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The existence of an SU(2) x U(1) classificationl for two com-
pletely different types of particles which seem to belong together
in common multiplets motivaces a search for a higher symmetry to
unify the two and be the non-Abelian gauge theory of the world.2
Today SU(5) and higher groups containing SU(5) are the main candi-
dates.

But not so long ago there was another SU(2) xU(1) classifica-
tion for two completely different types of particles, strange and
nonstrange, which seemed to belong together in common multiplets.
This SU(2) xU(1) of isospin and strangeness motivated a search for
a higher symmetry to unify the two. The SU(3) gauge theory calied
the eightfold way brought strange and nonstrange particles into
unified multiplets and was believed to be the non-Abelian gauge
theory of the world. Today the unification of strange and nonstrange

particles into flavor SU(3) remains, but it is no longer a candidate
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for a gauge theory. The o5, w and K* are no longer an octet of
gauge bosons and flavor SU(3) has been revealed to be an accidental
symmetry based upon our incomplete knowledge of the number of
tlavors,

Will history repeat itself with quark-~lepton unification and
SC(5)? To prepare for such a repetition of history we examine
quark-lepton unification without assuming higher symmetries or
more general gauge theories. In particular we look for properties
generally attributed to SU(53) models which are already present
without the assumption of SU(S).

Conservation of baryon number seems to be viclated in any
model which introduces bosons that transform a quark into a
lepton or vice versa. Yet a proton can absorb a pion or a kaon
and be transfermed into a neutrom or a hyperon without causing
global non-conmservation of electric charge or strangeness in
strong interactions. Thus the mere existence of bosons which can
change a fermion quantum number is not sufficient for violation
of a conservation law. There must be some additional reason why
the new lepto-quark bosons imtroduced in unified modelsl’2 do not
carry baryon number to give a global conservation law in the same
way that pions and kaeons carry and conserve charge and strangeness.
A mysterious conservation of B-L appears in these models3’4
that violate baryon number conservation. This has the consequence
that protons decay inte antileptons, rather than into leptons;

i.e. into positrons and positive muons, rather than electrons or
negative muons. Many of these models are based on a higher syvmmerry
group which contains SU(S).

Te understand the origin of the baryon-number nonconservation,
the tendency to conserve B-L, and the SU(S)-like properties which
arise in these models, we search for model-independent constraints
on the S-matrix which are alreadv present in view of known symme=-
tries. The approach is one which I learned from Prof. Giulio Racah--

brute force. Those who are familiar with Racah's elegant papers but



did not know him personally do not realize that he often found

his elegant general results by [irst grinding through a large
number of calculations of individual cases. He would carefully
note any systematics in his numerical results, use these to conjec-
ture general principles, and then prove the theorems. We follow
this appreoach and begin by looking at the quantum numbers cof the
observed particles for any regularities which explain the peculiar
conservation laws and viclations. At this stage it is pure numetr-
ology. But when systematics are found, it becomes more than
numerology.

The brute force problem which we pose is to examine the most
general § matrix for the thirty quarks and leptons in the first
generation, commonly classified in the 3, 3%, 10 and 10* repre-
sentations ¢f SU(3), under the assumptions only of conservation of
electric charge and weak isospin. We might consider writing a
computer program to print out all allowed S-~matrix transitions,
classifying them according to whether they conserve or violate
B or BE-«L. However, by playing around with our numerology, we
find a quicker way to do this without a computer. All the desired
selection rules and conservation laws are easily demonstrated with
the aid of the following unorthodox linear combinations of well

3
known quantum numbers”™’

<= 3(B~L) ~H {(la)
3(Q~1,)
_3@B-L)-H _ 3 _x_3 al
P = ? < 7% «@ 13) (1b)
= _B.M - - = - _2. -
3 = % Q-1 =2 5 (Q LB) {lc)

where B is the baryon number, L the lepton number, H the
helicity, defined as +1 and -1 respectively for right and
left nanded states, § the electric charge and 13 the third
compenent of the weak isospin. These guantum numbers are defined
to be additive for a multifermion state.

