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The existence of an SU(Z)xLI(l) classification1 for two com- 

pletely different types of particles which seem to belong together 

in common multiplets motivates a search for a higher symmetry to 

unify thi two and be the non-Abelian gauge theory of the World. 2 

Today SU(5) and higher groups containing SU(5) are the main candi- 

dates. 

But not so long ago there was another SU(?) xU(1) slassifica- 

tion for two completely different types of particles, strange and 

nonstrange, which seemed to belong together in common multiplets. 

This SU(2) xU(1) of isospin and strangeness motivated a search for 

a higher symmetry to unify the two. The SU(3) gauge theory called 

the eightfold way brought strange and nonstrange particles into 

unified multiplets and was believed to be the non-Abelian gauge 

theory of the world. Today the unification of strange and nonstrange 

particles into flavor SU(3) remains. but it is no longer 2 candidate 
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for a gauge theory. The P, ul and K* are no longer an octet of 

gauge bosons and flavor SV(3) has been revealed to be an accidental 

symmetry based upon our incomplete knowledge of the number of 

flavors. 

Will history repeat itself with quark-lepton unification and 

SU(5)? To prepare for such a repetition of history we examine 

quark-lepton unification without assuming higher symmetries or 

more general gauge theories. In particular we look for properties 

generally attributed to SLJ(5) models which are already present 

without the assumption of SIJ(5). 

Conservation of baryon number seems to be violated in any 

model which introduces bosons that transform a quark into a 

lepton or vice versa. Yet a proton can absorb a pion or a kaon 

and be transformed into a neutron or a hyperon without causing 

global non-conservation of electric charge or strangeness in 

strong interactions. Thus the mere existence of bosons which can 

change a fennion quantum number is not sufficient for violation 

of a conservation law. There must be some additional reason why 

the new lepto-quark bosons imroduced in unified models 1,2 do not 

carry baryon number to give a global conservation law in the same 

way that pions and kaons carry and conserve charge and strangeness. 

A mysterious conservation of B-L appears in these models 3,ii 

that violate baryon number conservation. This has the consequence 

that protons decay into antileptons, rather than into leptons; 

i.e. into positrons and positive muons, rather than electrons or 

negative muons. Many of these models are based on a higher symmetry 

group which contains SU(5). 

To understand the origin of the baryon-number nonconservation, 

the tendency to conserve B-L, and the SU(S)-like properties which 

arise in these models, we search for model-independent constraints 

on the S-matrix which are already present in view of known symme- 

tries. The approach is one which I learned from Prof. Glulio Racah-- 

brute force. Those who are familiar with Racah's elegant papers but 



did not know him personally do not realize that he often found 

his elegant general results by first grinding through a large 

number of calculations of individual cases. He would carefully 

note any systematics in his numerical results, use these to conjec- 

ture general principles, and then prove the theorems. We follow 

this approach and begin by looking at the quantum numbers of the 

observed particles for any regularities which explain the peculiar 

conservation laws and violations. At this stage it is pure numer- 

ology. But when systematics are found, it becomes more then 

numerology. 

The brute force problem which we pose is to examine the most 

general S matrix for the thirty quarks and Leptons in the first 

generation, commonly classified in the 5, 5*, 10 and 10* repre- 

sentations of SU(5), under the assumptions only of conservation of 

electric charge and weak isospin. 'de-might consider writing a 

computer program to print out all allowed S-matrix transitions, 

classifying them according to whether they conserve or violate 

B or B-L. However, by playing around with our numerology, we 

find a quicker way to do this without a compurer. All the desired 

selection rules and conservation laws are easily demonstrated with 

the aid of the following unorthodox linear combinations of well 

known quantum numbers 5,6 

i = 3(B-L) -H (la) 

p = 3(B-L) -H _ 3(4- L3) 
=z 

4 5 4 - $ cc- 13) 

3 = 3(B-L) -H 
4 - (Q - L3) = ? - ; (Q - i3) 

(lb) 

(lc) 

where B is the baryon number, L the lepton number, H the 

hellcity, defined as Cl and -1 respectively for right and 

left handed states, 12 the electric charge and I3 the third 

component of the weak isospin. These quantum numbers are defined 

:o be additive for a multifermion state. 

