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ABSTRACT 

We develop a systemmatic method of calculating 

the masslesa fermion propagation function and fcrmion- 

ind.uced effective action in the background gauge 

field of an arbitrary number of widely separated 

instsntons end anti-instantons. The results exhibit 

a strongly non-local natue of instanton interactions 

with massless fermions. Usirig these results, we 

alsc demonstrate that the ordinary perturbation 

theory vacuum is not allowed in @CD vith massless 

fermions, since the cluster decoqosition for certain 

correlation functions is violated due to widely 

separated instanton-anti-instanton bound states. 

The underlying mechanism is identical to that in 

-the Schwinger model. 
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I. Introduction and Sumnary 

In QCD, it is well-known that presence of massless 

frrmions completely suppresses the tunnelling phenomenon 

between topologically distinct winding number vacuum unless 

fermion pairs are created. 1,2,3 In Euclidean spacc-time 

description, this becomes manifest by the presence of 

normalizable zero eigenmodes for the fermion field equation 

operator in a background gauge field of non-zero Pontriagin 

number. lo4 Also, Calla", Dashen and Gross argued' that 

the exchange of massless fermions gives rise to a logarithmic 

attractive interaction between instantons and anti-instantons. . 

These phenomena simply indicate that the complete treatment 

of instanton interactions in massless QCD should involve 

the simultaneous study of the gauge field action, the effective 

action due to vacuum polarization of fcrmions, and the 

propagation of various fermion operators. (This is precisely 

the Procedure which has been taken in the two-dimensional 

QED - the Schwingcr model.6) 

As the first step of such a scheme, in this paper we 

develop a systemmatic method of calculating the massless 

fermion propagation function and the fermion-induced 

effective action in the givpn backgroilnd gauge field of an 

arbitrary number of widely separated instantons and anti- 

instantons. We will work entirely in Eudlidean space-time 

and assume the SU(2) gauge group with Nf-number of fermion 

iso-doublets (Nf: number of flavours). construction of the 
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fcrnisn propagation fuction becomes quite delicate whrn the 

zero eigenmodes originally associated with individual (anti-) 

instantons gain small 'energy' and become non-normalizable 

(i.e. plane waves asymptotically). It goes without saying 

that cxtrcme care is necessary in dealing with interferrnce 

between normalizable modes and non-normalizable continuum. 

We resolve this difficulty by expressing the full fermion 

propagation function in such a background gauge field in 

terms of the fermion zero-modes and propagation functions 

(in the non-zero-mode subspace) in the individual (anti-l 

instanton potentials. The fennion-induced effective action 

can bc obtained from the fermion propagation function by 

using the standard variational formula. The massless fermion 

propagation function and fermion-induced effective action 

exhibit a strong?y non-local nature of instanton interactions 

with nass!css fermions. We also clarify the precije nature 

of the so-called zero-mode approximation. 2.13 

Using the prqpagation function and the fennion-induced 

effective action thus constructed, we analyze the cluster 

decsnpssiLion property in massless QCD. 
2 We demonstrate 

that, in the ordinarypsrturbation theory vacuum, the . 

cluster decomposition for the correlation functions involving 

operators of non-zero chirality is violated due to widely 

separated instanton-anti-instanton field configurations. 

The underlying mechanism is identical to that in the Schwinger 
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model. Strong logarithmic attraction between an instanton 

and an anti-instanton, which is generated by vacuum polarization 

of massless fermions, is balanced by strong repulsion due to 

explicit fcrmion propagations. Analogous behaviors in the 

Schwinger model has been noted by Nielsen and Schroer. 7 

Here, we should mention that the cluster decomposition property 

in massless QCD has been considered in Ref. 2, but without 

due considerations (at least ic the paper) of strongly 

non-local nature of instanton interactions with massless 

fermions. The breakdown of cluster decomposition is resolved 

by going to the so-called IO)-vacuua.* Implications of our 

results to a variety of instanton-related problems - for 

example, the spontaneous breakdown of chiral SU(N) symmetry - 

are under investigation. 

The plan of our paper is as follows. In Section II, 

we construct the fermion propagation function in the back- 

ground field of an arbitrary number of widely separated 

instantons and anti-instantons in a systemmatic way. In 

Section XII, we evaluate the fermion-induced effective action 

in such a background gauge field. We discuss the cluster 

decomposiiton in massless QCD in Section IV. In the Appendix, 

we discuss some properties of Me fermion zero nodes and 

illustrate the absence of nonnalizable fermion zero modes 

in a simple instanton-anti-instanton system. 
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11. rc-rrion Propanation Function 

1n this section, we develop a aystemmatic method of 

calculating the fcrmian propagation function in the background 

gauge field n 

A; Ix) = g, A;; tr,zi) 
(1) 

= $, A;+bz) i- & A;-(X-G) , 

where Qx-zi) (,a=1,2,3) denotes d localized gauge field 
, 

cc7fi;.;r&tion wi& the center at x=si and the Pontriagin number 

*=tl, i.e. P:+ for an instanton and A;t- for en anti-instanton. 

(lo t':is paper, we use a generic name,, (anti-)instanton, to 

indic;zc % localized gauge field with %'= +1(-l), not just 

the classical (anti-) instanton solutions first found in 

Ref. 6). The most well-known examples of such non-trivial 

1cca:izrd gauge fields with k)=?l are the singular gauge ---- 

expressions of the BPST SolutionsS. 

j$k,,.z = $$L ~e,p(x-z)9Ta 9 eid-z 
.I (x-zla[cx-rP+ p’] w 8 

where:! q-symbois are defined by9 (,,,v=1,2,3,4 and k,r=1,2,3) 

?!;A= -7; , CL- Glhpa . e,(L = f L (31 . 
Cie ass'ue that instantons and anti-instanton in the field(l) 

are widely separated from one another. Assuming that fermion 

zero no3e wave functions and propagation fucntions (in the non- 

zero-ro?e subspace) in individual (anti-) instanton fields 

are known, we shall construct the full fedon propagation 
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function in the background gauge potential (1) in terms Of 

tbosf functions. The difficulty of this construction lies 

in how to disentangle interactions between normalizable 

zero modes and non-nonnalizable continuum. In particular, 

great care should be taken when both instantons and anti- 

instantons are present, since certain linear combinations 

of fermion zero nodes assoc;iated with individual insrantons 

or anti-instantons join the continuum in a non-perturbative 

way (See the Appendix). 

