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ABSTRACT 

The quantum inverse scattering transform method previously 

developed for continuum field theories is applied to the exactly 

soluble symmetric six-vertex (ice or ferroelectric) lattice 

model. Operators analogous to those which appear in the 

quantum inverse treatment of the nonlinear Schrodinger and 

sine-Gordon equations are constructed on the lattice by forming 

strings of vertices contracted over horizontal arrows. From 

the commutation relations for these operators, exact formulas 

for the eigenstates and eigenvalues of the transfer matrix are 

obtained without making an explicit ansatz for the wave functions. 

These results illustrate the connection between the quantum 

inverse method and the transfer matrix formalism for lattice 

models. 

PACS numbers: 3.50-z, 3.70+k 
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I. INTRODUCTION 

The inverse scattering method was developed as a means of 

solving certain classical nonlinear field equations. 1 The 

possibility that this technique might be generalized to provide 

a method for solving quantum field theory was suggested by 

studies of the nonlinear Schrodinger equation. 2,3 In its 

classical form, this equation had been solved via the 2x2 

matrix inverse problem of Zakharov and Shabat. 4 The quantum 

nonlinear SchrEdinger equation (also known as the delta-function 

gas) had also been solved by the Bethe ansatz of Lieb and 

Liniger. 5 The connection between these two methods was es- 

tablished by constructing quantum operators analogous to the 

classical Jost functions and scattering data of the Zakharov- 
3,6-8 Shabat eigenvalue problem. An operator B(k) thus constructed 

was found to create the Bethe ansatz eigenstates of the delta- 

function gas. Recently, the quantum inverse method has been 

applied to the sine-Gordon equation 9 and shown to reproduce 

the results of the Bethe ansatz solution of the massive 

Thirring model. 10 The elegant formulation of this method by 

Faddeev, Skylanin, and Takhtajan' exhibits a striking 

connection with the transfer matrix formalism developed in 

the treatment of solvable lattice statistical models. Ii.1 In 

this paper we explore this connection by applying the quantum 

inverse method to the ice and ferroelectric lattice models 

of Lieb and Baxter12'13 which were originally solved by 

writing a Bethe ansatz for the eigenvectors of the transfer 

matrix14 
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We find a very compact derivation of the known results 

by constructing operators on the lattice which are analogous 

to the A and B operators used in the quantum nonlinear 

SchrSdinger 6-8 and sine-Gordon 9 equations. This formulation 

illustrates a profound connection between the 2x2 matrix 

structure of the inverse scattering eigenvalue problem used 

in continuum field theories, and the matrix structure represented 

by the horizontal arrows of the lattice theory. The vertical 

arrows are associated with the operators of the field theory. 

The transfer matrix T is related to the A operator, 

while the B operator creates eigenstates of T. The path- 

ordered exponential expression which describes solutions of 

the eigenvalue problem in the inverse method arises on the 

lattice as a string of vertices contracted over horizontal 

indices. It is remarkable that the inverse method, which 

originated in classical field theory, is so closely related 

(in its quantum field version) to the transfer matrix formalism 

for lattice models. 

The general ice or ferroelectric model (symmetric six- 

vertex model) is constructed by placing arrows on the bonds 

of a square lattice in all possible ways which obey the "ice 

rule," i.e., that there are two arrows in and two arrows out at 

each vertex. It is a special case of the Baxter eight-vertex 

model15 with Baxter's parameter d=O. This eliminates the two 

vertices with four arrows in or four arrows out. The symmetric 

model is then described by three vertex weights, a,b, and c in 

Baxter's notation. The elementary vertex can be written as 
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4 
L(a, 8; x,?J> = c 

ii 
W i'ctP*Au 

i=l 
(1) 

i where CT , i=1,2,3, 4 are Pauli matrices, c =l, and the indices 

a,@ and h,~ refer to horizontal and vertical arrows, respectively. 

The parameters wi are related to the vertex weights by 

w1 =W 2 = *c , GW 

w3 = *(a-b) , 

w4 = +(a+b) . 