The motivation for introducing these quantum numbers (1) is seen 



in the simple structure of their eignevalues for the fifteen quark 

and lepton states of the first generation and their fifteen anti- 

particies listed in Table I. The pentality quantum number P has 

the following remarkable properties: 

1. Although it is a linear combination of two terme with 

quarter-integral and tenth-integral values, the values of P 

for the first generation fermions are only fifth-integral. 

2. The total pentality of a multifermion state cannot change 

by a fifth-integral amount in any transition which conserves Q 

and I . 
3 

Thus the pentality is an additive quantum number with 

fifth-integral eigenvalues which is allowed to change only by 

integral amounts in any transition which conserves Q and I?. 
This gives the pentality selection rule 

&P = 63 = 0, 1, 2 . . . . . . . (2a) 

This immediately implies that 

'SK = 4" , (2b) 

where n is an integer. Since SH and 6(B-L) are both even ~_- 
integers, the selection rule (2b) requires that 6H/2 and 5(B-L)/2 

must either be both even integers or both odd integers. Thus 

transitions with odd and even helicity flips have different selection 

rules for a-L. 

For odd-helicity-flip transitions, 

6H = 2(2"+1) = E(B-L) = 2(2"'+1) (2c) 

where n and n' are integers. Thus B-L cannot be conserved 

in odd helicity flip transitions. For helicity conserving and even 

flip transitions 

&H = 4" * &(B-L) = 4"' (Zd) 

where " and n' are integers. In four point functions 6H=O, 

2 or 4 and 6(B-L) =0 or 2, since 6(B-L) =4 can be achieved 

only i" a transition between two leptons and two antileptons which 

cannot conserve Q and 13. Thus B-L is conserved In all 
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helicity-conserving and double-flip four point functions which 

conserve Q and 13" This includes all simple boson exchange 

diagrams without derivative couplings, since these have either flip 

or nonflip couplings, and must have the same at both vertices. A 

single-flip transition 6H=2 arises only in the exchange of an 

object which flips belicity at one vertex and not at the other. 

The "quasibaryon number" B (1~) is conserved in all processes 

which conserve Q, 13, H and B-L and in particular in all four 

point functions with no helicity change, e.g. vector boson exchange, 

which conserve electric charge and weak isospin. However, 8 is 

seen from Table I to be exactly equal to the baryon number for all 

quark and lepton states' except the right-handed up quark UR and 

its conjugate left-handed ;L. For any system of quarks and leptons 

3 = B-n(uR) f&L) (3) 

where u denotes any quark with electric charge +2/3. This 

result (3) holds for any number of standard generations of quarks 

and leptons having massless left-handed neutrinos and no right- 

handed neutrinos. . 

For all processes where 6 is conserved, which includes all 

vector boson exchanges, B is conserved as long as nh,) - II(G,) 

does not change. This includes the standard W(2) xU(1) model of 

weak interactions where the UR couples only to neutral currents 

which cannot change flavor. HOWeVer, B must be violated by any 

helicity conserving boson exchange with a non-trivial coupling 

to % which changes it into something else which is not a UR 
and with an additional coupling to any other particle. Four-point 

functions exist in which this boson is exchanged between a UR 

and another object and the uR is changed to something else and 

not restored at the other vertex. Then n(uR) -r&L) changes and 

B must be violated if ? is conserved. 

Thus conservation of weak isospin is inconsistent with con- 

servacion of baryon number in processes mediated by a gauge boson 



which couples to the uR quark in a non-trivial manner and allows 

a uR quark to decay into something else. Baryon number, weak 

isospin and electric charge cannot all be conserved in any process 

having the form 

uR -+ XfG -L x+y +z 

where G is a gauge boson, and X, Y and 2 can be any quark 

or lepton state except a "R' Any charge-conserving process which 

allows a UR to decay into three fermions via a" intermediate 

vector boson state must violate either weak isospin or baryon 

"umber. 

Almost any model which introduces new particles must admit 

6H=O four-point functions in which the only external particles 

are first generation quarks and leptons. Including other genera- 

tions with identical values of these quantum numbers does not 

change these conclusions. Unless these new processes treat uR 

and ; L in the same trivial way as the standard model of SU(2)x 

U(l), they must necessarily violate baryon number conservation. 

