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ABSTRACT

We develop a systemmatic method of calculating
the massless fermion propagation function and fermion-
induced effective action in the background gauge
field of an arbitrary number of widely separated
ipstantons and anti-instantons. The results exhibit
a strongly non-local nature of instanton interactions
with massless fermions. Using these results, we
alsc demonctrate that the ordihary perturbation
theory vacuum is not allowed in QCD with massless
fermions, since the cluster decomposition for cextain
correlation functions is violated due to widely
scparated instanton-anti-instanton bound states.

The underlying mechanism is idéntical to that in
sthe Schwinger model.
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I. Introduction and Summary

In QCD, it is well-known that presence of massless
fermions completely suppresses the tunnelling phenomenon
between topologically distinct winding number vacuua unless

1.2,3 In Euclidean spacc-time

fermion pairs are created.
description, this becomes manifest by the presence of

normalizable zero eigenmodes for the fermion field equation
operator in a background gauge field of non-zero Pontriagin

1,4 Also, Callan, Dashen and Gross argueds that

number.,
the exchange of massless fermions gives rise to a logarithmic
attractive interaction between instantons and anti-instantons.
These phenomena simply indicate that the complete treatment

of instanton interactions in massless OCD should involve

the simultaneous study of the gauge field action, the effective
action due to vacuum polarization of fermions, and the
propagation of various fermion operators. (This is prcciself
the procedure which has been taken in the two-dimensional

QED - the Schwinger model.s)

As the first step of such a scheme, in this paper we
develop a systemmatic method of calculating the massless
fermion propagation function and the fermion-induced
effective action in the given background gauge field of an
arbitrary number of widely separated instantons and anti-
instantons. We will work entirely in Eudlidean space-time

and assume the SU(2) gauge group with Nf-number of fermion

iso-doublets (Nf: number of flavours). Construction of the
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fermion propagation fuction becomes quite delicate when the
zerc eigenmode§ originally associated with individual (anti-)
instantons gain small 'energy' and become non-normalizable
{i.c. plane waves asymptoficaliy}. 1t goes without saying
that cxtreme care is necessary in dealing with interference
between normalizable modes and non~normaljizable continuum,

We resolve this difficulty by expressing the full fermion
propagation function in such a background gauge field in
terms of the fermion zero-modes and propagation functions

{in the non-zero-mode subspace} in the individual (anti-)
instanton potentials. The fermion-induced effective action
can be obtained from the fermion propagation function by
using the standard variational formula. The massless fermion
propagation function and fermion-induced effective action
exhjbit a strongly non-local nature of instanton interactiong
with massless fermions. We also clérify the préciée nature

of the so-called zero-mocde approximation.z'l3

Using the propagation function and the fermion-induced
effective action thus constructed, we analyze the cluster
decomposilion property in massless QCD.2 We demonstrate
that, in the ordinary perturbation theory vacuum, the
cluster decomposition for the correlation functions involving
operators of non-zero chirality is violated due to widely
separated instanton-anti-instanton field configurations.

The underlying mechanism is identical to that in the Schwinger



-3

modcl. Strong logarithmic attraction bétween an instanton
and an anti-instanton, which is generated by vacuum polarization
of massless fermions, is balanced by strong repulsion due to
explicit fermion propagations. Analogous behaviors in the
Schwinger model has been noted by Nielsen and Schroe-:.'.’7
Here, we should mention that the cluster decompasition property
in massless QCD has been considered in Ref. 2, but without
due considerations {(at least in the paper) of strongly
non-local nature of instanton interactions with massless
fermions. The breakdown of cluster decomposition is resolved
by going to the so-called Ie)-vacuua.2 Implications of our
results to a variety of instanton-related problems - for
example, the spontaneous breakdown of chiral SU(N) symmetry -
are under investigation.