The motivation for introducing these quantum numbers (1) is seen



in the simple structure of their eignevalues for the fifteen quark
and lepton states of the first generation and their fifteen anti-
particles listed in Table I. The pentality quantum number P has
the following remarkable properties:

1. Although it is a linear combination of two terms with
quarter-integral and tenth-integral values, the values of P
for the first generation fermions are ¢nly {ifth~integral.

2. The total pentality of a multifermion state cannot change
by a fifth-integral amount in any transiticn which conserves Q
and 13. Thus the pentality is an additive quantum number with
fifth-integral eigenvalues which is allowed to change only by

integral amounts in any transition which conserves Q and I

This gives the pentality selection rule ’

P =483=290,1, 2 ....... (2a)
This immediately implies that

8« = 4n , (2b)

where n 1is an integer. Siq;e §H and &(B-L) are both even
integers, the selection ruler(Zb) requires that &H/2 and &(B-L)/2
must either be both even integers or both odd integers. Thus
transitions with odd and even helicity flips have different selection
rules for B-L.

For odd-helicity-flip transitions,
SH = 2(2n+l) = §(B=-L) = 2(2n'+1) (2c)

where n and n' are integers. Thus B-L cannot be conserved

in odd helicityv flip transitiomns. TFor helicity conserving and even

flip transitions
8H = 4n = 6(B-1) = 4n' (243

where n and n' are integers. In four peint functions &H=0,
2 or 4 and S(B-L)=0 or 2, since &§(B-L)=4 can be achieved
only in 2 transition between two leptons and twe antileptons which

cannot conserve { and 13. Thus B~L 1is comserved in all
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helicitv—conserving and double-~flip four point functioms which

conserve ( and I}; This includes all simple boson exchange

diagrams without derivative couplings, since these have either flip

or nonflip couplings, and must have the same at both vertices. A
single-flip transition JH=2 arises only in the exchange of an
object which flips helicity at one vertex and not at the other.

The "gquasibaryon number” 8 {(lc) is conserved in all processes
which conserve Q, 13, H and B-L and in particular in all four
point functions with no helicity chanmge, e.g. vector boson exchange,
which conserve electric charge and weak isospin. However, B is
seen from Table I to be exactly equal to the baryon number for all
quark and lepton states5 except the right-handed up quark up and
its conjugate lefr-handed EL' For any system of quarks and leptons

3 = B-n(uR)m(GL) (3)

where u denctes any quark with electric charge +2/3. This
result (3) holds for any number of standard gemerations of quarks
and leptons having massless left-handed neucrinos and ne right-
handed neutrinos. -

For all processes where g 1s conserved, which includes all
vector boson exchanges, B is conserved as long as n(uR)-n(GL)
does not change. This includes the srandard SU(2) xU(1) model of

weak interactions where the u couples only to neutral currents

R
which cannot change flaver. However, B must be violated by any
helicity conserving boscn exchange with a non-trivial coupling
to  up which changes it inte something else which is not a U
and with an additional coupling te any other particle. Four-point
functions existc in which this boson is exchanged between a up
and another object and the up is changed tc somerhing else and
not restored ar the other vertex. Then n(uR)-n(GL) changes and
B must be violated if 2 1s conserved.

Thus conservation of weak isospin is inconsistent with con-

servation of baryon number in processes mediated by a gauge boson



which couples to the up quark in a non-trivial manner and allows
a uR quark to decay into something else. Baryen number, weak
isospin and electric charge cannot all be conserved in any process

having the form

up X+G > X+Y+Z

where G 1is a gauge boscn, and X, Y and Z can be any quark

or lepton state except a Up- Any charge-conserving process which

allows a u to decay into three fermions via an intermediate

R
vector boson state must viclate either weak isospin or baryon
number.

Almost any model which introduces new particles must admit
§H=0 four-point functicns in which the only external particles
are first generation quarks and leptons. Including other genera-
tions with identical values of these YJuantum numbers does not
change these conclusions. Unless these new processes treat u

R

and GL in the same trivial way as the standard model of SU(2) x

U(l), they must necessarily violate baryon number conservaticn.

