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Introduction,

Sometimes there is the need for networks that take pulses

of small rise time and produce output pulses of larger rise time.
The rise time should be the same, within avfew percent,. independent
of the input pulse rise timé?] |
Calculations are given for a passive filter of the following
properties, a) its input impedance is resistive.and independent

of frequency, b) a step pulse of the form, .

V,;({:):d. , t20,
o , tdo,

in its input produces a pulse at its output of the form,

--L'f .
Vo({r):a.o(l-e )) tz0 ()
=0 , t40 .
In what follows all time functions will be considered to be zero

for (time) t<0.

Analysis,

The Laplace transform of the above input step function is given byfz)
- el
ﬁzi C V)] = —

The Laplace transform of the output voltage 1is,

Si; [T\4>Cf):] = ’%;L' - =

S+b

A two port network to have this response to the above input, should

have a transfer function,

T 509 _sa w Vfa - _b
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A) Symmetric network. Equal input and output impedances.

For a lattice network (Fiqfd) with the above T(§) it is easy
to proové?)g) that.
Tis)< R—;ZA(S)'_ ' (3)
R +"ZA(8) h
CE¢(s) =R
Li(s)

ZA (s)- Zg(s) = R?_ (%),

R is ohmic resistance.
The network then if connected to a load R has an input impedance R

independent of frequency.‘lt is obvious that its output impedance

is the same, R, if the circuit is fed by a source of impedance R.
From egs (2) and (3) we get,
R-2a08)  _ b
TRA 2 (8) Stk

From this one gets,
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5) Asymmetric network,

_ ) (x
For the asymmetric network of Fig. 2a it is easy to prove that

if,
_ PR . ;2
Zp6) =R + =2 , then T¢s) - |
Z505) R +2505)
Ei(s) R
and e T .
L, s
If again the transfer function is the same, T¢s) = S+L
then, —EL-‘ R which gives,

Sth TR+ Zy)

ZB(S)’%S (7)

7—MS)=R+TL—~ (8)
L).g

Synthesis. ‘

A) Asymmetric case.

The synthesis of the network is now trivial with the use

of eqgs (5) and (6).

Equation (5) suggests that ZZA is a parallel connected inductance

L= 'E_Bg (9)

and ohmic resistance R, see Fig. 1b.
Equation (6) suggests that Zagis a seriqlly connected ohmic

resistance R and a capacitance,
C—' sz | | (10).
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R, obviously, is the terminating resistance (and the network’s
characteristic impedance).

One may need to put a 1:1 pulse transformer at the input of this
circuit to avoid braid effects from the grounding of the coaxial
cable, if such a cable is used to feed the filter.

B) Asymmetric case,

For the asymmetric case the synthesis is again easy from egqs (7)

and (8). Eq. (7) suggests an inductance,
L= A | (11)

see Fig. 2b, and eqg. (8) a capacitance,

1

= ——

rb

and an ohm(¢ resistance R in series, see fig. 2b.

(12)

More general case input voltage.

Let us consider now an input of the more general form,

Vilt)= A(f— eﬂp'{) a3

(2)

Its Laplace transform is,

i
Ei) = M~ - =5 )

For the |(§)} found above, one gets,

!
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This can be written as, ] | b { : -

(- D =
Eo()= A + - H-b Stk Dd-kb S+D ).

The inverse Laplace transform of the last expression gives;

St D

Vo= p(1- 2

It is easy to find from eq. 14 what happens when D-» 00 (step
function result), or when D—» O (zero input).

When Dw3» b, by using de L’ Hospital’s rule, one finds,

Vo L“T)T—‘-‘AEL" (i+b“t)t‘e‘b‘£j (1‘5)".’,

Numerical estimates. : ' -’

Let the rise time of the transmitted pulse (for the step pulse case)
be, T=10 nsec (defined as the time from 10% to 90% voltage).
Then b= _eT%L nsec ™t = 0.2197 nsec-! .

A) Symmetric case,
From egqs (9) and (10) we find, if R=50%,
L=0.1138 rH and C=45.51 pF.

BlﬁAsymmetric case,.

From egs (11) and (12) we find, L=O.22?6fd{eum_c=91.03 pF.

Fig. 3 shows the input and output voltages for various inputs
(circuits of Figs 1b and 2b). Fig. & is a plot of output rise time 7%,
versus the corresponding input rise time’Z;,-?g was calculated

graphically.
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Figure captions.

Fig, 1. a) A lattice network.
b) A lattice filter with characteristics as described

in the text.

Fig.2. a) An asymmetric network.
b) An asymmetric filter with characteristics as described

- in the text.

Fig. 3. a) to d)e Input (V;(t)) and output (V,(t)) voltages
of the filters of Figs 1b and 2b. The general input

form is, 1- éd}t. The general output form is given by eq. 14.

, -
- Fig. 4. Output rise time (defined as the time between 10% to

90% voltage) versus input rise time, for the filters

of Figs 1b and 2b as calculated in the text. The output

rise time was calculated graphically.
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