(2b) 

(2c> 

For our considerations, it is convenient to regard the vertex 

(1) as an explicit 2x2 matrix in the horizontal indices, each 

element of which is a spin operator in the space of vertical 

indices. Thus, we write 

(3) 

f where CJ = 3(a1kia2) and the subscript n indicates that the 

a-matrices act on the vertical arrow at site n. 

In the usual quantum inverse method for continuum field 

theories, 6-9 one considers solutions to a linear problem of 

the form 

(4) 

where $ is a 2-component column vector, and Q(x) is a 2x2 

matrix, each element of which is a function of the field 

(e.g., nonlinear SchrGdinger or sine-Gordon) at the point x. 
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A solution to eq. (4) can be written as a path-ordered 

exponential, 

$(Y) = P em [-if)W )dx']Wd . (5) 

The observation which leads to the present application of the 

inverse method is that the path-ordered exponential in (5) has 

a precise analog in the lattice theory. It is a string of 

elementary vertices formed by contracting on the horizontal 

arrows, i.e., by multiplying matrices of the form (3) along 

adjacent sites in a row. 

For a lattice with N sites in a row, the quantities 

which correspond to the scattering data in the continuum 

inverse method are obtained by multiplying over the whole 

row, leaving the end arrows uncontracted, 

y= LlL2...LN (6) 

Henceforth, we will adopt Baxter's parametrization of the vertex 

weights14 (specialized to the six-vertex case), 

w1 2 =W = p sin 2~ , 

w3 = p sin n ~0s v , 

w4 = p cos r-j sin v . 

UW 

(7b) 

(7c) 

For the discussion to follow, n is regarded as a real constant 

and v as a variable. (They are related to coupling constant 

and rapidity, respectively, in field theory. lo) Without loss 

of generality, we can take the overall normalization p=l. 
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The elements of rgiven by (6) are the "scattering data" 

operators of the theory, 

A(v) 
35) = 

C(v) 
The transfer matrix is just the trace of (8), 

T(v) = Try(v) = A(v) + D(v) . 

(8) 

(9) 

Let us define the direct product of two matrices as 

follows: 

MllN12 M12Nll M12N12 

MQN= MllN22 M12N21 M12N22 . (10) 
M21N12 M22Nll M22N12 

M21N22 M22N21 M22N22 

Here, each element is a product of operators, and must be 

written in the specified order. As in other applications of 

the quantum inverse method, 679 we find that the direct products 

of two elementary vertices L,(v) and L,(v'), taken in different 

order, are related by a similarity transformation, 

L(v') Q L v) = R L(v) Q L(v') R-l . 

Here R is a c-number matrix of the form 

10 0 0 

0 P a 0 
R= 

0 a 13 0 

0 0 0 1 

(11) 

(12) 

where 
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a(v,v’) = sin(v-v') 
sin(v-v'-2n) ' (134 

(13b) 

Eq. (11) may be verified by direct calculation. Formation of the 

direct products in eq. (11) may be visualized as the contraction 

of two vertices along a vertical arrow (represented by an 

operator product in field theory). The matrix R in eq. 

(12) is the same as one constructed for the sine-Gordon 

theory by Faddeev, et al. It is also the d=O limit of a 

matrix constructed by Baxter, who used an equation of the 

form (11) in his derivation of commuting transfer matrices 

for the eight-vertex model. 14 

The fundamental relation (11) provides all the commutation 

relations needed to construct the eigenvectors of the transfer 

matrix and to calculate its eigenvalues. The scattering data 

matrix lqv), by its definition, eq. (6), satisfies a similar 

equation, 

v) 63 JTv') 
1 

R-l (14) 

which specifies the commutation relations among the operators 

A, B, C and D. Just as in the sine-Gordon case, eq. (14) leads 

to the following results: 

r A(v), A(v' > B(v), B(v') = 0 , I h (1W 

A(v)B(v’ > = acvf,vj B(v')A(v) - $;;';; B(v)A(v') ' (15b) f 

D(v)B(v’ > = a&, > B(v')D(v) + B(v'v') B(v)D(v') , Nv,v'> (15c) , 

1 = 0 . (15d) 
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As in the usual Bethe 'ansatz formulation, 12,13 the eigenstates 

of the transfer matrix T(v) = A(v) + D(v) are constructed upon 

one of the two direct product eigenstates, e.g., the state with 

all spins #P, 

lRo> = lel 63 If>2 Q... 8 IeN (16) 