This is the basic reason why baryon number nonconservation must

arise in any such unificacion models. It is already required

by consistency with charge and weak isospin conservation and the
observed quantum numbers of the first generation of guarks and
leptons. No further gauge theory is needed. This also explains
why attempts to gauge baryon number would encounter inconsistencies.
These results show that in any gauge theory based on a group
which includes SU(3) x 8U(2) xU{(1l), baryon number can be conserved
in gauge boson exchange only under one of the two following
conditions:
1. The up and GL states are classified in singlet repre-
sentations of the gauge group. In that case they can only couple
to U{(l) generators and n(uR)-n(GL), g and B are all conserved.
This occurs in the standard model of weak interactions.

2. Any gauge boson which couples non-trivially ro up and



changes it into scmething else has only this coupling and the ana-
logous coupling in other generations. In this case n(uR)-—n(GL)
defines a conserved "flavor symmetry" quantum number and is conserved
like strangeness in strong interactions. Since gauge bosons are
always classified in the adjoint representation of some group G,

a boson which can change a up into another particle will have no
other coupling only if the Uy is classified in the fundamental
representation of G and the remaining particles in the first
generation are elther singlets in G or in the same fundamental
representation as wu,. In this way an exchanged gauge boson which

R
couples nountrivially to u couples at the two vertices with

conjugate step aperators ii the fundamental representation of G
and conserves n(uR)-n(GL). The gauge symmetry group may either
be G itself or the direct product of G and ancther group. One
example is SU(n)R in which n of the right handed fermions are
classified in the fundamental representation of SU(n) and all the
remaining particles are singlets. The case n=2 which corresponds
to a vright-handed isospin acting only on quarks would satisfy this
condition. The right-handed electron would be a singlet in this
SC(n).

Ncte that these conditions follow from the properties of the
four-point function in which only the observed particles appear
as external particles. This 1is easily extended to the case where
other particles exist; e.g. a right-handed neutrino, by restricting
our attention only to those four-point functions where these addi-
tional particles do not appear as external particles. The couplings
of gauge bosons to these additional particles play no rele in the
four-point functions under consideration and can be disregarded.
Thus, for example, the case of a right-handed isospin discussed
above could include a classification of the righc-handed electron
and neutrine in a doubletr if right-handed neutrinos exist, since

the transitions between eR and vR do not occur in the four-

point functions considered, and the eg behaves like a singlet in



the space of these four-pecint functions.

The unification schemes proposed do not generally fit either
of these two conditions and are thus forced to vielate baryon
number congervation in four-point functions mediated by gauge
boson exchange. However, extensions of SU(3) x SU(2) x U(l) involving
the direct product of this group with groups generated by right-
handed currents can conserve baryon number.

We now classify all three types of helicity amplitudes
occurring in four point functiens.

A. Helicity conserving processes: &SH=0, 8P =ék =48 =48(B~L) =0.

The processes allowed by the penality rule (2a) have the form
(Pl,Pz} T (FLP) (4a)
where Pi denotes any state having the eigenvalue P==Pi, together

with all other processes obtained from (4a) by crossing.

B. Double-flip processes: &H=1t4=-6k, P =zl =38R, 8(B-L) =0.

The only processes allowed by the pentality selection rule {2a)

have the form
(2/5,2/5) - (=2/5,1/5) (4b)

together with all other processes obtained from (3b) by crossing.

C. Single-flip processes: fH =t2. The only processes allowed by

the pentality selection rule (2a) have &P =11 =388, 5(B-L) = %2 and

the form
(1/5,1/5) » (-1/5,-2/5) (&4c)

together with all other processes obtained from (3c¢) by crossing.
All these results obtained from the pentality selection rule
which assumed only conservation of @ and 13 can now be seen to
be also SU(5) results. The eigenvalues of P are seen in Table I
te label representations of SU(5). All the states in a given
representation of SU(5) have the same eigenvalue of P. Thus P
turns cut to be an 3U(S) invariant, although P is defined in terms

of B and L which are completely outside of SU(5) and there is
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no group-theoretical reason connecting P with SU(5). The "pental-
ity" quantum number P 1is seen to have the property analogous to
triality for SU{3); it has the eigenvalues #{1/53) for the fundamental
representations 5 and 3% of SU(3)} and the eigenvalues +{2/5)
for the 10 and 10* representations which are built from two
fundamental representations. Note that the fifth~integral quantum
numbers arise naturally in this description, without invoking any
S8U(5), and that the selection rule (2a) that the fifth-integral
pentality number P can only change by an integral amount is
also derived without SU(5).