This is the basic reason why baryon number nonconservation mutt 

arise in any such unification models. It is already required 

by consistency with charge and weak isospin conservation and the 

observed quantum numbers of the first generation of quarks and 

1eptons. No further gauge theory is needed. This also explains 

why attempts to gauge baryon number would encounter inconsistencies. 

These results show that in any gauge theory based on a group 

which includes Sb'(3) xSU(2) xU(l), baryon number can be conserved 

in gauge boson exchange only under one of the two following 

conditions: 

1. The uR and ;I states are classified in singlet repre- 

sentations of the gauge group. In that case they can only couple 

to U(1) generators and n(u,) -n(;,), S and B are all conserved. 

This occurs in the standard model of weak interactions. 

2. Any gauge boson which couples non-trivially to uR and 
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changes it into something else has only this coupling and the ana- 

logous coupling in other generations. In this case "(u,)-"(Q) 

defines a conserved "flavor symmetry" quantum number and is conserved 

like strangeness in strong interactions. Since gauge bosons are 

always classified in the adjoint representation of some group G, 

a boson which can change a UR into another particle will have no 

other coupling only if the uR is classified in the fundamental 

representation of G and the remaining particles in the first 

generation are either singlets in G or in the same fundamental 

representation as uR. In this way an exchanged gauge boson which 

couples nontrivially to UR couples at the two vertices with 

conjugate step operators in the fundamental representation of G 

and conserves "h,) -n(q). The gauge symmetry group may either 

be G itself or the direct product of G and another group. One 

example is SU(n)R in which n of the right handed fermions are 

classified in the fundamental representation of XI(n) and all the 

remaining particles are singlets. The case n= 2 which corresponds 

to a right-handed isospin acting only on quarks would satisfy this 

condition. The right-handed electron would be a singlet in this 

SL("). 

Note that these conditions follow from the properties of the 

four-point function in which only the observed particles appear 

as external particles. This is easily extended to the case where 

other particles exist; e.g. a right-handed neurrino, by restricting 

our attention only to those four-point functions where these addi- 

tional particles do not appear as external particles. The couplings 

of gauge bosons to these additional particles play no role in the 

four-point functions under consideration and can be disregarded. 

Thus, for example, the case of a right-handed isospin discussed 

above could include a classification of the right-handed electron 

and neutrino in a doubler if right-handed neutrinos exist, since 

the transitions between e- and R VR do not occur in the four- 

point functions considered, and the ei behaves like a singlet in 
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the space of these four-point functions. 

The unification schemes proposed do not generally fit either 

of these two conditions and are thus forced to violate baryon 

number conservation in four-point functions mediated by gauge 

boson exchange. However, extensions of SU(3) xSU(2) XV(l) involving 

the direct product of this group with groups generated by right- 

handed currents can conserve baryon number. 

We now classify all three types of helicity amplitudes 

occurring in four point functions. 

A. Helicity conserving processes: 6H=O, 6P=6r ~55 =6(B-L)=O. 

The processes allowed by the penality rule (?a) have the forin 

(Pl'P2) + V1,P*) (4a) 

where Pi denotes any state having the eigenvalue P=Pi, together 

with all other processes obtained from (4a) by crossing. 

B. Double-flip processes: 6H-*4=-6~. 6P=?l-68, 6(B-L)=O. 

The only processes allowed by the pentality selection rule (2a) 

have the form 

(2/5,2/S) - (-2/5,1/S) (4b) 

together with all other processes obtained from (3b) by crossing. 

C. Single-flip processes: SH =tZ. The only processes allowed by 

the pentality selection rule (ix) have 6P=t1=66, 5(B-L)=Q and 

the form 

(l/5,1/5) -t (-l/5,-2/5) (4c) 

together with all other processes obtained from (3~) by crossing. 

All these results obtained from the pentality selection rule 

which assumed only conservation of Q and I 3 can now be Seen to 

be also U(5) results. The eigenvalues of P are seen in Table I 

to label representations of E(5). All the states in a given 

representation of SU(5) have the same eigenvalue of P. Thus P 

turns out to be an SU(5) invariant, although P is defined in terms 

of B and L which are completely outside of SU(5) and there is 
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no group-theoretical reason connecting P with SU(5). The "pental- 

ity" quantum number P is seen to have the property analogous to 

triality for X(3); it has the eigenvalues *(l/S) for the fundamental 

representations 5 and 5* of W(5) and the eigenvalues +-(2/S) 

for the 10 and lO* representations which are built from two 

fundamental representations. Note that the fifth-integral quantum 

numbers arise naturally in this description, without invoking any 

SU(5). and that the selection rule (Za) that the fifth-integral 

pentality number P can only change by an integral amount is 

also derived without SU(5). 

