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ABSTRACT 

It is shown that the Q2 dependence of the non-singlet 

parton distributions in Quantum Chromodynamics with leading 

and next to leading order corrections included, can be 

adequately represented by simple analytic expressions, 

similar to those proposed by Gaemers and one of the authors. 

The pattern of higher order corrections to the Q2 

dependence of Fys(x,Q2) and of F3(x,Q2) is 

discussed. 
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I. INTRODUCTION 

During the last year the calculations of next-to the 

leading order QCD corrections to deep-inelastic structure 

functions have been completed. l-4 These results are usually 

presented for the moments of the structure functions in 

question. In order to compare these predictions with the 

data one has to calculate the moments of the experimentally 

measured structure functions. Since for a finite v and 

Q2 the structure functions are not known in the whole range 

of Bjorken variable x, extrapolations have to be made in the 

calculations of moments. Therefore it seems useful to have 

theoretical predictions for the structure functions 

themselves so that they could be directly compared with the 

experimental data. In the leading order this problem has 

been solved. There exist already many inversion 

techniques 5,6 which have been applied to leading order 

expressions. In particular in Ref. 5 a procedure has been 

developed for obtaining analytic expressions for parton 

distributions with Q2 dependence given by ASF. Having such 

analytic expressions for parton distributions at hand one can 

use them for quantitative predictions of scaling violations 

in all processes (inclusive, semi-inclusive) in which QCD 

effects can be reliably calculated. In this paper we 

generalize the method of Ref. 5 beyond the leading order. 

As a result we obtain analytic expressions for the Q2 

dependent parton distributions with next to leading order 

effects taken into account. Since the definition of parton 
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distributions is not unique beyond the leading order 7'8 we 

shall discuss two such definitions: one in the main text and 

the second in an Appendix. In this paper we limit our 

discussion to non-singlet structure functions and non-singlet 

combinations of parton distributions as for instance valence 

distributions. 

The paper is organized as follows. In Section II we 

recall all formal expressions for the moments of non-singlet 

structure functions calculated up to and including 

G2 (Q2) corrections. Subsequently we discuss one 

definition of the parton distributions (still on the level of 

moments). In Section III, which contains the main results of 

the paper, we present generalization of the method of Ref. 5 

beyond the leading order. Numerical estimates and various 

examples are given in Section IV. We end the paper with a 

brief summary of the results. Discussion of a second 

definition of parton distributions can be found in the 

Appendix. 
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II. BASIC FORMALISM 

2.1. Formal Approach 9,4 

In QCD the Q2 dependence of 

deep-inelastic non-singlet structure 

followslo 

MFs(n,Q2) = 
/ 

1 

0 
dx x"-~~;~(x,Q~) 

the moments of 

functions is given as 

k = 2,3 (2.1) 

= A:'(Qi)exp C~Sn(l,~2(Q2)) (2.3) ? 

In Eq. (2.2) A:'(u2) stands for the hadronic 

matrix element of a spin n non-singlet operator and 

CNS k n is the coefficient function of this operator in I 
the Wilson 11 expansion . AAs are incalculable by 

present methods and must be taken from the data at some 
2 2 2 arbitrary value of Q =U =Qo. The CFsnts, I 

on the other hand, can be calculated in perturbation theory. 

Their Q2 dependence is governed by certain equations called 

renormalization group equations. The solution of this 

equation is given in Eq. (2.3) where 42(Q2), 
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y&(g) and B(g) are the effective coupling 

constant, anomalous dimensions of the non-singlet operator 

mentioned above and the standard B function, respectively. 

The latter function 

i2(Q2): 

!I$ = ; B(g) : 

2 2 where t = ln(Q /lJ 1, 

governs the Q2 evolution of 

&t=O) = g 

and g is the quark-gluon coupling 
3 

constant normalized at pclc-. 