Notice that Ln, eq. (3), when acting on a down spin at site n, 

becomes a triangular matrix, 

(I’ sin(v+q) sin2n O-' 
Lnl+>n = I +> n ' 

0 sin(v-rj) i 
(17) 

From (16), (17), and (6), we conclude that Ifio> is an eigenstate 

of A(v) and D(v) separately, 

A(v)IRO> = C sin(v+q) '~lfio> , 
1 WW 

D(v)lQo> = [ sin(v-n) NISlg> . 1 (18b) 
Eigenstates of T(v) with n reversed arrows are constructed by 

applying operators B(vi), i=l, . . . . n (where B(v) is defined 

by (3), (6), and (8)) to the state Ino>, 

IV1,...,Vn> = fi B(Vi)lQO> 0 (19) 
i=l 

Conditions on the vi 's emerge in the course of verifying that 

(19) is an eigenstate of T(v). Using the relations (18) and (15), 

the following result can be shown: 

T(v)[v~,...,v,> = A(v; vI,...,vn)/vl,...,vn> , (20) 
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where n 
A(v;vl...,vn) = f sin(v+n) N 

3 nC 
sin(v-vi-2n) 1 

i=l 
sin(v-vi) - 

n 
+ 

[ sin(v;n) 
sin(v-vi+2n) ' 

sin(v-vi) I 
i=l 

(21) 

To show (20), we write T(v) = A(v) + D(v) and commute A and D 

past all of the B operators in (19) using (15b) and (15~). When 

such a procedure is carried out, for example, on A(v), it pro- 

duces Zn terms. One of these terms comes entirely from the 

first term in (15b) and, along with the corresponding term 

from D(v), yields directly the right-hand side of (20) with 

the eigenvalue (21). The remaining terms involve states in 

which one of the vi's is replaced by v, and these terms must 

be made to cancel if eq. (20) is to be satisfied. The first 

such term, where v 1 is replaced by v, is easily found to be 

n 
- sin(vl-n) c 

N 
In 

1 
g=cJ "(VpVg) 

II 
v’v2*- 

.,Vn> - 

(22) 

Other terms involving the states in which v. is replaced by J 
V, with j>l, may also be calculated directly, but such a 

calculation is unnecessary, From the symmetry of the state 

(191, which follows from the second commutator in (Isa), we 

see that each of the remaining terms may be obtained from 

(22) simply by interchanging v1 and v. . J The requirement 

that all such terms vanish leads to the conditions 
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[ 
sin(Vj-~~]N~[sin(Vj-V~+2~~] = [sin(vj+n)lN [sin(vj-vQ-2n)] 

R=l R=l 
fi#j W j (23) 

Equations (21) and (23) are the familiar transfer matrix 

eigenvalues and periodic boundary conditions for the ice models. 12,13 

Thus, we have constructed the eigenstates and eigenvalues of the 

transfer matrix by a method which is considerably more trans- 

parent than the original Bethe snsatz treatment and which clearly 

demonstrates the connection between soluble lattice models and 

the quantum inverse formalism. 

From the examples of the nonlinear Schrodinger equation, the 

sine-Gordon/massive Thirring model, and the ice models discussed 

here, it is apparent that the quantum generalization of the 

classical inverse scattering technique provides an elegant 

formulation of exact results for soluble quantum field theories 

and lattice statistical models. Further refinement and extension 

of this method may provide additional insight into the nature 

of conservation laws and exact integrability in quantum field 

theory. 

I would like to thank W.A. Bardeen, H. Bergknoff, D.B.Creamer 

and D. Wilkinson for many stimulating conversations. 
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