The relations (5) are just the four point couplings allowed 

by SU(5). The 6H=O transitions (4a) have the form 

mxn+ mxn (54 

where m and n denote any representation of W(S) among the 

5, S*, 10 and lo*. The 6H-24 and t.2 transitions (4b) and (4~) 

correspond respectively to the W(5) couplings 

10x10 + 10*x5 (jb) 

Sx 5 -f 5*x10* (SC) 

Our approach here is to note these connections with SU(5j 

as a guide to our formulation, but to keep everything completely 

independent of any symmetry assumptions beyond global W(2) xv(l). 

Thus all the results obtained for four-point functions involving 

quarks and leptons hold in any generalization of the standard model 

which keeps charge and weak isospin conservation regardless of how 

many additional Higgses, Schmiggses or Technicrats are introduced. 

The W(5)-like results rust therefore be present in any such formu- 

lation regardless of whether or not these symmetries are explicitly 

assumed. 

tie now examine the three types of helicity amplitudes given in 

Eqs.(4) in more detail. 

A. Helicicy conserving SHs0 transitions. 

These can be characterized by the selection rules 5H=j?=j~ = 
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68=3(B-L)=O. They conserve B-L and B, and therefore conserve 

baryan number If n(uR) -n(uL) does not change, but must violate 

baryon number conservation if it does change. These processes are 

the only ones of the three types that can be mediated by a Yukawa 

coupling via a helicity conserving vector boson or by any boson 

classified in the adjoint representation of SU(5). Note that the 

adjoint representation contains bosons which change "(U,) - "(Q . 

B. Double flip o^H=?4 transitions. 

These can be characterized by the selection rules 6H= *4=-&r; 

dP=il=63; 6(B-L) =O. They conserve B-L but have 6S= 71. They 

violate baryon number conservation unless du,) -"(;,I changes by 

one unit in the proper direction to match the change in 3. These 

processes have the form (5b) in SU(5). They cannot be mediated by 

exchange of a boson classified in the adjoint representation of 

SU(5) but could be mediated by exchange of a particle such as a 

scalar Higgs which flips helicity and is classified in a 5 or 5* 

representation. Equation (5b) shows that in an SU(5) description, 

such a four point function can only go via intermediate states in 

the 5, 5*, 45 or 49 representations. 

C. Single-flip AH= ?2 transitions. 

These can be characterized by the selection rules EH = t2 = 

S(B-L); sP=*l=G@, 6rc=*i. They violate everything, including 

B-L and 8. However, they corresponding to the SU(5) couplings 

(6~) and can only arise in an SU(5) formalism via an intermediate 

boson classified in the 10 or lO* representations with derivative 

couplings. Thus as long as no Higgses or other particles classified 

in the 10 or 10" are introduced with derivative couplings to 

quarks or leptons, these processes do not occur and B-L is conserved. 

We now list explicitly all processes which violate baryon con- 

servation and examine the implications for proton decay. 

A. IH=O transitions ('la). 

These are the only ones which can go via vector exchange. The 

quasi-baryon number 3 is conserved, and SBiO requires the 
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disappearance of a UR quark or its equivalent under crossing. 

Thus the most general 6B#O, 6H=O process has the form: 

uR+X + Y(P=-2/j) +X' (6) 

where fermions X and X' must have the same eigenvalues of P. 

The only candidates for Y are the companions of "R in the 

P=-2/5 multiplet (the lO* of SU(5)) which are the ei, ER a"d 

ZR. The e; is immediately excluded, because the transition 

%-+ e R changes electric charge by 6Q=-5/3, and can only be 

balanced by the reciprocal transitions e-+U which restores 

baryon conservation. The transitions uR+iR and uR+x 
R 

both 

involve a change in quasi-baryon number 65 =+1/3, and are related 

to one another by a weak isospin reflection. They must be balanced 

by a transition X(quark)+S'(lepton) to conserve E. The only 

quark-lepton transitions which can balance the SQ=-413 of the 

UR*U R transition are the d+e+ transitions. 