The functions YiiS (cl), B(g) and 

C;sn(Li2 (Q2) 1 have the following perturbative I 
expansions 

, 

Vi& 
(1) 4 

+ 'NS k+ . . . 
(161~~)~ 

Ug) = -8, 93 
167~~ - % 

95 
161~~ 

+ . . . 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

where 6 (k) 
NS are weak or electromagnetic charge 

factors. 
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Inserting Eqs. (2.5)-(2.7) into Eq. (2.3) and expanding 

in i2(Q2) one obtains 

M:S(n,Q2) = G$)A~S(Q~) 1 + 
[i2 (Q2)-ti2 CQ;Il 

161~~ 
ZNS . 

n I 

where 

(l),n 
ZNS=YNS _ 

U&n 
yNS 

O,n 
yNS 

n 280 24 
8, i d& = - 

280 

(2.8) 

(2.9) 

and 

gJ$Jo 1 '1 In ln(Q2/A2) + o (2.10) -- 
167~~ BOln (Q2/A2) 'z 1n2(Q2/n2) r 

9 
Here n is a scale parameter and d:S and 

gNS 'I2 
k,n are given as follows 

d& = 
2 

n(n+l) + 4 ; G 
j=2 1 I 

(2.11) 
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ENS =4 
2,n 3 

C 
3 f;" & 

j=l 1 

n 
+4 2 &g&+2+ 4 

s=ls j=lJ n (n+l) + > - ' 

and1,2,8 

ENS = ENS 4 4n+2 
3,n 2,n - 3 n(n+l) l 

(2.12) 

(2.13) 

where f is the number of flavors. The analytic expressions 
(l),n for YNs are very complicated and therefore we 

quote in Table I the numerical values for Z NS 
n' Also 

the numerical values for -NS 
dk3r B2,n and 

ENS 
3,n are collected there. Finally we give the 

expressions for 8, 9 and 8,: 9,12 

@O =ll-$f ; 8,= 102~?f . (2.14) 

It should be recalled that, 

I) 'NS 
(l)?n and ENS 

k,n depend on the 

renormalization scheme used to calculate these 

quantities. 1 This renormalization prescription 
(l),n dependence of yNs -NS and BkIn cancel 

in Eq. (2.8) if these quantities are calculated in the 
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same scheme. Numerical values in Table 1 correspond to 

the minimal subtraction scheme of 't Hooft. 13 

ii) The parameters ENS k n depend also on the 
-2 ,2 definition of g (Q ). 2,14 The values in Table 1 

correspond to so-called MS scheme 2 for 

i2(Q2). Of course the final answer for 

Mk b,Q2) is independent of the definition of 
-NS y2(Q2) since each redefinition of Bk n is I 

compensated by the corresponding change of the values of 

n extracted from experiment. 

This completes the presentation of the formal expressions 

necessary for a phenomenological analysis of the moments of 

deep-inelastic non-singlet structure functions. The basic 

formula is given in Eq. (2.8) and the numerical values of 

the relevant parameters ZNS n, dN"S and 
ENS 

k,n are collected in Table 1. Comparison of the 

formula (2.8) with deep-inelastic data can be found in 

Refs. 2, 15. 

We shall now express the formula (2.8) in terms of the 

moments of parton distributions. As discussed already in a 

few papers the definition of parton distributions beyond the 

leading order is not unique. 7,8 In order to simplify the 

presentation in this and subsequent sections we shall 

restrict 8 our discussion to one specific definition of 

parton distributions. Discussion of another definition7 is 

presented in the Appendix. 
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2.2 Intuitive Approach 

Our discussion applies to any non-singlet structure 

function but for definitness we shall here concentrate on the 

contributions involving valence quark distributions. 16 

Their moments are defined as follows 

0.7(Q2)>, = 
1 

dx x"-'V(x,Q2) 
0 

In the leading order of asymptotic freedom 

MF” (nIQ2) 
I 

= ,#d NS <WQ2Pn k=2,3 
valence 

with 

<V(Q2)>, = <WQ2P 

(2.15) 

(2.16) 

(2.17) 

We shall now generalize Eqs. (2.16) and (2.17) beyond the 

leading order. To this end we use the definition of parton 

distributions of Altarelli et al. 8 to obtain 

i) Generalization of Eq. (2.16): 17 

(2.18) 
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Mys(n,Q2) = ais)<V(Q2)>Aa) + G2 (Q2) @NS -ENS. 
16~r~ 3,n 2,n) 1 * (2.19) 

ii) Generalization of Eq. (2.17): 

<V(Q2)>Aa) = <V(Q;)>Aa)LAa)(Q2,Q;) 

where 

LAa)(Q2,Q;) = 
fj2 (Q2 1 -i2 IQ; ) p . I[ I ij2 (Q2) d:S 

16.rr2 n !i2 (Q; 1 

i2 (Q2)-i2 (Qo2) 

161~~ 
ENS 

I  

2,n l 

(2.20) 

(2.21) 

The subscript "a" distinguishes the definition of valence 

quark distribution in question from the definition in the 

Appendix and from the leading order formula (2.17). 