The relations (3) are just the four point couplings allowed

by SU(5). The ¢&H=0 transitions (4a) have the form
mxXn -+~ mxn (3a)

where m and n denote any representation of SU(5} among the
5, 3%, 10 and 10*, The &H=12%4 and =2 transitions (4b) and (4}

correspond respectively to the SU(5) couplings
1C0x 10 + 10*x 3 (3b)
5% 5 S5%x10% ' (5¢)

Cur approach here is to note these connections with SU(S)
as a guide to our formulation, but te keep everything completely
independent of any symmetry assumptions beyond global SU(2) xU(1).
Thus all the results obtained for four-point functions involving
quarks and leptons hold in any generalization of the standard model
which keeps charge and weak isospin conservation regardless cf how
many additional Higgses, Schmiggses or Technicrats are introduced.
The SU(5)=like results must therefore be present in any such formu-
lation regardless of whether or not these symmetries are explicirly
assumed.

We now examine the three types of nelicity amplitudes given in
Eqs.(4) in more detail.

A. Helicityv conserving SH=0 transitions.

These can be characterized by the selection rules dH=3P =i« =
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8 =3(B~L) =0. They conserve B-L and £, and therefore conserve
baryon number if n(uR)-n(GL) does not change, but must violate

baryon number conservation if it dees change. These processes are

the only ones of the three types that can be mediated by a Tukawa
coupling via a helicity conserving vector boson or by any boson

classified in the adjoint representation of 5U(5). Note that the
adjoint representation contains bosons which change n(uR}-n(aL}.

B. Double flip dH=+4 transitions.

These can be characterized by the selection rules d&H = x4 =-dk;
P =31=48; &§(B-L) =0. They conserve B-L but have d&8=731, They
violate baryon number conservation unless n(uR)-—n(GL) changes by
ene unit in the proper direction to match the change in 3. These
processes have the form (5b) in SU(5). They cannot be mediated by
exchange of a boscon classified in the adjoint representation of
SU(5) but could be mediated by exchange of a particle such as a
scalar Higgs which f1lips helicity and is classified ina 5 or 5%
representation. Equation (5b} shows that in an SU(5) description,
such a four point function can only go via intermediate states in
the 35, 5%, 43 or 45*% representations.

C. Single-flip dH=+2 transitions.

These can be characterized by the selection rules d<H=+2=
3(B~L); 3P =#l=488, ok =%4, They violate everything, including
B~L and B. However, they corresponding to the SU{5) couplings
{(6c) and can only arise in an SU(5) formalism via an intermediate
boson classified in the 10 or 10* representations with derivative
couplings. Thus as long as no Higgses or other particles classified
in the 10 or 10% are introduced with derivative couplings to
quarks or leptons, these processes do not occur and B-L is conserved.
We now list explicitly all processes which violate baryon con-
servation and examine the implications for proten decay.

A. *H=0 transitions (%4a).

These are the only ones which can go via vector exchange. The

quasi-baryon number 3 is conserved, and &B#0 requires the
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disappearance of a un quark or its equivalent under crossing.

Thus the most general 4&B#0, dH=0 process has the form:

uR+X+Y(P=-2/5)+X’ (6)

where fermions X and X' must have the same eigenvalues of P.

The only candidates for Y are the companions of u in the

R
=-2/5 multiplet (the 10% of SU(s)) which are the e;{, G, and
d,. The e_ is immediately excluded, because the transition

u:-o- e; cha:ges electric charge by 6Q=-5/3, and can only be
balanced by the reciprocal transitions e +y which restores
barvon comnservation. The transiticns uR~+ GR and uR—» ER both
involve a change in quasi-barvon number &2 =+1/3, and are related
to one another by a weak isospin reflection. They must be balanced
by a transition X(quark)+X'(lepton) to ccuserve £. The only
quark-lepton transitions which can balance the §Q0=-4/3 of the
UR*GR transicion are the d+e+ transitions.