Let us first summarize our knowledge about a single 

(anti-) instanton. G. 't Hooft noted' that, with the exact 

classical solution (2) as the gauge potential, there exists 

e nonaalizable solution to 

Y,D,‘k = Yp(a,-i:,&.$, ‘r: = 0 (4) 

with YS&= F ‘k . [We use the y-matrix representation 

satisfying ~Yp.Y~b -2 &v, $ I-$, and y5 = Y~Y~Y~Y~I. 

Explicitly, 1 

(5) 

with $‘I( 5,ti) and the constmt vector X1 spified by 

&?c,’ 1 , *$L= r- t 17% +g&YJ~ . 
According to a general theorem. 4 if tat denotes a number of 

normalizable fermion zero modes with y; - il. then 

N, - N, = - 23 



for each fermion 

as*ume that N+ = 
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flavour. In this paper, we will further' 

0 .for a single instanton and N- = 0 for e 

single anti-instanton. we also note that the zero mode 

wave functions (5) behave asymptotically 

%dx-r) I*-rl o( A) . 
(8) 

Though the general proof is lacking, we believe that the 

asyr.?totic behavior (81 is quite generally true with any 

sufficiently localized gauge field of M= 51. TO support 

this assertion, more general field confiqurations other than 

the exact classical solution (2) and associated fermion 

zero modes are cer.sidered in the Appendix. From now on. 

we will thus assurr.e tkfollwing for a localized single 

(anti-) instantcn described by $*(x-a), 

cil b9= *I 

tiij A;,(x-z) ,x-z,+oo L O( ,Jezl~) or vanishes faster , 

(iii) y,D, poss&.~e~ a ,aingle zero mode vat (X-‘i) satisfying 

r, k* (X-Z) = s q&k-Z) , 

(9) 

The condition (ii) requires the gauge potential to be intie 

singular gauge. 

Due to presence of a nonnalizabie zero mode, the masSleSS 

fermion propagation function in a single (anti-) instanton field 

cannot be defined. Thus, we may regulate the zero eigenvaluf 
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by introducing a small fermion mass m and solve the Green's 

function equation 10 

(r,D, + im) S, = I 
UW 

~ 

where we smploy the operator notations, S(x,y)= CxlSly) , 

64(x-y) =(x1 I] y), etc. Rearranging the fermion propagation 

function, we may write 10 

s*=[@$+mx* -t #);+JlQp] - im ,,‘*m; . (II) 
We now note that, due to projection operators * , the 2 

terms inside the square bracket in Eq. (11) has a well- 

defined zero mass limit9 

5: = py.# + A-$+% (113 
On the other hand, 

-'ln p)p:+d iz? 
\%*Xk*l * 

im 
+ Oh1 , 03) 

where \~*)dfnotes the fermion zero node discussed earlier. 

Using the representation (12). it is a simple matter to show 

that9 
&Dp S: = I - llLz<kt 64. a1 

1s: If = s: 
, 

04.b) , 
&*I s: = s:Pk*j= 0 . (I4 .a 

The explicit expressions for SJ in the exact classical solutiofis (2) 

have been constructed in Ref.9. For Ix-ail + - and ly-zil + -, 

the propagation function (x Is;I y lapproaches the free mass- 

less propagation function 

(4 s,l 9 = (4 (d P 1%) , 
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Or. the other hand, for Ix-zil -t - but ly-zil finite, Eq. 

(14~1) indicates that 

<4 s: 1%) -@&I &-a) (16) , 
where we assumed the asymptotic behavior of the zero mode 

wave function as given by Eq. (9) 

iie nov proceed to the construction of the fermion 

propagation function in the background gauge field (1). 

The gauge potential (1) has the total Pontriagin number 

M= n+-(n-n+), and, according to the general theorem (7). 

the operator vuDp possesses at least In+-(n-n,) I-number of 

exact fermion zero modes. We again introduce a small fermion 

mass m to regulate such vanishing eigenvalues and define the 

propagation function S by 

(yPDP+im) S -[ $(+-ia$,itJ) +im] S = I UP) - 

For small IO and l,/Izi-zjI Cifj, i,j=1,2,...n), we wish to 

express S in terms of individual fermion zero modes 149 

and fermion propagation functions S; defined by Eq. (14). 

Here, we note that the operator ypDv + in is non-hermitian, 

and we prefer dealing vith a hermitian operator. We thus introduce 

5=-ixS , 
then Eq. (17) becomes 

(18) 

( $,D,, - hYg)Ll , (ItI 
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whcrc WC denoted ; -t 
11 = -iTgyP = -y,, . The operator qp DP - 

my5 is a hermitian operator and thus the inverse must be also 

hermitian, viz. 

$I+ B 3 Qo) 
. 

Since this hermiticity relation is very useful, we shall first 

construct 2~as a double power series in m and l/d ('d' 

characterizes the relative distances between instantons and 

anti-instantons), and then use the relation (18) to find S. 

Note that we do not make any assumptions about the magnitude 

of md. 

Let us write 

3 = 3, t iJ31-50) t 7 

with 

g* = -iY& ) s,r = -iyss; . 

From Eq. (19) and the relation 

[Vp(2p-iP&-$) - mYS]cSI = I - PfiiX%l 
we then obtain the following differential equation for'+ 

W) 

(&D, - m%> 7 = ;, Ikim + hR 

with 

~WS ~,i~~~(lt,r-~.~)tSi'-r;, tmYs[~t~~&~-3.JJ . W 

Note that the function 8 is at most of order l/d2 or m. [Hence- 

forth, we will use the notation O(m, l/d2) to indicate this]. 