Comparing Eqs. (2.18) and (2.21) with Eq. (2.8) we 

observe that <V(Q2$) contains all next to 

leading order corrections to MI” (n,Q2) l 

Furthermore 

<V(Q;)>Aa) = A;S(Q;) 1 + s2(Q’) iiIsn 

167~~ 
. I I (2.22) 
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We note also that because 

gys, # gyFn the Q2 evolution of 

MNS 3 (n,Q2) is different from Mys(n,Q2). 

This is to be contrasted with the leading order formula 

(2.16). We shall discuss it in more detail in Section 

IV. Finally it should be remarked that for n=l 

1 
dNS = 1 ZNS = gNS = 0 

2,1 

and consequently 

I 1 
dx V(a)(x,Q2) = const = 3 

0 

(2.23) 

(2.24) 

where the last equality is our input in accordance with 

parton model ideas. 
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III. SIMPLE PARAMETRIZATIONS 

We shall now present a simple procedure for the 

inversion of the moment equations (2.18) - (2.21). This 

procedure is a straightforward generalization of the method 

of Ref. 5 which has been used successfully to invert the 

leading order formula (2.17). The present procedure consists 

of three steps 18 

i) write 

(x,Q2) = 3 x 
n:a) (au (a) (E,A) 

xda) (1-x) '12 

B h:a) (%A) ,l+~;~) (%A) ) 

where 

nila) = nila) + ,~j(~)(A)s i=1,2 

and 

S= -2 (Q2 1 
- In -“2 2 

.g (Q,) 

(3.1) 

(3.2) 

(3.3) 

with i2(Q2) given by Eq. (2.10). The "slopes" 

'1; (A) depend generally on A. The appearance 

of Euler's beta function B( , ) is necessary if we want 

to satisfy the sum rule (2.24). 
. 
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ii) Find nia) (0)'s from the data at Q*-Q2 - o 

and calculate the moments of <V(Qi)>, (a). In 

this way the r.h.s. of Eq. (2.20) is known for any Q2 

up to the single parameter A which is to be determined 

by comparing the scaling violations predicted by the 

theory with those observed in experiment. 

iii) Finally determine ni (a) by fitting the moments 

obtained from (3.1) - (3.3) to those predicted by the 

theory i.e., Eq. (2.20). As a result of this procedure 
NS we obtain analytic expression for F2 : 

F;” (x,Q2) = $$)xda) (x,Q2) (3.4) 

with xda) (x,Q2) given by Eq. (3.1). It is now a 

simple matter to invert Eq. (2.19) for 

Fysb,Q2) l Applying 
convolution theorem to 

Eq. (2.19) we obtain 

x F3(x,Q2) = 64;) (y,Q2) 1 .ia) (;,i2(Q2) 1 

where 

O(a)(x,;2(Q2)) = 6(1-x) - 3 y[:. x(1+x)] . 

(3.5) 

(3.6) 
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(a) The moments of a3 are equal to the square 

bracket in Eq. (2.19). Before making explicit 

application of the procedure above let us make a few 

comments. The outlined procedure differs from that of 

Ref. 5 in replacing the leading order parameter. 

s = - In 
i2 IQ21 ILao. 

i2 (Qo2) ILeo. 
= In 

by the parameter S which includes two-loop 

1 contributions to the B function, and in replacing the 

leading order exponents 20 

pi (‘) = TqO) + rjfs 

(3.7) 