The allowed baryon-number vioclating processes with &H=0

are therefore

- +
+ - + -
upg Fdp T g tep (7a)
+d 3 o+el (7b)
BT T R T
together with their weak isospin reflections,
+ d +3
Up TR T VR (7¢)
- +
u.tu +d_+e. . (74d)

R L R L

This immediately gives the result that the leptcon emitted in nucleon
decay must be either positive ¢r an antineutrino, but cannot be
negative, nor & left handed neutrinc.

The pairs of transitions (7a-7c} and (7b-7d) related by isospin
reflection are required to be equal. However, there is no relation
between the twec pairs at this level, as thev involve different

SU(2) xC(1) mulriplets. In SU(S) these pairs are related only at



the level of a gauge theory by the universal couplings of gauge
bosons. At the global SU(5) level with independent Yukawa couplings
for different SU(5) multiplets the two pairs involve the couplings
of the 10 and 5 of SU(5) respectively to the besons classified
in the 24. These couplings are independent if there is no higher
symmetry like SO0(10) or gauge condition which relates them.

However, isospin relations alcome are sufficient te predice
that the positron decay modes are stronger than the neutrino decay
modes, since the neutrino decay (7¢) is equal to one of the three
positron decay modes (7a) by isospin, and there are two additional
positron decays (7b) and (7d).

These results can be expressed as nucleon decays by adding a
spectator u or d quark to the equation to give a nucleon on
the left hand side and a pion on the right hand side. From (7a)
and (7b) we obtain -

p-+e++n° (8a)

n-e (8b)
From (7c) we obtain

Do+ T (8c)

n v, +r’ (8d)

From (7d) we obtain (8a) again.
B. Double~flip SH=4 processes {(3b).

These are most conveniently listed in the creossed representation
with three P=2/5 particles going into opne with P=1/5 and
looking at each allowed value of the total electric charge. The

complete set of &dH=4 processes are

+ - + .
Q =+1 eL+uL+uL - eR 8B = 3L =0 (9a)

'+uL-+dL - e 6B = 4L = ~1 {9b)

w +

YL

+ o vt 2 =
Q=20 eL+-dL4-uL - vR B = 4L =0 (9¢}

13
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-+ 9 = 2z -
uL-+dL dL - vy §B §L 1 (9d)
1 -
= = + + - = =
Q 3 dL u a dR 6B sL 0 (9e)
+‘*- + U d B = ¢8L = +1 9f
eL uL uL - R 8B = oL = (95)

These always conserve B-L, but have ¢f =-1 and viclate baryon

number conservation unless they involve a single Up or uL in

which case the baryon number always turns out to be conserved.
For each charge there is one dB=0 and one 4$B=&L=13%1 process.

; + =
Here als¢ nucleons decay only into e and v,

C. Single-flip éH = £2 processes (3c).

These are also conveniently listed by electric charge in the

crossed representation with three P=1/5 particles going into

one with ==2/3.

Q=1 dgtd +d >er 6B = -l,6L =+l (10a)
2 - - — j— hl

Q=-% dte +U U 6B = -1,8L = 4l (10b)
1 + -

Q= +3 eptiprdy -3 83 - -lel- s (10¢)

+2 Tt 44 s 8B = 0,5L = +2 (10d)
Q 3 °|gR7TRTYR T MR ’

These all have @&(B-L)=-2 and &8=-1. All violate lepton
conservation. Processes (10d) which conserve barvon number have
§L=12. The others all have §§B=dL=-1 and give nucleon decays
inte e and V.

We thus have demonstrated the following SU(3) like properties
of four-point functions without explicit assumptions of SU(5).

1. All selection rules obtained from full SU(5) symmetrv
are already required by conservation of electric charge and weak
isospin.

2. The four point functions are naturally classified into
three types with different helicity structures, namely helicicy
conserving, double flip and single flip. This classification is

in one-to-one correspondence with SU(5) classifications.