At this stage, we find it very convenient to introduce lai)by 
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( ?fD,. 
b6) 

assuming that <d&)‘S are sufficiently bounded at infinity. 

Later, we will be able to express I&) in terms of 2'j and 

I+$ (j=l.Z....n). At this moment, it is sufficient to note 

that the functions (x\&,> are expected to involve large 

nwbers like l/m or Izi-zj13, since there is no bounded solution 

to Eq. (26) with m=O and the replacement 

$Dp -+ $(t+. -is&;*$ ) , (t7) 

[If there should exist such a solution, we could have constructed 

a completely regular massless fermion propagation function in 

a aingla instanton potential.1 
s 

As the starting approximation for T (See Eq. (24)), 

let us consider 

7” = E, I &X%1 . 

mn, from ~qs. (21) and (24). we obtain the integral equation 

5= - se + ;pia t Ti” t sii 

where we &fined $,j by 
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g = 3, t gS:-30) f J E , 

3 = ~,lW%il t x . 

If wa define Gil by the integral equation 

<PiI =<ti- t <Elk , 

the integral equation (31) takes the following simple form 

3 s g, IGiXRI . 03) 

Note that Eqs. (29)-(33) are still exact. Horeover, the 

integral equations (30) and (32) do not involve yet unknown 

functions \a,, , and thus, by iterating these integral equations, 

one may calcula& d and 3 to ar.y desired accuracy. TO 

determine the functions lb,} , we note that, from Eq. (261, 

00) 

(31) 

02) 

I5i) z 5 IQ 

* b: I*&> t &lGj><~lk) , 

or $,l~>(Sjt-<i$lf,) = 2 1%) . 
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In principle, Eq. (35) allows one to determine jirj) to any 

desired acwacy. Nwewr, for the purpose of practical 

calculation, Eq. (35) is not 80 convenient since one has to 

often deal with the ratios of'very mall numbers here. 

Actually, it is simpler to use the differential equation (26) 

&redly (rather than its integrated form, Eq. (241) and tbm 

bermj+icity relation (20). This will be explained below. 

mao the harriticity relation (20) and Eq. (291, we 

cancluQ that 

.3-g I: -J+J’ 

= O(m, 9 , 
where the estimate has been made from Eq. (30). using MO 

representation (33) for 3 , one relation (36) now reads 

$(l&><RI - ~~iW) = O(m+ +) ‘. 

The equation (37) implies that 

I&> = z$ lFj> t oh+) 

07) 

00) 

with the constants ‘2 
ij 

satisfying the heraiticity relation 

The nnauzrical values of the constants cij may be determined 

by inserting the form (38) into the differential equation (26). 
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Before we look at the differential equation 1261, 

let us first study 13,) , definea by Eq. (32). a bit in 

&tail. Iterating Eq. (32) oncamd using the explicit 

expression for 8W.q. (25)). we obtain 

I&, e 1%)' + {,gq-u;&($-$&i*g t[q+j+9 

t O(m*,+, +) 
, 

where we used the ket-notation instead of the bra-notation 

used in Eq. (32). Further ignoring terms of O(l/d5) in Bq. (40). 

we obtain 

IPi> = 1%) + .g 5~-S)i~~p~4 IW 

+(s/-~~)io~~(~2-~."r>l~~ +[%+,~~~~-%)lm%I%ii 

t O(m=. ml ,j', +) . 
Rowever, we now note that the second term in the right hand 

side of Eq. (41) can be written a* 

E ( sj’- S) ytJp\k> = 
jti 

-JppkJ” + J~iqlxJy-*~ Ita 
. [4@ 

From Eqs. (41) and (42). we now obtain 

Ifi) 5 I*&> - J&l~><$~&} t J~$S~+3jeiL'~$~&j'Z tmu,)l" 

+ Of*, ML &+~ . (43) 
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From Eq. (431, it is a simple matter to obtain the result 

($&-~YS) I Vi) 

t -m I k><kiI b;l ki> (44 

_ 2 \kj&j i&&j*$ Iti> + Otrn: m$ #+I 
jCi . 

We bwe thus found that (;,D,-w5)liti) yields a linear 

combination of' ferrion zero modes. (For this, astute readers 

will realize that the first iteration term in Eq. (40) iS 

absolutely necessary). This is precisely what is expected 

from Eqs. (26) and (38). NW. let US define the constant 

matrices a and? by 

Gfik = <‘LI ($D,- m’i,) I pi) , c(5) 

{Eli+“‘* , t46) 

then, from Eqs. (26)(38) and (44). ve obtain the matrix 

equation 

N71 

If we denote 

<~lfdW --Si (Si-1 fW i-l.-.n, d sil-1 f* is&+I,.;.,nI 
(48) 

, (49) 
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Eq. (49) indicates that 

{g);c= m&h* - L f o(e+.+) . 
60) 

-+ 

since zz p aik, we have B -"B and &= T. , up to the or&r 

being considered here. Moreover, from the asymptotic behavior 

(9) for zero mode wave functions, we observe that, in general 

Eji= 

I 

0(&J, , if Q(Ai) = -%Aj), (zI, 

zero , if 93(Ai) 5 9 (Aj) . 

Also, simply by checking chiralities (or x-syrmnetry) in 
Eqs. (32) and (451, one immediately conciudes that 

IcB)ic= m{Si S;k + O(m.$)) if @(Ai) s QCAjI . (52) 

Prolo these behaviors, it is clear th:t the COnStrantS Eij 

are in general of order l/m or d3. 

Now, we thus conclude that the functions Ihi)are given by 

lGi> 5 I&;“‘> + ITi> 
with 

183 iL %{lt$) +( ${$-Qi$ljJ;tf~ -&*%I t [St@2-blrn~~~ ikj? 

1%) = o(m* +I , 
DW to Eqs. (26)(38) (44) and (47). the correction ISi)in 

Eq. (53) obeys 

( ypDp- mu,) I %> = I%} - (%pD+-mY.>I&?> 66.1 
- O(m’,+,+) . 
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If we denote 

I&> e 1%) - ($Dp-m‘ds) IG"> , 
cm 

v8 now obtain the integral equation 

lEi> + t, lGj><Fjl Ci;i> . 

