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Interactions of 209-GeV muons within a magnetized-steel calorimeter
have produced 1000 *+ 80 'y~ pairs from J/Y(3100) decay. Redundant
systems of proportional and drift chambers maintained uniform acceptance
and 9% mass resolution. Above 30 GeV, the cross section for Yy preduction
by virtual photons is found to rise less steeply with energy than pre-
dicted by a QCD calculation. Its dependence on Q2 fits the vector
dominance form (1+Q2/M%)™2 with M = 2.7 + 0.5 GeV.



Traditionally, photon-hadron interactions have been discussed® with-
in the framework of vector-meson dominance (VMD) at low Qz, and in
terms of the constituent structure of hadrons at higher Q2. The pro-
duction of J/¢(3100)? by photons, if damped by a VMD propagator
(1+Q2/mw2)h2, requires description over a range in Q2 spanning both do-
mains. Elements of quantum chromodynamics (QCD) have been used in calcu-
lations attempting to provide this description”“’s.

This Letter is based on 1000 * 80 examples of u Fe - X, ¥ > W,
the first reported observation of Y production by spacelike photons.
The events are drawn from a sample of 16834 fully-reconstructed 3p final
states pr;duced by 209-GeV muons at Fermilab. 1 production by real
photons has been observed at Fermilab®’7, SLAC®, and Cornell®.

, was il-

The spectrometer in Fig, 1, in part described elsewhere?
luminated by 4x1011 beam muons. Twelve percent of the data are reported
here. The beam intensity ranged from 0.03 to 0.11 per 19-nsec RF periad.
For 3p final states, the trigger demanded > 3 hits in each of 3 consecu-
tive trigger scintillator banks (Fig. 1). Events were vetoed by addi-
tional beam (halo) muons within 28(10) nsec. The trigger efficiency was
;niform near the ¥ mass, with a threshold beiow l GeV.,

Beam tracks were momentum-analyzed by 2 separate upstream bends.
Accepted outgoing tracks, registering > 4 proportional chamber hits in
2 views and > 3 hits in the third, were required to intersect at ; COmmon
vertex optimized by iteration. The result of a combined fit to the
track momentum and Coulomb scattering angle in each module was used to

reject background hits. The 3u events were subjected to a l-constraint

fit which conserved energy, including hadron shower energy. A Monte Carlo
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program modeled the spectrometer, including detector resolutions and ef-
ficiencies, and scattering and energy-loss straggling in the steel plates.
Using randomly sampled beam muons, it simulated interactions with nuc-
leons in Fermi motion, or coherently with Fe nuclei. Shadowing and
minimum-momentum transfer-squared (Itlmin) effects were included.

The mass spectrum of u+u_ pairs is exhibited in Fig. 2{a}. If the
two like-sign muons differed by more than a factor of 2 in energy, the
unpaired muon was chosen to be the more energetic; otherwise, it was
chosen to make the smaller laboratory angle with the beam track. This
pairing algorithm retained 92% of the Monte Carlo ¥'s in the mass peak,
dispersing the remainder in a broad spectrum between 0.7 and 6 GeV, with-
out producing important distortions in distributions of other variables.

The mass continuum, containing QED tridents, mispaired {'s, and
muonic decays of other particles, is subtracted to produce the peak in
Fig. 2(b). The peak centroid is consistent with 3.1 GeV, and the width
is consistent with the mean 9%-rms resolution predicted by Monte Carlo
and by direct calculation for each event, The ¥°(3685) is unresolved.

Data taken at low beam inténsity, with interactions restricted to
the upstream 8 spectrometer modules, were used for absolute normaliza-

tion!'. The total cross section is

o/nucleon (u Fe -+ pyX) = 0.76 ¥ 0.22 nb,

allowing for the 7% y + u+u' branching fraction. Corrections (discussed

below) for nuclear effects yield

o(UN + ugX) = 0.67 + 0.20 nb,

S

where the error is normalization uncertainty. A calculation® using the
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photon-gluon-fusion diagram is consistent with this result.

Figures 2(c) and 2(d} exhibit the dependence of ¢ production on
photon energy (EY) and Qz. Each of the muon data points is the result
of a mass-continuum subtraction like that in Fig. 2(a-b). To suppress
contamination from inelastic processes such as y” + ¢ + hadrons, the
calorimeter energy is required to be consistent with elastic Y-produc-
tion. Muon cross sections are converted to photon cross sections by ex-
tracting the equivalent fiux'? of transversely polarized photons. Ne-
glect of any longitudinally-polarized photon cross section is consistent
with the observed u+u' angular distribution in the Y c.m.

To make contact with other data® at small t, the t-dependence of

the cross section is assumed to be

do/dt(y Fe =+ ¢X} = G(t)do/dt (YN + yN} (t=0)

G(t) = Azexp(at) + Ae[(1-56)exp(6t)+s£exp(6t)].

The coherent slope a, unresolved in the data, is set to 150 (GeV/c)—z
based on lower-energy photon-nucleus measurements’'>. We take
Ae=55.85x0.9 from electron-nucleus scattering!® at Q2 v 0.5. The
choices B=3, 8=1, g=1/8, in agreement with photoproduced ¥ data®, have
been used in the Monte Carlc simulation to reproduce the experimental t
distributicn with a x2 of 5.9 for 6 degrees of freedom. With this t-
dependence, the Monte Carlo is used to unfold acceptance, nuclear co-
herence, shadowing, and Itlmin effects. The resulting y-N cross section
is divided by the integral [(1-e8)/8+c)] = 5/12 of the incoherent term
in G(t), and interpreted as do(yN)/dt(t=0)}. The parameters a, Ae, €, B,

and 6 were varied over the range allowed by these and other data. The



TABLE I. Percent reduction in
do/dt (t=0) for § production by vir-
tual photons, induced by variations
in nuclear and nucleon parameters
a (Gev/e)Z, A, €, B (GeV/c)?,

and & (Gev/c) 2.

Parameter v Ae € B 6

Best value 150 50.27 1/8 3 1

Varied value| 135 55.85 1/5 2.5 0.5

<Ey> (GeV) '
34 3 11 10 12 5
56 5 12 9 10 4
77 5 13 8 9 3
106 s 13 7 8 3
140 5 14 7 g8 3




Ey—dependence of the result is shown in Table I to be insensitive to
these variations.

Above 30 GeV, the cross section in Fig. 2(c) varies less steeply
with EY than is predicted by a photon-gluon-fusion calculation?(shaded
band). The broken line is the shape of the kinematic factor
(Pt.m./Pz.m.)z'

to broken lines in Fig. 2(c) gives the energy-dependence of the square

In the simplest VMD interpretation, the ratio of solid

of the YP-nucleon total cross sectiom.

The shallow Q2-dependence in Fig. 2(d) is fit by (1+Q°/M%)™2 with
M= 2.7+ 0.5 GeV. This is interpreted within VMD as the mass of the
P -- the heaviest hadron propagator yet observed. The choice M = mp
is ruled out, If the charmed quark mass is approximately half of the
¥ mass, the kinematics of photon-gluon-fusion® produce a Qz-dependence
similar to that in VMD. Data like that in Fig. 2 may provide a critical
test of more exact QCD calculations.
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