The allowed baryon-number violating processes with AH=0 

are therefore 

uR+d + ER+e t R R (7a) 

uR+d L * GR+e 
+ 
L (7b) 

together with their weak isospin reflecrions, 

uR+d R 
+ LiR+; 

R (7c) 

URIU 
+ 

L *dR+e . 
L (7d) 

This immediately gives the result that the lepton emitted in nucleon 

decay must be either positive or an antineutrino, but cannot be 

negative, "or a left handed neutrino. 

The pairs of transitions (7a-7~) and (ib-7d) related by isospin 

reflection are required to be equal. However, there is no relation 

between the two pairs at this level, as they involve different 

SG(2) xc(l) multiplets. In SU(5) these pairs are related only at 
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the level of a gauge theory by the universal couplings of gauge 

bosons. At the global SU(5) level with independent Yukawa couplings 

for different SU(5) multiplets the two pairs involve the couplings 

of the 10 end 5 of W(5) respectively to the bosons classified 

in the 24. These couplings are independent if there is no higher 

symmetry like SO(10) or gauge condition which relates them. 

However, isospin relations alone are sufficient to predict 

that the positron decay modes are stronger than the neutrino decay 

modes, since the neutrino decay (7~) is equal to one of the three 

positron decay modes (7a) by isospin, and there are two additional 

positron decays (7b) and (id). 

These results can be expressed es nucleon decays by adding a 

spectator u or d quark to the equation to give a nucleon on 

the left hand side and a pion on the right hand side. From (7a) 

end (7b) we obtain __ 

p + e++nO (8a) 

n * e++lr- (8b) 

From (7~) we obtain 

p +GR+n + 
(8~) 

n ,Y-R+Tro (8d) 

From (7d) we obtain (8a) again. 

B. Double-flip AH=4 processes (3b). 

These are most conveniently listed in the crossed representation 

with three P=2/5 particles going into one with P=1/5 and 

looking at each allowed value of the total electric charge. The 

complete set of AH=4 processes are 

9 = +1 
+ + e 

L R 
8B = <L = 0 (9=) 

uL+uL+d +e 
+ 

L R 
6B = 6L = -1 (9b) 

Q=O el+dL+; + T L R 6B=6L=O (9c) 
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uL+dL+dL +; R 6B = 6L = -1 (9d) 

dL+uL+; id 
L R 6B = 6L = 0 (gel 

el+GL+$ + d 
R 

6B = 6L = +l (9f) 

These always conserve B-L, but have 68 s-1 and violate baryon 

number conservation unless they involve a single u 
R 

or ; 
L 

in 

which case the baryon number always turns out to be conserved. 

For each charge there is one 6B=O and one 5B=5L- tl process. 

Here also nucleons decay only into e+ and ;. 

C. Single-flip EH=G processes (3~). 

These are also conveniently listed by electric charge in the 

crossed representation with three P-1/5 particles going into 

one with P=-2/j. 

Q = -1 dR+dR+d + e- R R EB = -1,&L = +l (lOa) 

Q= -‘3 dR+dR+; +; R R 6B = -1,&L = +I (lob) 

Q = +f e;+dR+d -a R R 6B = -l,EL = +l (1Oc) 
.- 

2 Q = +? e;+zR+d -+u 
R R 

6B = 0,&L = t2 Clod) 

These all have 6(B-L) =-2 and 66 s-1. All violate lepton 

conservation. Processes Clod) which comeme bar.von number have 

6L=2. The others all have 6B=6L=-1 and give nucleon decays 

into 2- and ". 

We thus have demonstrated the following SU(5) like properties 

of four-point functions without explicit assumptions of SLJ(5). 

1. All selection rules obtained from full SU(5) symmetry 

are already required by conservation of electric charge and weak 

isospin. 

2. The four point functions are naturally classified into 

three types with different helicity structures, namely helicity 

conserving, double flip and single flip. This ciassification is 

in one-to-one correspondence with SU(5) classifications. 
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3. The violation of the conservation laws of B and B-L 

can be stated very generally and simply: 

A. All helicity conserving and double flip amplitudes 

conserve B-L and allow nucleon decays only to antileptons. All 

single-helicity-flip amplitudes have 6(B-L) = +2 and allow nucleon 

decays only to leptons. 

