Levitan method provides the inverse transformation from the R- 

operators back to the Heisenberg field. This transformation is accomplished by 

means of an operator integral equation for the Jost solution x(x, 5) with the 

asymptotic behavior x(x, 5) * y e-isx’2 
0 

as x++o3. Using the fact that 

x,(x, 5) fl -fiCx)/C as 5 + m it was shown in [4 I that the Heisenberg field $(x) 

may be expressed as a series expansion in terms of R 

!$ (X) = J$!!+ R(k)eikx _ cjdp;:I;lk2 R*~)~~;~~%~~~~~~ + ,.. 

m GN)(x) 
N=O 

(13) 
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where the general term has the form 

N dpi N+l dk. R*(pN)...R*(p,)R(k,)...R(kN+l)ei(’kV8p’x 

?if jzl d N . (14) 

II (Pm - 
m=l 

km - ic)(pm - km+l - ic) 

Here we will investigate the series (13) in the limit of infinite repulsion c +m. 

In this limit we see from eqns. (8)~(10) that the operators R(k) become canonical 

fermion operators. At first sight it might seem that the presence of explicit 

positive powers of c in the series (13) would render it useless for studying the limit 

c+ m, but in fact we will see that the implicit c-dependence contained in the 

operators R(k) leads to a finite result. For the zero order term this is evident, 

since (0) - 4 (x) IS lust R(x), where 

R(x) = I gR(k)eikx 

Now consider the next term $(I). Symmetrizing over kl and k2, using the commu- 

tation relations (8)~(9) and partial fractioning, we obtain 

@(I)(x) = -c 
/ 

dpldkIdk2 R*(pI)R(kl)R(k2) 

(2d3 (pI - kl - ic)(pI - k2 -ic) 
{ I+S$,k2)] Jkl+k2-p,h 

dpldk,dk2 R*(pI)R(kl)R(k2) i(kI+k2-pl)x 

t2nj3 (kI - k2 + ic)(pI - kl - ic) e 

Now we see that the limit c + 03 is finite with 

(15) 

(16) 

dpldkIdk2 R*(pl)R(kl)R(k2) i(k,+k2-pl)x 

t2nJ3 (PI-kl-ic) e 
= n(xj-Cxj 

f (17) 
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where 

= -2 J-mii*(y)ii(y)dy (18) 
X 

The operators R in (17) and (18) are understood to be in the limit c+ m, i.e. they 

are canonical anti-commuting operators in both k- and x-space. Thus, the first two 

terms of the series give (1 + A(x))R(x). The central result of this note is that the 

series when summed to all orders exponentiates, so that 

$ (x) = NR { [ exp A(x) I R(x) } , 

where the symbol NR means normal ordering with respect to the fermion operators 

R. We now sketch a proof of this exponentiation by considering the general term 

4 (N) of the series in (14). Symmetrizing over the N variables pi and over the N + 1 

variables k., we obtain an expansion of the form 
1 

$AN)(x) = Nn dpi ‘il%fN(pi, kj;c) R*(pN)...R*(p,)R(k,)...R(kN+,)e i(Ck-C p)x 
i=l 2n 

. (20) ]=I 

It is easy to see that fN must vanish if any two p’s or k’s coincide and that fN may 

therefore be expressed in the form 

fN(pi, kj; c) = 
l~i~fl+l(ki-ki)l~j%~N(pi-P’g (p, k, c~ , (21) 

N N+l N I’ J; 
II 

i=l 
II (pi - kj) 

j=l 
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where gN is a dimensionless function which is given by a ratio of homogeneous 

multinomials in its arguments. (In our units c has the same dimension as pi and kj). 