Equations (29)(30)(32)(33) (581 fern a complete set of in+cgral 

equations vhich~rlla one to calculate 3 to an arbitrary 

~tDXKCZCy. 

It i8 a simple matter to translate Our finding8 for 

g into those for S via Eq. (1.8). The results may be summarized 

by the following equations: 

s =A+3 , m. a) 

d- s, t g, (Si%) + ‘2 R(m) , (61. b) 

33- g, I QiX Pi[ ., (!i?.cJ 

R(nS- ~ir~(~~-~~.~,tSi’-Sd-im[S.+~,(S!-f)], tti.d) 

(Pii = <kI + <PiI Rh 

= (%I t (4~1 R(m) + O(e m$, -Jo) , 
me) 

IQ> a I& + d Iti> + &lQj~(pjlEi) , Irr.f) 
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IQ?> = C9 \ 1%) + Rtkml%j>) , 

CB-I , 

wl.‘b) 

tst h, 

iC3 ik = Cia , {B)ik = h 5-k + O-k; , (9l.i) 

a . = a?, = (kkl -i~&X& 1 k> 

I:) = 1%) - (YpD,tW[c$‘> (= oiw’,-~,+)) .tsq.ti 
In leading order, the fermion propagation function S is given 

by - 

S = S8 t ~,(Sik) 

t Cij { ,lj; t R?(-dtLj)){ <kd t d-ii\ R(i)') &O) 

[Precisely speaking, the expression (60) for (XjSly) i8 valid 

only for Ix-y‘1 -I. <Gil This is because a constant mass term 

in the Green'8 function equation doe8 not damp asymptotically. 

However, this can be easily fixed by keeping the asymptotic 

mass tail of a free particle when we take the zerouass'linit 

in Eq. (11) and then repeating the above constructionI. 

With the exact classical solution8 (2) for $ , a 

simple calculation using the zero mode wave functions (5) 

yields 

a,; = -i ~“~,+~cr*-ri~~Qci) [ 1 + O( ,z~wJ] m 
4’ i 



for d(Ai) = 1 = -@(A,), where I (& is a real four-vector 

specifyin the relative global gauge orientation according -_ -* 
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to 
.A 5 ‘%‘s 

e =e 
i&-s e”bi.~ 

(~~~,, = (Eli sm~ , eos ~~) 

tC2) 

. 

For d specific relative global gauge orientation satisfying 

. (&-Z;l'f*i = 0 , (53) 

the COnStintS C. . 
1J 

involve terms of O(/tk-zi15), and one must 

include the second (or more) iteration for IPi) in Eq. (4,O) 

before one determines jai) by Eqs. (38) and (26). We have not 

done this calculation yet, and the physical Eignificance of 

such specific relative gauge orientations are not clear. 

If all the higher order terms also vanish, that implies the 

presence of an exact fermion zerr mode. Thus, we may say that, 

if a certain widely separated instanton-anti-instanton system 

(i.e. n+ = n-n+ = 1) might possess an exact fermion rero mode, 

the relative global gauge orientation between the instanton 

and anti-instanton should obey Eq. (63). 

In the limit m >S d -3 , the expression (60) is reduced 

to 

s = so + g, [ s’ t e _ s8] w 
im 

l 
. 

which is tbe expression used in the dilute gas approximation. 
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For m : d 
-3 

, it depends crucially on what kind of background 

gauge fields are being considered. If the gauge field At 

includes only instantons (or anti-instantons only), then 

aki 5 0 and the expression (64) still provides a good approximation. 

On the other hand, if n+ # 0 or n, one has to solve the full 

matrix equation (59h) and keep the full expression (60). 

For example, for n+ = n-n+ = 1 (i.e. an instanton and an 

anti-instanton), we obtain 

S- s: + Sk - St, - -&&k>td-'d%>j{<kj t <J;,IR(m$ 

- +& { \‘k’i t &nolkJ){<kl t <‘kIR(m+ (Sn 
ti t- %I=* blZ f I&) t R+(-ti[~>]~<t~ t (+A RImI} 

+ 
where the constant a is given by 

tiote that, in the limit m << 1 

lz 1-3 

3 (or, more precisely, 

m << ial), the expression (65) approaches the following 

m-independent expression 

S- s; t s:- s, t ci'{~$,, t ii=&,)#ti + <ki R(+ 

t(a'~~IWt~(~~I~~}~(~,it(~~RQ~~ f 0(-j&$ . 

(67)~ 

Here, we note that the terms like R+&cJ) I+~~)($J in Eq. (67) 
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represent interfcrcnrz terms between the zero modes and 

non-nonnalizable continuum, and in genfraf are of the same order 

+h, SW. Itol'borl. For example, vhen x any y are close to 

,z2, both 6cl~+I-n)i~~~)b~Iy) and tc(+,i( *,,ly) are O( ' 
ly-521 

5). 

for a background gauge field with n+ # n-n+, even in the 

limit ID c< l/d3 the propagation function involves a singular 

ters proportional to l/m as well as m-independent terms as 

shown in Eq. (671. Of course, this implies presence of exact 

normalisable zero rrrdes for the masslcss Dirac equation, in 

accordance with the general theorem (7). 

The fermia propagation function @I Sly), given in 

Eq. 160). is particularly simple vhen the space-time points 

x and y are not close to a certain (anti-) instanton simultaneously. 

Nxlely, if Ix-zil and ly-tit are not simultaneously of order of 

(or smaller than) the i-th (anti-) .instanton site for any i, the 

expressjon (60) may be approximated by 

s, .+ C~l%jwkiI . 
m 

The second term here is precisely what one would expect from 

the so-called zero-mode approximation 2,13 r i.e. restrict the 

. Hilbert space to zero-mode subspaces and find the inverse of 

the operator 

I4$<klY,D,+imlh>(h\ . 0 

Hovever, in a background gauge field which 

includes both instantons and anti-instantone, the zero mode 
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approximation (68) for bl~Iy> is a bad approximation when 

x,y are close to a single (anti-! instanton simultaneously. 