3. The vieclation of the conservation laws of B and B-L
can be stated very generally and simply:

A. All helicity conserving and double flip amplitudes
conserve B-L and allow nuclecn decavs only to antileptons. All
single-heliciey-flip amplitudes have &(B-L) =2 and allow nucleon
decays only to leptons.

B. Baryon number conservation is violated in helicity con-

serving amplitudes only in those amplitudes which can be transformed

by crossing to the decay of a right-handed up quark up into two
antiquarks and an antilepton. All other helicity conserving
amplitudes conserve B. Thus B 1is conserved in the standard
model of weak interactions where the ug couples only via neutral
currents and cannot change into another state.

C. The role of the ug is reversed in double-flip transi-
cions. All double-flip transitioms which involve the creation or

annihilation of a single u or u, conserve baryon number. All

double-flip transitions which do not involve u, o°or u. or which
create or annihilate a pair of them violate baryon number conserva-
tien.

4. The three types of four-point functicns have simple inter-
pretations in terms of the SU(5) and Lorentz quantum numbers of
exchanged bosons wnich could give rise to these couplings if they
are coupled to the fermions with Yukawa couplings.

Some af these vesults have been previously aobtained using
specific models3 or symmetries,4 particularly results on the con-
servation of B-L. OQur results are more general, being model
independent and assuming no higher symmetries. We also peint out
for the first time the close connection between the helicity
seructure of the amplitude and conservation of B and B-L.

All these results were rigorously obtained without aanv SU(3)
symmetTy assumptions. Yet one may be suspicious of hidden connec-
ticns because the particular linear combinations (1) chosen ad hoc

turned out tec have SU(5) properties. We therefore investigate the



properties of such linear combinations in more deta:l and look for
possible implicit connections between them and higher symmetries.

In any scheme which unifies quarks and leptons and places
them into common multiplets, quantum numbers are needed like
generalizations of hypercharge which have the same eigenvalues
for a large number of states including both quarks and leptons.

The quantum number P has only two pairs of equal and opposite
eigenvalues £1/5 and #2/5 for all sets of 30 states in the first
three generations. We now examine all possible combinations of
the quantum numbers labeling quantities comserved in SU(2) xU(l)
to lock for other linear combinations satisfying the requirement
that only two pairs of equal and opposite eigenvalues should
appear.

Since baryon number and electric charge are both third-integral
for quarks and integral for leptons, a linear combination of these
two must be found which is not third-integral in order to have a
common eigenvalue for quarks and leptons. The combination Q-—I3
is used to give the same eigenvalue for both members of an isospin
doublet. The most general linear combination B*—x(Q-—I3) has
the eigenvalues (1/3) - (1/6)x for the lefr handed quark doublet
and (1/3) - (2/3)x and (1/3) +(1l/3)x for the right handed u
and d quarks respectively. With three independen= elgenvalues
for the quarks alone, without considering antiquarks and leptons,
these can satisfy our requirement of two pairs of eigenvalues only
if two of the three eigenvalues are equal and oppesite. This
oceurs only for three values of x; namely x=4/5, 2 and =-4.

With these values we define

Us (8L - 2(Q-Ty) = (4P +H)/3 (1la)
u = (B-L) —-2(Q-13) = -213R (11b)
o = (B-L) +4(Q—13) = 3% (11lc)

where the additional term -L has been added to keep the same

16
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elgenvalues for quarks and leptons. The quantum number 1 15 seen
to be simply related to the pentality P. The quantum number 1

is seen to be identical with the right handed isospin recently
introduced by Marshak and Mohapatra.7 The number v 1is seen

te be 35X where ¥ is the eigenvaiue of 1 for the isospin
mirror state, u<«d and e<s»v.

This condition already suggests one of the genmeral features
found in unfiication schemes, the classification of quarks and
anciquarks in the same multiplet. The condition that twe quark
states have equal and opposite eigenvalues of an additive gquantum
number which is coustant in a multiplet gives quarks and antiguarks
the same eigenvalue of this gquantum number.