(3.8) 

by nia) &A) of Eq. (3.2). As discussed 

in the appendix the replacement of s by s almost 

'entirely takes care of two-loop contributions to the 

Q2 evolution of i2(Q2) NS . The effect of Zn 
-NS and B2 n being non-zero is then represented by I 

the change of the slopes ni (a) relative to the 

leading order slopes nli. In spite of the success 

of the method of Ref. 5 as applied to the leading order 

formula (2.17) it is a priori not obvious that this 

method works beyond the leading order. This is due to 

the fact that the n and Q2 dependence of next to 

leading order corrections are (in particular for large n 
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or large x) quite different from that in the leading 

order. To our surprise however the procedure of Ref. 5 

after the modification s+s turns out to be a very 

useful tool for inversion of next to leading order 

corrections. We find that the expressions (3.1)-(3.3) 

reproduce up to the accuracy of 0.5% the Q2 dependence 

of the first 20 moments in Eq. (2.20) for 

5 GeV2<Q2<200 GeV2 and up to the accuracy of l%-2% 

for 5 GeV2<Q2<5000 GeV2. We have verified (see 

Appendix) that the method reproduces correctly (l%-3% 

level) the next to leading order corrections in the 

range 0.02<x<0.80. For x>O.80 the formula (3.10) 

is less reliable and should not be used. Finally it 

should be remarked that the method can be trivially 

extended to the input distributions at Q "=Q; of 

the form 

c Ai xBi(l-x) 'i 
i 

(3.9) 

by applying the procedure separately to each term in 

Eq. (3.9). We now turn to the explicit applications of 

our procedure. 



-16- FERMILAB-Pub-79/73-THY 

IV. NUMERICAL ESTIMATES 

To illustrate our procedure we have taken as the input 

the valence quark distribution found by the CDHS group 21 at 

Qi=5 GeV2. Choosing the same22 input for the 

formula (3.1) and for the corresponding leading order 
(a) expression with pi replaced by pi of Eq (3.8) 

we obtain 

qja)(0) = rQ0) = 0.56 ; = ~~(0) = 2.71 . (4.1) 

Using next the procedure of the preceding Section we 

have found the slopes ni (a)(n) for A=O.3 GeV and 

n=O.5 GeV. Correspondingly the method of Ref. 5 leads to 

leading order slopes ni of Eq. (3.8). The results are 

collected in Table 2. In obtaining these results we have 

used the moments from n=2 to n=20 in the range of Q2 from 

5 GeV2 to 200 GeV2. As the reader may check the formula 

(3.10) with the relevant parameters (a)(o) of pi 

Eq. (4.1) and ni (a)(A) in the Table 2 reproducesvery 

well the moment equations (2.20-2.21). The same comments 

apply to the corresponding leading order expression. In 

finding the slopes we have used here the moments up to 

n=20 23 in order to reproduce well the large x(O.6<x<O.8) 

behavior of the structure functions, where the higher order 

corrections are most important. 
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In Fig. 1 we plot Fys(x,Q2) as function of Q2 

for various fixed values of x. We show the curves 

corresponding to various cases collected in the Table 2. In 

order to illustrate further the pattern of next to leading 

order corrections to the Q2 dependence of F ;" b,Q2) 

we plot in Fig. 2 the ratio 

where H.O. and L.O. distinguish between the leading order 

(L.O.) Q2 dependence and the one (H.O.) with next to 

leading order corrections taken into account. The following 

observations can be made on the basis of Figs. 1 and 2.: 

a) Keeping the same value of A(fl=0.5) in the higher order 

expression as the one24 in the leading order formula we 

observe that the next to leading order corrections 

increase the scaling violations at both small (faster 

increase) and large (faster decrease) values of x. The 

effect is considerably larger at large values of x. For 

0.3~~~0.5 the H.0 and L.O. curves are for the Q2 range 

considered very close to each other. 

b) The decrease of fl in the higher order expression to 

n=0.3 GeV has a very little effect for the Q2 

evolution at small values of x but changes considerable 

the scaling violations at moderate and large values of x 

as compared to the case n=0.5 GeV. 
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c) From this it follows that with a fixed (x independent) A 

it is impossible to bring the leading order and higher 

order predictions on top of each other. Therefore very 

accurate experiments which could measure lo-20% effects 

should be able to see the non-trivial x and Q 2 

dependence of next to leading order corrections. 