Thus, to calculate quantities such as vacuum polarization 

current8 (which involve the propagation function at x=yY), 

one must use the full expression (60). Here, we note that the . 
zero-mode-approximation is a priori not justified in a gauge 

field including both instantons and anti-instantons. For 

example, in the instanton-anti-instanton system, absence of 

exact normalizable zero mode immediately implies that we have 

only non-nonnalizable continuum Q3p is a positive semi- 

definite operator). This simple fact indicates that. if one 

wishes to use the degenerate perturbation theory, one must 

do so with two normalizable zero modes and non-nonaalizable - 

continuum. 13 Acute readers will realize that we have 

effectively solved this seemingly very delicate problem with 

a judicious use of the propagation function in the non-zero- 

mode subspace. Finally, we note that, using the fermion 

propagation function (60) with appropriate regularization of 

short-distance divergences (for example, see Ref. 11 and also 

see the next section for the isospin curreni), one may 

explicitly verify the following divergence relations 

a, ( 3pO = -i 2, Tr&(hIx>) = 0 , ma? 
Dj$< J-+9 = -i(a,t+a~~~~)~(Y,~b(xlSI~) = 0 , ,(70b) 

ap ( mb = a, -Ii ( Y~Y64 <x\ s 1 x>) 
= -2’r~tr(u,<xlW - ~x&i*~;w . 

(‘IO cl 

up to O(n,l/d2). We leave this exercise to interested readers. 
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III. Fcrmionic Effective Action 

Using the propagation function constructed in the previous 

section. w now calculate the fermionic effective action. 

The fernionic effective action rftA) is defined by 

$P = det [-id,&-ig A,,.% > + w’J 
det [ -iYF+ + M] . 

Using the variational formula 

d-Q*d&X = Tco(hu , 
we obtain (Nf: number of fermion flavours) 

ST;(A)- = - 3 $1 d'-x { T-w> SA>cx., , 

(71) 

02) 

0 

where the isospin current (J~Ix)) due to fern&on vacuum 

polarization is given by 

<J;(Q) = id~&xI~SIx>) . 
,041 

The isospin current (74) is actually infinite, and requires a 

careful regularisation and renormalization. The simplest 

regularisation procedure is that of Pauli-Villars; i.e. introduce 

Nf-number of regulator fermi fields with very.heavy mass X 

and coupled to gauge fields according.to a minimal gauge 

invariant coupling. Then we may define the regularized isospin 

current such as 

(J-64>& = i .k T {Y,g[<dS(y> - (~1 S,bb]) ;: II m) . 
8 3 

where the regulator propagation function SR satisfies 
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($D,tiM) S, = I 0% 1 . 

It is a rrimple matter to sh& tha; the expression (75) is 

logarithmically divergent as M + 0, being proportional to 

-#4(% . M) Dt;b L\(x) 

This is a standard renormalization problem, and the infinity 

(77) i8 absorbed into the coupling cons&t renormalization. 

Thus, we may define the renormalized isospin current by 

< Qx&- $pJ i $i Tn{Yp$( <4S\r> - (xl SAQIJ 

+ 3(&J (f-+) D?I$~x)] , ma) 

where 
PJ 

is the.renormalizatian mass necessary to fix the 

coupling constant. Now the renormalized effective action 

satisfies the variational formula 

6r; %n. s -$ N5\d% < 3;t~>~~.SA;w . (79) 

For the background gauge potential (1). DYF:,, (x1 is 

strongly localized around individual (anti-linstantons, and 

thus, up to 0(1/d'), the renormalization counter term in 

Eq. (78) simply ronormalizes the individual vacuum polarization 

currents due to non-zero modes. From the propagation function 

160). we thus obtain the renormalized isospin current 
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vi*. 

< 3; lx) i,. = *T~[ i f> hIyr~(<xlSlly)-(~S;ri’l)) 

+ ~(~#$$4~F~q; m’ 
, 

whws? 14 denoted F;yibZ) = a,, A:* - avA; i + ~c~~~A;~A;~., 

The ,exact expressions for Ok):,,- in the exact classical 

solutiOnS (2) (i.e. DY &<” w - 0) have been calculated in 

Bef- 11 with the result 

<yQj;mg = e (-q fqJx-afl~ pg (ez) 
-;6.~ 

3% [(x-z.‘= + p’]” . ‘. 

We ~~11 assure that the currents (.7ti(x$ are strongly localized 

arcumd x=zi, as the expression (82) in the exact classical 

soliltion indicates. Note that the isospin current given in 

Eq. LB01 is then sirongly localized around xazi’s. 

We npv look at the variational formula (79) with the ," 

position variation oft the i-th (anti-) instanton 

&AZ W = SZip %;,A; (XI 
(83) 

- - $ Z;, SW &(X-S ) 

I S&[ F; (x-r;) - (a&+ gcdA+c,) A!; (x-i;1 ~, 
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Inserting the isospin current (80) and Eq. (83) into the 

variational formula (79) and using the conservation law (70b), 

we obtain 

br,fAb& 

SziV 

+ O(m,+) . 
We now note that, since the self-action is translation-invariant, 

we have 

5 dCx < 12 hj,. 5:; (x-z;) = 0 . 