B. Barjon number conservation is violated in helicity con- 

serving amplitudes only in those amplitudes which can be transformed 

by crossing to the decay of a right-handed up quark uR into two 

antiquarks and an antilepton. All other helicity conserving 

amplitudes conserve 3. Thus B is conserved in the standard 

model of weak interactions where the us couples only via neutral 

currents and cannot change into another state. 

C. The role of the uR is reversed in double-flip transi- 
-. 

tions. All double-flip transitions which involve the creation or 

annihilation of a single % or ; L conserve baryon number. All 

double-flip transitions which do not involve uR or GL or which 

create or annihilate a pair of them violate baryon number conserva- 

tion. 

4. The three types of four-point functions have simple inter- 

pretations in terms of the SU(5) and Lorentz quantum numbers of 

exchanged bosons which could give rise to these couplings if they 

are coupled to the fermions with Yukawa couplings. 

Some of these results have been previously obtained using 

specific models 3 or syumxtries, 
4 particularly results on the con- 

servarion of B-L. Our results are more general, being model 

independent and assuming no higher sylmnetries. We also point out 

for the first time the close connection between the helicity 

structure of the amplitude and conservation of B and 5-L. 

All these results were rigorously obtained without any SIJ(5) 

symmetry assumptions. Yet one may be suspicious of hidden connec- 

tions because the particular linear combinations (1) chosen ad hoc 

turned out to have SU(5) properties. We therefore investigate the 
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properties of such linear combinations in more deta:l and look for 

possible implicit connections between them and higher symmetries. 

In any scheme which unifies quarks and leptons and places 

them into common multiplets, quantum numbers are needed like 

generalizations of hypercharge which have the same eigenvalues 

for a large "umber of states including both quarks and leptons. 

The quantum number P has only two pairs of equal end opposite 

eigenvalues *l/5 and *Z/5 for all sets of 30 states in the first 

three generations. We now examine all possible combinations of 

the quantum numbers labeling quantities conserved i" SU(2) xLJ(1) 

to look for other linear combinations satisfying the requirement 

that only two pairs of equal and opposite eigenvalues should 

appear. 

Since baryon number and electric charge are both third-integral 

for quarks and integral for leptons, a linear combination of these 

two must be found which is not third-integral in order to have a 

common eigenvalue for quarks and leptons. The combination Q- I3 

is used to give the same eigenvalue for both members of an isospin 

doublet. The most general l+."ear combination B-x(Q-13) has 

the eigenvalues (l/3) - (1/6)x for the left handed quark doublet 

and (l/3) -(2/3)x and (l/3) +(1/3)x for the right handed u 

and d quarks respectively. With three independen: eigenvalues 

for the quarks alone, without considering antiquerits and leptons, 

these can satisfy our requirement of two pairs of eigenvalues only 

if two of the three eigenvalues are equal and opposite. This 

occurs only for three values of x; namely x=4/5, 2 and -4. 

With these values we define 

i = (B-L) -$(Q-13) = (4P+H)/3 (lla) 

P = (B-L) -2(Q-13) = -21 3R (lib) 

\, = (B-L)+4(Q-13) = ST (llc) 

where the additional term -L has been added to kee? the same 
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eigenvalues for quarks and leptons. The quantum number i is seen 

to be simply related to the pentality P. The quantum number I! 

is seen to be identical with the right handed isospin recently 

introduced by Marshak and Wahapatra. 7 The number v is seen 

to be 5x where T is the eigenvaiue of A for the isospin 

mirror state, u-d and e-v. 

This condition already suggests one of the general features 

found in unfiication schemes, the classification of quarks and 

antiquarks in the same multiplet. The condition that two quark 

states have equal and opposite eigenvalues of an additive quantum 

number which is constant in a multiplet gives quarks and antiquarks 

the same eigenvalue of this quantum number. 

Values of h, !.I and '4 are also given in Table I. But i 

which is related to the pentality P is the only one with fractional 

eigenvalues. Thus the fifth-integral~eigenvalues are a natural 

result of the SU(2) xU(1) classification of quarks and leptons 

and the condition restricting the eigenvalues to only two pairs. 