By considering the action of $(x1 on the Bethels ansatz states (10) it is not hard to 

convince oneself that each of the f (p. k.; c) is finite and nonzero in the limit N I’ J 

c + m. Thus in this limit gN must become a numerical constant. Equation (20) may 

then be simplified to 

N 
fN(pi, kj; -1 = BN Antisym ifl I 

pi - ki - ic , (22) 
0 

where B N is a constant, simply related to gN, and the right-hand side is to be 

antisymmetrized over pl, .,., pN and over kl, . . . . kN+l. Given (221, the constant 

BN may be determined by considering the case pi = ki + 6, i = 1,2,...,N, and picking 

out the leading 1/15~ contributions on each side. Even for c finite, the task of 

calculating f,(p, k; c) is greatly simplified by this device, since only (N + I)! of the 

possible N!(N + l)! permutations contribute to order 1/6N. By this procedure we 

obtain 

(-ON cN N 
‘Ncpy k; ‘) z N!(N 6N if, 

1 + S(ki, kN+,) 

ki - kN+l 
(231 

We see that the limit c + m is indeed finite with 

1 (Qiy 
fN(Pp k;m) 6yo Nm &N (24) 

Comparing this with the leading behavior of the right-hand side of (22) determines 

BN to be (2BN/N!. Substituting (22) into (201, replacing the it’s, and recalling that 

the R’s anticommute, we find 
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+(N)(x) _ WNI N dp. N+I dk. R*(pN)...R*(p,)R(k,)...R(kN+$ 

N! n+.n-g 
e’(C k-Z p)x 

i=l J=l (p, - kl - ic)...(pN - kN - ic) 

= NR { [ A(x) lNii(x)/N! } (25) 

thus establishing the exponential form (19) for the full series. Since R(x) is a 

canonical field, we may convert the normal ordered exponential to an unordered 

exponential to obtain the Jordan-Wigner transformation eq. (1). 

As an application of this result, eq. (1) or eq. (29, we will now relate the two 

point correlation function for the finite density impenetrable Bose gas to the 

solution of a certain integral equation. This result was first obtained by Schultz” 

who exploited the correspondence between this model and the XY Heisenberg spin 

chain. A determinantal representation of all the 2n-point correlation functions was 

later provided by Lenard.” The quantity of interest is the two-point function at 

fixed time, 

P(X - Y) E <52 I$ *(x)+(y) 1 i-i> 

where Ifi> denotes the physical ground state at zero temperature and finite 

density. Recently this problem has been studied in more detail by Vaidya and 

Tracy,13 who obtained both large and short distance expansions of the function 

p(x), and by Jimbo, Miwa, Mcri and Sato6 who showed how P(X) may be simply 

expressed in terms of the solution to a certain non-linear ordinary differential 

equation. At c = =, the ground state is a uniform distribution of filled states up to 

some limiting momentum kF, with the property 

(26) 
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R(k)In> = 0 for Ikl>kF , 

R*(k) Ifi> = 0 for Ik 1 < kF . 

To evaluate the two-point correlation function ,o(x - y), we use (I) to write 

(27) 

= NR [ RX(x)exp { -2 [~*(&(z)dZ 1 R(y)] . (28) 

Using the properties of the vacuum, eq. (27), we see that 

< Rl(x)R(y) >n = 
sin [ kF(x - y) ] 

ldx - y) 

E )4K(x, y) (29) 

Expanding the exponential in (28) and using (29), we find 

K(x, y) - i dz I K(x, y) K(x, 2) 

I<(z, y) K(z, 2) 

+ $, Idzdz’ 

= + D(x, y; X = 

K(x, y) K(x, 2) K(x, Z’) 

K(z, y) K(z, z) K(G 2’) 

K(z’, y) K(z’, 2) K(z’, 2) 

1) 

+ . . . 

(30) 
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where I A I denotes the determinant of the matrix A. Here D(x, y; A) is the first 

Fredholm minor associated with the linear integral equation 

K(x, y) = f(x, y) - l ‘K(x, z)f(& yjdz (31) 
Y 

The result (30) is particularly well-suited for computing successive terms in a short 

distance expansion of the correlation function and is found to reproduce in this 

region the results of Vaidya and Tracy and Jimbo, Miwa, Mori and Sato. 
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