In Fig. 3 we plot the ratio 

as function of x for various values of Q2. In the leading 

order this ratio is equal unity. The effect of next to 

leading order corrections is mainly seen at small values of 

XI where the structure function F3 is predicted to be 
NS slightly smaller than the non-singlet component of F2 . 

For very large Q2 the leading order result is reproduced. 

The Figure shows how this limit is approached with increasing 

Q2 . It should be remarked that in order to measure the 

ratio above one has to subtract first the singlet 

contribution from F2, which is dominant at small values of 

X. This makes the experimental tests of predictions of 

Fig. 3 difficult. 
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V. SUMMARY 

In this paper we have presented analytic expressions for 

non-singlet parton distributions with a Q2-dependence given 

by asymptotic freedom with leading and next to leading order 

corrections taken into account. Since the parton 

distributions beyond the leading order can be defined in 

various ways we have discussed two examples; one in the main 

text and one in the Appendix. We hope that the simple 

inversion method presented here will be of help to both 

phenomenologist and experimentalists in their study of 

scaling violations and in particular in the study of higher 

order effects. The input distributions at Q2=Q2 0 
discussed in our paper are not the only possible 

parametrizations of the data. Our method can also be used 

with more general input distributions of Eq. (3.9). 

It is clear that having the Q2 dependent parton 

distributions at hand it is a simple matter to estimate 

asymptotic freedom effects, and in particular higher order 

effects, in other processes, such as Drell-Yan process and 

other deep-inelastic processes. How the parton distributions 

discussed in our paper should be used in the QCD formulae for 

other processes has been discussed in some detail in Ref. 26, 

which the interested reader may consult. 

We have seen that higher order effects introduce a 

non-trivial x and Q2 dependence of the deep-inelastic 

structure functions which accurate experiments should be able 

to test. The comparison of our results with experimental 
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data is beyond the scope of this paper. 

It would be interesting to extend the method presented 

here to the singlet parton distributions. In the leading 

order simple analytic expressions for the Q2 evolution of 

singlet parton distributions work only for 0.02<x<O.3. ' For 

x>O.3 one is led to very complicated analytic expressions, 

examples of which can be found in Ref. 27. The same 

situation is expected beyond the leading order. When 

completing this paper we received the papers by 

Gonzalez-Arroyo, Lopez and Yndurain3' and Duke and 

Roberts, 31 in which the structure functions with next to 

leading order corrections have been obtained using different 

methods from the one presented here. 
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. APPENDIX 

Second Definition of Parton Distributions 

Here we shall discuss another definition7 of parton 

distributions beyond the leading order. The generalizations 

i) and ii) of section 2.2 are now as follows 

i) Generalization of Eq. (2.16): 

MFS(n,Q2) = ~~~)<V(Q2)>~b) 
-2 2 

1 + g1Li2) EF:n 1 k=2,3 (A.l) 

ii) Generalization of Eg. (2.17): 

<V(Q2)>ib) = <v(Q;)>;b)L;b)(Q2,Q;) 

where 

LAb)(Q2,Q;) = 1 + 
i2 (Q2)-i2 (Q;) ZNS diS i2 (Q2) 

16a2 n I[ 1 ii2 ((1;) 

(A.21 

(A.3) 

The subscript " b " distinguishes the definition of 

valence quark distribution in question from the definition 

"a" of Section 2.2 and from the leading order formula (2.17). 
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Comparing Eqs. (A.l)-(A.3) with Eq. (2.8) we observe 

that <V(Q2)>Ab) contains next to leading order 

corrections related to yNS 
(bn and 

81. The 

i2 corrections to CFsn(1,i2) are explicitly I 
factored out. Furthermore 

2 (b) <V(QOPn = A;'(Q;) . (A.41 

Thus in this definition the moments of valence quark 

distribution at Qi are equal to the matrix elements of 

a non-singlet operator normalized at 2 
Q0* Relation 

(A.4) is of course true for any Q2. Note also that the sum 

rule (2.24) is satisfied by V (b) (x,Q2). Before showing 

how Eqs. (A.l)-(A.3) can be inverted let us briefly compare 

the two definition "a" and "b". 