(84) 

Also, we note that 

{ &I$? + <%I R(m$>') $r{ <XI &> + (XI &mlI k:)} 

z -im 
5 

d4g &c-zi, y$ [ S~~(d’ t ~,( S~'~~,-s,clcrb'jl ~if~-Z; 

-i m \ 2-j ~~Cpi~[S&p + ~,tS~q.*,-~(~*3)lY~~j(%-~ 

= o(m+) , (86 

and thus the term proportional to Cii,in Eq. (84) may be safely 

ignored. Thus, ignoring terms of O(m, l/d') or higher, Eq. (84) 

n\~y be simplified to 

--,> N+~i c;j{ (~1~~~~ -2 1%) f ('Id ,&% R+(-&j)} 

-iI + JcicjiI$l Y,&*$ IQ + &j Rfd&h*Z I*;)1 

+ Oh ,g 
(8; 
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Using the explicit expression (59d) for R+(-m), we now 

note that 4 
Iq = ~(~;j~~$~;*~l$> t a<kJvpbvi.$ Rt-m'I$) 

= 1 (*iI $&;*s {I t S;ilYAXti$)lkj> 

+ Oh+, +> (88) 
J 

where we performed some simple manipulations analgous to the 01~8 

used in Eq. (42). Writing 

,$&.g = i [ D+,Dh] , ( Dpi=3p-ij$isz > a91 
tie expression 188) may be also written Lr the forms 

bj = -i <'k\D~@ilk$ ti(~~ai[l-I~~~{~~]i~YA~~.% \Q + O(m$, -@ 

= 4 &\&i~l'&$-lQ ti&b#‘iX'k~~i~~~~~ 1%) t O(rni,i5) 

= -i ~G(*i(i)YAX~*$l$) +~(~l~l~X~~i~~~~.~~~? tO(m$,&) 

HO) - 

Similarly, we obtain 

$ <tjj Yptpvi-z Iti) t $(*jl R(m)$$wis~ 1%) ('II) 

= -i ~-<~I i ~y,?$$~ ki) t i &I DGI '@{'k$~u*ILj*$ I %) -I- O(m$ ,a3> 
. 

Inserting the results (90) and (91) into Eq. (87) and using 
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~~(~jljli%~A~~.~ 1~~ = - ~~i’~ , (93) 

(%I DsiIk) = - 4 (k\ {UP, #;)Iki> = O , & 

ym* = Nf c [ C;j F%Bji + CjL p%Bg] 
i3 

- Li + 0 (~0 $1 

= I$~(K'~~B) t Oh$> . 
m 

In the limit l/d CC m, the effective action rf(Alren . 

should approach the sun of effective actions due to individual 

(anti-l instantons, viz. 

l-(A) f tea *<ln ;.I ) F[t+JqM + T;IApd] t O(m) , (96) 

where we denoted 

$‘W= &t’-iYr(+-i&*$) 

det -;+a,, 1 471 
b2vlormolized , 

(Here, det' indicates that the zero eigenmode is to be deleted 

from consideration, and for renormalization, see Ref. 1). 

From Eqs. (95) and (96), we can uniquely determine the fer&niC 

effective action in the background gauge field (1): 

r; (A&,-= P+Qo$det-iB) t $,~i+J t O(m.;t) . fl8) 
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In particular, for an instanton-anti-instanton system, Eq. (98) 

gives 

r; (Al-r N+ .f$ Wt IOJ’I + i&J + @A,) + Oh &) (99) . 
where the constant a is given-in Eq. (66). We also note that, 

with the exact classical solution (21 as a single (anti-) 

instanton potential, 't Hooft evaluated rf(Aui) with the result1 

Ti’Ari’=NfpOgpi~-~Nf9%(~~) tZN+(O.1458*-*) - bo0) 

Again, the teclll Nf log tdet-iB) in Eq. (98) has a simple 

interpretation in terms of the zero-mode-approximation 
2.13 

i it 

is sinply the logarithm of the product of all the eigenvalues 

of the operator (69) in the zero-mode subspace. However, if we 

had used the zero-mode-approximation (68) for the propagation 

function to calculate the fermion-induced isospin current and 

the fermionic effective action, we would not have obtained 

the result (98). (Even the leading term, Nf log (det-iB1. 

cannot be obtained this way.) As we have already explained 

at the end of Se&ion II, it is crucial to include interference 

terms between the zero modes and continuum when both instantons 

and anti-instantons are present. In other words, the tero-mode- 

approximations for the fermionic effective action in such 

cases are, rather surprisingly, the results obtained after 

including complicated mixing terms between the zero modes 

and continuum. We have also shown that there is n&undetermined 

O(l)-tern in Eq. (98). (Th*s fact is important in the next 

section, in particular to establish Eq. (109).) For m-0, the 

term Nf log(det-iB) describes logarithmic attractive intaractions 

between instantons and anti-instantons. 
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xv. Cluster Decomposition in Masslcss QCD 

In this section, we study the vacuum structure of QCD 

with massless fermiions, using the fermion propagation function 

and tho fen&x-induced effective action determined in previous 

sections. Without massless fermions in the theory, Callan.~ 

Dash& and Gross, 2 and also Jackiw and Rebbi, 3 showed that 

the physical vacuum states of QCD are the so-called le)-va=UUa 

clel ( "1. Different values of 0 give inequivalent vacuum 

states due to quantum mechanical tunnelling between topologically 

distinct winding number vacuua ( so called In) -vacuual. 

Of course, such tunnelling phenomenon may be described by 

(anti-jinstantons in Euclidean path integral language. On 

the other hand, there is no tunnelling between different winding 

number vacuua with massless fermions present. It is then natural 

to suspect that the le)-vacuua in massless QCD are merely 

gauge-equivalent copies of the ordinary perturbation theory 

vacuum In=O), and no physical significance at all. In the weak 

coupling approximation and under some plausible assumptions, we 

shall below show that this is not so. We will first show that 

the ordinary perturbation theory vacuum in massless QCD cannot 

be allowed since the cluster decomposition for certain correlation 

functions is violated. In the le)-vacuua, the cluster decomposition 

is restored, and different values of 0 correspond to .different 

vacuum states since certain operators of non-zero chirality obtain 

different vacuum expectation values. 
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Let us imagine that the vacuum in massless QCD corresp?nds 

to the ordinary perturbation theory vacuum (i.e. unique vacuum), 

In-O). If a,(x) is a local operator of chirality f 2Nf, 

then, with the unique vacuum, we must have 

<n-01 ~*I+l=o) = 0 CIOI) 

We now recall that, for any proper vacuum, general quantum 

field theory requires the cluster decomposition 

(,.o( tj+o$) 69.l+l=o) ~$$-OI 8&)\3-0}6~ &wl7l-o) , (~~2) 

and thus, according to Eq. (101). the right hand side should . 

vanish. We will nov demonstrate that this correlation function 

actually approaches a non-vanishing constant asymptotically. 