The normalization of the operators (11) is chosen to keep the 

coefficient of B-L equal to unity. Thus all three are conserved 

if B-L is conserved and conserved module 2 if B-L is not con- 

served. The fractional eigenvalues makes conservation module 2 

a much more serious constraint for h than for ;I and \>. 

The mysterious relation between the fifth-integral eigen- 

values of the operator i and SU(5) is clarified by noting that 

these eigenvalues have a simple interpretation in the SO(10) classi- 

fication when the right handed neutrino is included which has an 

eigenvalue of -1. They are just the eigenvalues of the U(1) gener- 
& 

ator which appears in the W(5) xU(1) subgroup of SO(10) in the 

spinorial representation normally used to classify the quarks and 

leptons. If the operator ? is identified with this U(1) genera- 

tor in SO(lO), the classification and all the quantum numbers in 

Table I are evident. However, B and L are not defined in the 

usual SO(10) description, and the physical meaning of this C(1) 
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generator is not obvious. There may be a deep underlying signifi- 

cance to the fact that the eigenvalues of ; are the same as those 

of the U(1) generator for the 16 dimensionai spinorial representation 

in which the quarks and leptons are classified. This does not 

necessarily require that the operator as defined by Eq.(lla) should 

also be equivalent io this L(1) generator for ocher representations 

in which Higgs or technicolor particles might be classified. 

We thus see an underlying SU(5)-like structure in the quantum 

numbers of the existing particles. This seems to go beyond the 

well known result that they just "happen to fit" into two complete 

irreducible representations of SU(5) and their conjugates. There 

are also SC(S)-like properties of the four-point S-matrix as well. 

The tantalizing question still remains whether these properties 

indicate a basic underlying synnnetry or merely an accidental sym- 

metry like flavor N(3). 

The first indication that all was not well with the flavor 

W(3) gauge theory was w-c mixing. Two inequivalent representa- 

tions of SU(3) were degenera:e for reasons completely outside 

SU(3) and mixed badly to give states far from X(3) eigenstates. 

This should not happen in the gauge theory of the world. Such 

mixing can test any higher symmetry, but cannot yet test SU(5) 

because there are no pairs of particles like L and $ classified 

in inequivalent representations of the symmetry group and allowed 

to mix by the existing conservation laws. For SU(5) two inequi- 

valent representations are needed with the same pentality. The 

The observed quarks and leptons are classified in the 5, 5*, 10 

and lO* representations of C(5) which all have different values 

of pentality and whose states cannot nix without violating the 

conservation laws for the known additive quantum numbers of eiectric 

charge, weak isospin and colcr. 

The absence of a pair oi states like i-3 which can mix makes 

unambiguous tests of SV(5) very difficult and explains why so man! 

SU(jj-like results are obtainable without SU(5). Since SU(5) is 
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of rank 4, the same as SlJ(3) sSU(2) xlJ(l), all the additive con- 

served quantum numbers in SIJ(5) are already in SlJ(3)xSU(Z) xU(l). 

Thus imposing SlJ(5) invariance can give no new selection rules 

based on additive quantum numbers. Since pentality is determined 

by the eigenvalues of the additive quantum numbers, the pentality 

selection role is already implied by SU(3) x%(Z) xU(1). Non-trivial 

selection rules based on the non-Abelian quantum numbers of SU(5) 

are possible only when representations other than 5, 5*, 10 and 

10s are present, so chat couplings exist which are forbidden by 

SU(5) but allowed by pentality, and mixing can occur. As long as 

no other representations of SU(5) are present, the only kinds of 

SE(j) predictions which are not already present without SU(5) 

are relations between processes like (7a) and (7b) which depend 

upon SU(5) Clebsches. These are not easily tested. 

These results are easily extende‘d to treat any n-point function. 

A de'tailed analysis is given in Ref.5. 

We now attempt to understand these results more clearly by 

Looking for an even simpler derivation. The necessity for B 

violation and the mysterious conservation of B-L has been explained 

by a combination of SU(2) xv(l) selection rules, the classification 

of the known particles and the limitations of four point functions. 