The parton distributions in the definition a) are 

renormalization prescription independent. This is not the 

case in the example b) discussed here but the renormalization 

prescription dependence of <V (b) (Q2Pn is cancelled by 

that of k n. fiNS Since one can define parton 
I 

distributions in many ways anyhow, one should not worry about 

this renormalization prescription dependence of parton 

distribution in example b). 

We next notice that whereas the input distributions for 

k=2 at Q2=Q2 o in the example a) will be the same as in 

the leading order 28 (i.e., the data for F;" (x,Q2) 
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does not change), the input distributions in the example b) 

will differ considerably at low Q2 and large x from those 

used in the leading order phenomenology. The reason is that 

Cis(l,i2) differs considerably from 1 for low Q2 

and large n. 

Needless to say expressions (A.l) and (2.18-2.19) are 

equivalent (through order i2) representations of next to 

leading order corrections to deep-ineleastic structure 

functions. 

In order to invert Eqs. (A.l)-(A.3) we proceed as 

follows. We first apply the procedure of Section III to Eq. 

(A.2). Now from the beginning we expect this method of 

inversion to work well because n ZNS which enter 

Eq. (A.3) are small and the equation (A.21 for the 

Q2-dependence of valence quark distribution is essentially 

the same as the leading order equation (2.17) except for the 

change in the formula for i2(Q2). This change is taken 

almost entirely into account by the modification SG. 

Indeed applying the procedure of Section III to Eq. (A.2) and 

choosing for illustration the input distribution of Eq. (4.1) 
(b) we obtain for the exponents pi 

I~:~%,A) = 0.56 - 0.185 i?i 

nib) &A) = 2.71 + 0.745 s (A.5) 
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for both A = 0.3 and 0.5 GeV. As expected the slopes 
rlv (b) 

i are very close to the slopes ni 

relevant for the leading order (see Table II). In order to 

complete the inversion of Eq. (A.l) we apply the convolution 

theorem to Eq. (A.l) to obtain 

+'(x,Q2) = 6;;) (y,Q2) 1 .ib' (;ri2) 

and 

xF;'(x,Q2) = 64;) ydb) (y,Q2) 1 oib' (;,i2) 

where2' 

= 6(1-x) + u jpx) , 
161~~ 

By (x) = 4 x 2(1-x)ln 
C 

(1;~) + 4x(ln;U;x))+ 

- (lZ)+ 
In x +3+4x-4x= 

(A.61 

(A.71 

(A.81 

(A.91 

2 
- (2 5 + 9)&(1-x) 

I 
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and 

ENS 3 1x1 = jgNS 2 (x) - 4 x(1+x) . (A.lO) 

The moments of By'(x) and of By'(x) are equal 
-NS ENS 

to B2,n and 3,n respectively. Notice 

that in this example the dominant part of higher order 

corrections is inverted exactly. 

The symbol "+" in Eq. (A.9) is defined as follows 

’ h(x) h(x)-h(1) 
o (l-x)+ dx E (1-x) 

and 

0 
dx h(x)(ln;tx"')+= jg;dx(h(x)-h(1)) ';::;;) 

(A.ll) 

(A.12) 

where h(x) is a function regular at the end points. 

Since in this example the dominant part of higher order 

corrections is inverted exactly we can use it to test the 

accuracy of the inversion procedure of Section III. In fact 

if the procedure of Section III is good then the following 

equality should be satisfied 

xda) (x,Q2) = l qyv 
XY 

(b) (Y,Q~)I$~) (;,i2, (A.13) 
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where 

?i (b) G2 (Q2)-i2 (Q;) 
2 (x,G2) = &(1-x) + 

16~~ 
Ey (x) (A.14) 

with gNS 2 (x) given by Eq. (A.9). In testing (A.13) 

the same input at Q2=Qi should be chosen for xda) 

and XV(~). We have verified that equation (A.13) is indeed 

very well satisfied (l-3% level) for 5<Q2<200 GeV2 and 

0.02<x<O.80. 