For definiteness, we will consider the operators 

S*(X) = : ;-, p* jpp: [h (103) 

where the notation: : implies an appropriate subtraction of 

short-distance infinities in such a way that Eq. 1101) may be 

satisfied. Using the Euclidean path integral representation, 

we have 

<fl=01 G+c$j-(x2 In+ 

=N"~A;~J$I~NI e 
(d!+t$ct &""b.%] 

:[&&+p&! &d& 

(loi) ' 

where, for a very weak coupling, we may take the normalization 
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~~~[-tca,*~-~A~~(~A~-~~A~ + %u,a,t’i] id 
m3 

By the assymption about the vacuum we only include gauge 

field histories with the total Pontriagin number zero in the 

path integral (104). 

Naively, one may expect that, for 1x1-x21 + -, the 

correlation function (104) will be.0(l/~xl-x216uff), as the free 

field theory indicates. This is totally false with the 

background gauge field of the type 

A;(x) = A;+ (*z,) + /$(x-tr , (lob) 

z, = XI , z, z x, , 

where A~+(A~-) describe a localized instanton (anti-instanton) 

with the center x=sl (x=02). TO see that explicitly, let us 

consider the simplest case, Nf=l, and assume that an arbitrarily 

large-size instanton (or anti-instanton) does not give a 

significant contribution to the path integral (104). Then, 

for sufficiently large 1x1-x21, we may write the total contributions 

to the path integral (104) due to gauge fields of the type (106) 

vhere the normalization NG is given by 
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{d’x (+&4&X+&-~& 
ml) 

. 
In Eq. [107), Ff and S(x1.z~~) denote the fermion-induced 

effective action and fermion propagation function in the 

instanton-anti-instanton background gauge field (106). Using 

the explicit expressions 167) and (99) lwith m=Ol for S$,x2) 

ahad r f, it is easy to see that the expression 1107) approaches 

a constant asymptotically, i.e. 

=s *I { J@++ 
. , etl~C&e~~~,~(~-~~~~~~~~‘~~~~~~-~ 

, lira \ 
# 0 

V”I I 

where Oo+(Vo-) repre:ents the fermion zero mode wave function 

in the field Aa+(A~-). 

From Eq. (107). we nbw observe that 

Jim (+-OI ~W&kj?I+ = &OJ ~~X#tl=~(ll=~j &(%)[?l=+ 0’oJ 
I&-YJ-S - I 

where 

e ~~r-,I~+~~ir~~~~~~,~~(*. 

1 * 
. 

0 - 
and {n=~@,(x(~[?l-I> is given by an analogous path integral in 

the&-l sectox. In fact, a straightforward calculation shows 

that the result (llO)ie true for all Hf. [Note that, to 

calculate the expectation values of fermion operators in the 
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ti=*l sector, the regulated fermion propagator (111, with the 

approximations (12) and (13) , can be used effectively]. 

We uote that a non-vanishing asymptotic value for <~s~~+i&ol~ll-o) 

has been achieved by a precise balance between the rapidly 

vanishing fermion determinant[ eq o( l&l'% = O(&dd ] 

and the rapidly increasing product of feraion propagation 

functions in the background gauge field (106)[S(r,,QO6 b'=O(14-Iz?j]- 

Analogous behaviors in the Schwinger model has been noted 

earlier by Nielsen and Sciher. 7 For a WC&X coupling and if 

we can ignore arbitrarily large-size (anti-) instantons as we 

have assumed, one can easily convince oneself that contributions 

to the path integral (104) due to gauge fields of n+ = n-n+ # 1 

are negligible in the limit ~xl-xzI * -. Thus, we may conclude 

that 

j$Ml&<,.Ql Zi,dh~l~-o) = (yj 2i,k,ln-‘)(n4f &x,,j*+ 
fo . h2) 

This shows that the cluster decomposition is violated in the 

ordinary perturbation theory vacuum. 

It is well-known that general local quantum field theory 

relates the failure of the cluster decomposition to degenerate 

vacuua - here, the Gvacuua. We will new show how the cluster 

decomposition is restored in the 16)-vacuua for the case of Nf=l, 

leaving the cases with more fermion flavours to readers. In 
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the e-vacriua (and with Nf=l), We have the path integral 

representations 2 

<el6PJe> 'Jc~~~b$l~pr~~l e 
in8 J&&%ti$YpDr?~ :.p,u+,. I 

e t - 

(II31 ‘ 
and 

in8 
(d ~&wJJ~~ =~~S+$lhpVr3~3 e e 

Jd4xs[-+ g $ + i@,D,~] 

where @AJ- implies the integration over gauge field 

histories with@=". In Eq. (1131, non-vanishing contributions 

come from the#=Tl sector only, and we thus obtain 

(01 &&$ = eFie 
rI )g p&] pr-4 G&* t r;h$sl ,@f) 

e-A)1 
f” I V/S) 

i.e. the operator 8, obtains a non-vanishing vacuum expectation 

value. Similarly, in the limit Irl-x21 + -, the path integral 

in Eq. (114) obtains a non-vanishing contribution from the 

d= 0 sector, and thus 

,j&& ~+c&&~ = (7l4l 5+i,d..(&lo) 
I- 

= {Go\ zi,CY,++Ld~ &(xJln+ , 6'g) 

where we have used Eq. (112). Writing the result (115) such as 

<ei 6+de> = eeie (n=ol Gtc+=;) , O/7) 

(ej d(+J) = tee {?&l] &+=o) , CM) 
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it is now clear that Eq. (116) implies 

Ilim (01 5+h)&lGJ& = (81 QfVl&C8l Tj,(wl@ 
(117) 

h-x4+01 , 

i.e. cluster decomposition is satisfied. Different values of B 

correspond to different vacuum states since the operators 

b, have different vacuum expectation values (See Eq. (115)). 