We simplify this argument further and show chat the selection rules 

(2~) and (Zd) which Led to the results for B-L conservation and 

B violation follow from the simple selection rule that the total 

number of particles with half-integral weak isospin can only change 

by an even number in a transition which conserves weak isospin. 6 

This selection rule can be written 

6(N;5+fi$ = 2n (12%) 

where 
N% 

and are the total number of particles and of anti- 

particles respectively with isospin k. Since 2G 
% 

is manifestly 

an even integer, the selection rule (12a) is equivalent to 

6(N&) = 2n . (12b) 
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In the standard models for quarks and leptons, all left-handed 

particles and right-handed antiparticles have weak isospin h and 

all right-handed particles and left-handed antiparticles have weak 

isospin zero. Thus the selection rule (12b) can be rewritten in 

terms of the numbers NR, NL, fi R and i L of right-handed and 

left-handed particles and antiparticles. 

6(NL-iR) = 2n _ (13) 

If the only relevant particles are quarks with B=1/3, 

L=O and leptons with B=O, L=l, 

NL - i 
R = (3B+L-H)/Z (14) 

where h is defined to be i-1 for a right-handed particle and -1 

for left-handed. 

Substituting Eq.(14) into Eq.(13) gives 

5(3B+L-H)/Z = 2n . (L5a) 

Since 26B and -6H are both even numbers, they can be 

subtracted from the selection rule (15,) to give 
.- 

<(B-L-H) = 4n = dx-26(B-L) (15b) 

This selection rule can also be states as the conservation of 

BL-paric~~' defined by 

‘IBL 
= c-L) (B-L-H)/2 (UC) 

Since b(B-L) is an even integer, the selection rules (L5b) and 

(2b) are equivalent. Thus all results obtained from (Zb) follow 

from the simple assumption (12~1). 

The conservation of B-L and nonconservation of B are seen 

to result from the weak isospin selection rule (12a) and the standard 

weak isospin classification of quarks and leptons. These results 

hold in an:: model for 50 "r-point functions mediated by gauge bosons 

if weak isospin is conserved. For other n-point functions the 

selection rules (2~) and (2d) or the iquivaient conservation of 
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'BL 
or the selection rule (15b) hold in all transitions which 

conserve weak isospin. For example, the six-point function needed 

to change a neutron into an ancfneucron for neutron oscillations' 

has 6(B-L) -2 and must have an odd number of helicity flips to 

conserve weak isospin. This transition is therefore forbidden if 

there are only vector boson exchanges which conserve H. In models 

with vector bosons and Higgs scalars, the six-point function des- 

cribing n+G must have an odd number of Higgs-fermion vertices; 

i.e. there must be at least one Higgs exchange between a fermion 

and a boson. 

The results are easily generalized if new kinds of particles 

are introduced which have half-integral isospin. Eqs.(13) and 

(14) can be exrended to include these new particles to give new 

selection rules for processes in which these particles are crested 

or absorbed but weak isospin is still fonserved. 

New bosons such as gauge vector or Higgs bosons can also be 

included by giving them the B, L and H quantum numbers defined 

by any fermion pair state to which they are coupled. If B, L 

and H are not conserved, these quantum numbers may not be unique 

and can depend upon which fermion pair state is chosen. However, 

the value of 'BL and the selection rule (15) will be independent 

of the particular classification if Q and I 3 are conserved in 

all couplings of these bosons. 

The selection rule (15b) will be violated if either the con- 

servation of weak isospin or the conventional classification breaks 

down. This can occur, for example, if: 

1. Dynamical mechanisms are introduced which violate weak 

isospin conservation. Mass terms which couple left and right- 

handed states are an example of such mechanisms. However, these 

must occur non-trivially within the n-point function, not only 

as corrections to give finice masses to external particles. Further- 

more, the weak isospin breaking must give rise to transitions with 

61% L/2 in order to violate the selection rule (12) and its con- 

sequence (15b). Breaking described by integral 61 does not affect 
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these zanclusions; e.g. giving unequal masses to the W and 2. 

bosom. biass terms are generally small in these models, since 

partic:? msses are small on the scale of the grand unification 

mass. 

2. Sew exotic external particles are introduced with the 

opposite carrelation between helicity and weak isospln; e.g. a 

left-handed quark or lepton which is a weak fsospin singlet. 

However, ch* above derivation breaks down only for transitfons 

where such particles appear explicitly as external particles, not 

in loops vhich conserve weak isospin. 
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