Values of 3, y and + are also given in Table I. Butr
which is related to the pentality P 1is the only one with fractional
eigenvalues. Thus the fifth-~integral eigenvalues are a natural
result of the SU{2) xU(l} classification of quarks and leptons
and the condition restricting the eigenvalues to only two pairs.
The normalization of the operators (1l1) is chosen to keep the
coefficient of B~L equal to unity. Thus all three are conserved
if B-L is conserved and conserved medulo 2 if B-L is not con-
sexved. The fractfonal eigenvalues makes conservation modulo 2
a much more gericus constraint for A than for u and w.

The mystericus relation between the f{ifth-integral eigen-
values of the operateor % and SU(5) is clarified by noting that
these eigenvalues have a simple interpretation in the 30(10) classi-
fication when the right handed neutrino is included which has an
eigenvalue of -1. They are just the eigenvalues of the U(l) gener-
acora which appears in the SU(5) xU{l} subgroup of 3S0(10) in the
spinorial representation normally used to classify the gquarks and
lepteons. If the operator » is identified with this U(l) genera-
ror in S0(10), the classification and all the gquantum numbers in
Table I are evident. However, B and L are not defined in the

usual SO(10) description, and the physical meaning of this U(1l)
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generator is not obvious. There may be a deep underlving signifi-
cance to the fact that the eigenvalues of +» are the szme as those
of the U(l) generator for the 16 dimensional spinorial representation
in which the quarks and leptons are classified. This does not
necessarily require that the operator as defined bv Egq.(1la) should
also be equivalent to this U{(l) generator for ocher representations
in which Higgs or technicolor particles might be classified.

We thus see an underlying SU(5)-like structure in the quantum
numbers of the existing particles. This seems to g0 beyond the
well known result that they just "happen to fit" into two complete
irreducible representations of SU(5) and their conjugates. There
are also SU(5)~1ike properties of the four-point S-matrix as well.
The tantalizing question still remains whether these properties
indicate a basic underlying symmetry or merely an accidental sym-
metry like flaver SU(3).

The first indication that all was not well with the flavor
SU(3) gauge theory was w-¢ mixing. Two inequivalent representa-
tions of SU(3) were degenerate for reasons completely outside
S5U(3) and mixed badlyv to give states far from SU(3) eigenstates.
This should not happen in the gauge theory of the world. Such
mixing can test any higher symmetry, but cannot vet test SU(5)
because there are no pairs of particles like <« and ¢ classified
in inequivalent representations of the symmetrv group and allowed
to mix by the existing conservation laws. For SU(S5) two inequi-~
valent representations are needed with the same pentality. The
The observed quarks and leptons are classified in the 3, 5%, 10
and 10* representations of SU(5) which all have different values
of pentality and whose states cannct mix without viclating che
conservation laws for the known additive quantum numbers of electric
charge, weak isospin and coler.

The absence of a pair oI states like o=+ which can mix makes
unambiguous tests of SU(3) very difficult and explains why so manv

SU(5)-1like results are obtainable without SU(5). Since SU(5) is
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of rank 4, the same as SU(3) xSU(2) xU(l), all the additive con-
served quantum numbers in SU{35) are already in SU(3) xSU(2) xG(l).
Thus imposing SU(5) invariance can give no mew selection rules
based on additive quantum numbers. Since pentality is determined
by the eigenvalues of the additive gquantum numbers, the pentality
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selection implied by SU(3) x SU(2) xU{l).
selection rules based on the non-Abelian quantum numbers of SU(5)

are possible only when representations other than 5, 5%, 10 and

10* are present, so that couplings exist which are forbidden by

SU(5) but allowed by pentality, and mixing can occur. As long as

no other representations of SU(5) are present, the only kinds of
SU(5) predictions which are not already present without S5U{5}

are relations between processes like (7a) and (7b) which depend

upon SU(5) Clebsches. These are not easily tested.

These results are easily extended to treat any n-point functiom.
4 detailed analysis is given in Ref.S5.