The chiral-U(1) symmetry is explicitly broken by non-vanishing 

vacuum expectation values for b,. However, it has been noted 

that, despite the fact that the chiral-U(1) synmetry is 

spontaneously broken, we do not have a phyeiccl Coldstone &son 

since conserved and gauge-invariant chiral charge operator does 

not exist in the (13)~vacuua dce to axial vector anomaly. 1.2 

Finally we cement on the relation (110). Though it 

looks like precisely what one would obtain in the dilute gee 

type of approximation, the source of the tern is quite different. 

To illustrate this, let us again take Nf=l and introduce the 

following source terms in the Lagrange function 

i J+(JO FW 9 TN? + i J-M @c) . 
Now. the correlation function (104) can bc expressed as 

For the background gauge field of the type (106) (i.e. en 



-36- 

instantor. around x 2 and an anti-instanton around xl> and for 

~large Ix,-x2], one may n+vely approximate the fermion deter- 

minant in Eq. (121) such hs 

det-$j-;~#+-;g~-+t~ +pJ-) L &t-i($-i$++qJ-) det-i(&&C+~&) 
dct -i$ Z 

det -i;5 det -i$ 

pm 

(Tnis is the diiute gas approximation.) Upon differentiating 

the expression (122) with respect to sources J, and J-, one 

imediately obtains the result (1091. However, this is not 

correct. Note that, in Eq. (122); Cti%iti (w <kI&lkd 

takes the place of the zero eigenvslue for the fermion 

determinant in the instanton (or anti-instanton) field.. 

'But, external sources should be considered as infinitesimal 

(compared to any other parameters in the problem), and the approxi- 

mation (122) will thus make sense only if pl possesses two 

exact zero eigenzodes. This is not the case in the instanton- 

anti-instanton system - here, the fermion zero mode in the 

instanton field gain 'small energy’ (and join the continuum) 

by influence of the anti-instanton (rather than J-1, and vice 

versa. This makes the interaction of massless fermions with 

instantons strongly non-local, 'and one must proceed by calculating 

the .fermion propagation function and effective action as we 

have done in the present paper. In fact, the whole question 

of the cluster decomposition in the 10) -vacuua depends on 

whether these strongly non-local interactions in the N-0 

sector give the same contribution to <as 6+(X,x(, &k>Io> 
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as the product of local contributions in the >3= 1 and >>= -1 

sectors. This, we have shown in this section. 
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APPENDIX 

Let us consider the gauge pdtential of the form 

A;(x) = $ ??;a % f-i(R) , (Al) 
2 l/2 vhereR= (x1 . For the gauge potential (A.1). a straight- 

forward calculation yields the classical gauge field action 

a &.= - $$t[ &@)‘t (H-H’!] CA.2) 
-0 * 

and the Pontriagin number 

ti= -6 :tjj(H-Hz) 
I, (A.31 

5 
4g - $)I;:; , 

where we used the variable t = log R. To have a finite aCtion, 

it is evident from Eq. (A.21 that the values of H(R=-1 and 

H(R=0) should be either 0 or 1. Typical shapes of the function 

Ii corresponding to some interesting field configurations are 

shown in Fig. 1; Fig. la correeponds to an instanton in the 

Singular gauge, Fig. lb to an anti-instanton inthe regular 

gauge, and Fig. lc to the superposition of the two. 

We are interested in normaliable solutions to the Dirac 

equation 

y,(a,-i$&+a H(R)) $ = 0 CA.91 , 

It is a Simple matter to show that, for any radial function 

H(R) with H(R=O)=l and H(R=-j-0 (FiG. 15). Eq. tA.4) possesses 

S normalizable solution which is porportional to 
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RHc$.-’ dR’] 9 X+ 

# 

(AS) 

where the constant state vector &is specified by Eq. (6) 

in the main text. Note that, for large R, the zero mode 

wave function (A.51 behaves like O(l/R3) regardless of a 

detailed shape of the function Ii(R). WC have assumed this 

asymptotic behavior in Eq. (9) of the main text. Similarly, 

in a gauge potential With H(R=O)=O and HCR=-)=l (Fig. lb), 

there exists a normalitable solution which is proportional to 

*+(N = ex [PI -3 k.$dR.] x, (Lb) 

vith the constant vector 2, given by Eq. (6). 

TO study the Dirac equation (A.4) with an instanton-anti- 

instanton system shown in Fig. lc, we first note that the 

partial wave (f and g denote arbitrary radial functions) 

y = #(RI R-‘+E x+ + f(R) fA X- 

is form-invariant under the operation of ylrD,, with the gauge 

potential (A.1). Explicitly, 

u,Dp$=[$+3+f]f++ +[+~~]~“x_ (A-8) 
. 

Since both zero modes given in Eqs. (A-5) and (~-6) belong to 

the partial wave (A.7). we may now conclude that, if there 

exists an exact zero mode in a widely-separated instanton-anti-insianton 



FIGURE CAPTIONS 

Fig. 1 Shapes of the function H for an i+anton [(a)], an 

anti-instanton [(b)l, and an instanton-anti-instanton 

system I(c) I. 
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system shoxn in Fig. lc, it must occur in the par+1 wave 

(A.?). with the functions f,g SStiSfying 

g+ 
dR 

3(H-k) = o 
R ’ 

-pR + 2iyMf =: 0 
. 

IA.10) 

With H(R=O) and H(R=-I=1 (see Fig. lc), it is S simple matter 

to show that there is no bounded solution to Eqs. (A.91 and (A.10). 

This illustrates the absence of normelizeble fermion zero mode 

in the spherical-shell-like configuration shown in Fig. 1~; 

a singular instanton at the origin and a regular anti-instanton 

at R=-. By performing e confo.rmal inversion around x = 2 

~' (A* ,b 121 ), Al, see Fig. lc) with the inversion radius : ; 

(A2 .> p >5 !zI . . Al), this spherical-silell-like configuration 

can be changed into the widely separated instanton-anti-instanton 

System in the singular gauge. X2 Since the Dirac equation (A.41 

is invariant under the conform1 inversion, the above example 

also shows the absence of normaliable fermion zero mode in 

that confbrtilly inverted system. 
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