Finally we want to show with an example that, although 

xda) (x,Q2) and xV(~)(X,Q~) as extracted from the 

data differ from each other, the formulae (3.1) and (A.6) 

lead to a very good approximation, to the same Q 2 

dependence of F2 NS(x,Q2). To this end we first find 

xdb) (x,Q2) at Q2 = 5 GeV2 which through Eq. (A.61 

leads to FI" (x,5) of Section IV. Taking A = 0.5 GeV 

and choosing for XV (b) the functional form of Eq. (3.1) we 

find (at Q2=5 GeV2) 

(b) (0) n1 = 0.66 and r12 .(b)(O) = 3.40 (A.15) 

Subsequently using this input and applying the procedure of 

Section III to Eq. (A.2) we obtain 



-27- FERMILAB-Pub-79/73-THY 

? (b)(s,0.5) = 0.66 - 0.229s 

q2 (b)(s,0.5) = 3.40 + 0.762z . 

xV(a)(x,Q2) = F2NS(x,Q2) I, of Section IV, 

xV(b) (x,Q2) given by (A.16) and FiS(x,Q2)lb 

given by (A.61 are shown in Figs. 4 and 5 for A=0.5 GeV and 

Q2=5 GeV2 and Q2=100 GeV2. We observe that although 

xda) (x,Q2) and XV(~) (x,Q2) differ, expecially for 

large x, from each other, FiS(~,Q21a and 

Fislxr(r2) lb are consistent with each other as it 

should be. 

(A.16) 
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FIGURE CAPTIONS 

Fig. 1 The Q2 behavior of F;'(x,Q2) = 

xV(a) (x,Q2) for various values of x. The curves 

correspond to the leading order (L.O.) with fl=O.5 

GeV and to two cases (H.O. for A=0.3 and h=0.5) 

in which next to leading order corrections have been 

included. 

Fig. 2 The X dependence of the 

F~%,Q2) IHe0./Fys(X~Q2) IL.,. for 
various values of Q2 and A. The notation is 

in Fig. 1. 

Fig. 3 The X dependence of the 

FNS 1 
3 H.O.'F:S'H.O. for various values 

of Q2 an fl. In the leading order this ratio 

equal unity. 

ratio 

as 

ratio 

is 

Fig. 4 The valence quark distribution for the two 

definitions discussed in the main text (a)) and the 

appendix for Q2=5 GeV2. 

FyS(xrQ2) lb has been obtained on the basis 

of Eqs. (A.6), (A.8) and (A.9) with A=0.5 GeV. 

Fig. 5 The cases discussed in Fig. 4 for Q2=100 GeV2 

and n=O.5 GeV. 
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TABLE I. NS Numerical values of the parameters d&, Zn , 
ENS 

2 n and B3 n -NS for various values of n and f=4. I I 

n 

2 0.427 1.65 0.44 -1.78 

3 0.667 1.94 3.22 -1.67 

4 0.837 2.05 6.07 4.87 

5 0.971 2.11 8.73 7.75 

6 1.08 2.16 11.18 10.4 

7 1.17 2.21 13.44 12.7 

8 1.25 2.25 15.53 14.9 

9 1.33 2.29 17.48 16.9 

10 1.39 2.33 19.30 18.8 

11 1.45 2.38 21.01 20.5 

12 1.50 2.41 22.63 22.2 

13 1.55 2.45 24.2 23.8 

14 1.60 2.49 25.6 25.2 

15 1.64 2.53 27.0 26.7 

16 1.68 2.56 28.3' 28.0 

17 1.72 2.60 29.6 29.3 

18 1.76 2.63 30.8 30.5 

19 1.79 2.66 32.0 31.7 

20 1.82 2.69 33.1 32.8 

d:S ZNS n 
gNS 

2,n 
gNS 

3,n 
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TABLE II. Parameters which enter Eq. (3.1) for the input of 

Eq. (4.1) at Qi=5 GeV2 and A=O.3 GeV and 

A=O.5 GeV. 

Case A r11(0) 73 (0) ?i % 

Leading 0.3 0.56 2.71 -0.170 0.745 

Order 0.5 0.56 2.71 -0.170 0.745 

Higher Order 0.3 0.56 2.71 -0.117 1.262 

(definition a ) 0.5 0.56 2.71 -0.085 1.490 
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