We now attempt to understand these results more clearly by
looking for an even simpler derivation. The necessity for B
violation and the mysterious conservation of B-L has been explained
by a combination of SU(2) xU(l) selection rules, the classification
of the known particles and the limitations of four point functions.
We simplify this argument further and show that the selection rules
{2¢) and {(24) which led to the results for B-L conservation and
B violation follow from the simple selection rule that the total
number of particles with half-integral weak iscspin can only change
by an even number in & transition which conserves weak isospf_n‘6

This selection rule can be written
(N, +N. )} = 2n (12a)
( i 53
where N;5 and ﬁ% are the total number of particles and of anti-

particles respectively with isospin X. Since 21711’.5 is manifestly

an even integer, the selectiocn rule (12z) is equivalent to

5(N%—N;é) = 2n . {12b)
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In the standard models for quarks and leptons, all left-handed
particles and right-handed antiparticles have weak isospin % and
all right-nanded particles and left-handed antiparticles have weak
isospin zero. Thus the selection rule (12b) can be rewritten in

N N and N of right-handed and

R L' R L
left-handed particles and antiparticles.

terms of the numbers N

-N.) = 2n . (13)

If the only relevant particles are quarks with B=1/3,
L=0 and leptons with B=0, L=1,

NL-NR= (3B+L~H)/2 (14)

where H is defined to be +1 for a right-handed particle and -1
for left-handed.
Substituting Eq.{l4} into Eq.(13) gives

S{3B+L-H)/2 = 2n . {15a)

Since 28B and -8H are both even numbers, they can be

subtracted from the selection rule (15a) to give

§(B=L~H) = 4n = éx ~ 28 (B-L) (15b)
This selection rule can alsc be states as the conservation of
BL—parity6 defined by

(o1) (B-L-E)/2

. {1l5c)

BL

Since &(B-L) is an even integer, the selection rules {15b) and
(2b) are equivalent. Thus all results obrained from (2b) follow
from the simple assumption (12a).

The conservation of B-L and nonconservation of B are seen
to result from the weak isospin selection rule (12a) and the standard
weak isospin classification of quarks and leptons. These results
hold in any mcdel for four-point functions mediated by gauge bosons
if weak isospin is conserved. For other n-point functions the

selection rules (Ic) and (2d) or the eguivalent conservarien of
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Tp ©°T the selection rule (15b) held in all tramsitions which
conserve weak isospin. For example, the six-point function needed
to change a neutron Lnte an antineucron for neutron OSQillations?
has §(B~L) =2 and must have an odd number of helicity flips to
conserve weak isospin. This transition is therefore forbidden if
there are only vecter boson exchanges which conserve H. In models
with vector bosons and Higgs scalars, the six-point function des-
cribing a-~>n must have an odd number of Higgs-fermion vertices;
i.e. there must be at least one Higgs exchange between a fermion
and a boson.

The results are easily generalized if new kinds of particles
are introduced which have half-integral isospin. Egs.(13) and
(14) can be extended to include these new particles to give new
selection rules for processes in which these particles ars created
or absorbed but weak isospin is still Conserved.

New bosons such as gauge wvector or Higgs bosons can also be
included by giving them the 3, L and H quantum numbers defined
by any fermion pair state to which they are coupled. If B, L
and H are anot conserved, these quantum numbers may not be unique
and can depend upon which fermion pair state is chosen. However,
the value of and the selection rule (153) will be independent

BL
of the particular classification if Q and I are conserved in

3
all couplings of these bosons.

The selection rule (15b) will be violated if either the con-
servation of weak isospin or the conventional classificarion breaks
down. This can occur, for example, if:

1. Dynamical mechanisms are introduced which violate weak
isospin conservation. Mass terms which couple left and right-
handed states are an example of such mechanisms. However, these
must occur non-trivially within the n-point funection, not only
as corrections to give finite masses to external particles. Further-~
more, the weak isospin breaking must give rise to transitions with
¢I=1/2 1in order to violate the selection rule (12) and its con-

sequence (13b). Breaking described by integral &I does not affect



these conclusions; e.g. giving unequal masses to the W and 2
bosons. Xass terms are generally small in these models, since
particle masses are small on the scale of the grand unification
mass.

2. Yew exotic external particles are introduced with the
opposite correlation between helicity and weak isospin; e.g. a
left-handed quark or lepton which is a weak isospin singlet.
However, the above derivation breaks down only for transitions
where such particles appear explicitly as external particles, not

in loops wnich conserve weak isospin.
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