The plan of our paper is as follows. In Section II,
we construct the fermion propagation function in the back-
ground field of an arbitrary number of widely separated
instantens and anti-instantons in a systemmatic way. 1In
Section III, we evaluate the fermion-induced effective action
in such a background gauge field. We discuss the cluster
decomposiiton in massless QCD in Section IV. In the Appendix,
we discuss some properties of the fermion zero modes and
illustrate the absence of normalizable fermion zero modes

in a simple instanton-anti-instanton system.



.

1I. TFerrmion Pronacation Function

In this section, we develop a systemmatic method of
calculating the fermion propagation function in the background

s
gauge field n

‘ — *- -
a [ 9 ] [ S
= _z A/.if(x"zi) + . z A -(l'zi)
1wy tmN il

where A;Jx~zi) {afl,z,B) denotes a localized gauge field
ccnfiguration with the center at x=z, and the Pontriagin number
wW=2:1, i.e. A:* for an instanton and a;. for an anti-instanton.
(in this paper, we use a gencric name, (anti-)instanton, to
indicaze ary localized gauge field with W= +1{-1), not just
the classical (anti-) instanton solutions first found in

Ref. ). The most well-known examples of such non~-trivial
localized gauge fields with W=:1 are the singular gauge

exgressions of the BPST solutionsq
i

- . a . -
PonZ =gty TubnWp i3
peo 2 -2 [-2P + P )

where the n-symbols are defined by’ (u,v=1,2,3,4 and k,1=1,2,3)

w @ @)
7}‘\’:-':-7:'}*‘* . Teta= Cita . "qu: t P . *)

ke acsune that instantons and anti-instantons in the field(l)

Al

are widoly separated from one another. Assuming that fermion
zero moJde wave functions and propagation fucntions (in the non-
zero-mo-le subspace) in individual {anti-) instanton fields

are known, we shall construct the full fermion propagation
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function in the Sackground gauge potential (1) in terms of
those functions. The difficulty of this construction lies
in how to disentangle interactions between normalizable
zero modes and non-normalizable continuum. In particular,

great care should be taken when both instantons and anti-
instantons are present, since certain linear combinations
of fermion zero modes associated with individual instantons
or anti-instantons join the continuum in a non-perturbative
way (See the Appendix).

Let us first summarize our knowledge about a single

{anti~} instanton. G. 't Hooft noted1 that, with the exact
classical solution (2) as the gauge potential, there exists

a normalizable solution to
= 1a%. % =
Y#Dﬂ.‘"h —Yﬁ(aﬁ-l}-ﬁ# 2)‘& = 0 4}
with Ys"k*=$ ‘}’.'* . [We use the Y-matrix representation :

e A
satisfying {Yp_fv}= -2 3,..9, Y""-':—Yr and Yg = 1172Y374].

Explicitly.l
....15,1 ) )
APy -iTx-2)
(-2 = e £ X G
L. i ) [x-2rTs[ozr+ PP
with ‘I;.‘.ﬂ-( T,%i) and the constant vector XL, specifie& by
+ by
L= 1, Br= B - SN, @

According to a general theorcm,4 if N, denotes a pumber of

normalizable fermion zero modes with Tg = 2], then

N, - N. = =W | n
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for cach fermion flavour. 1In this papcr, we will further-
assune that N = 0 for a single instanton and N_ = 0 for a
single anti-instanton. We also note that the zero mode

wave functions (5) behave asymptotically

Z) ———y 1 | (8)
‘q‘;*(x Z) ix-21 > P O( IX—ZI"‘) .

Though the general proof is lacking, we believe that the

asyrptotic behavior {8) is quite generally true with any
sufficiently localized gauge field of W= 1. To support
this assertion, more general field configurations other than
the exact classical solution {2) and associated fermion

zero modes are considered in the Appendix, From now onh,

we will thus assume the following for a localized single

&
{anti-} instanton described by A"*!x—z),

W w= %1

,

.. ., i ) .
() A}-bt(x Z) _—_—“—l%—?ﬂ O( L or vanishes faster

(i) Y’..D# possesses a single zero mode y,, (x-2;) satisfying
Ys 0 (x-2) = F Y,(x-2) ,

- ) 1
%*(x %) Ix-Z| = 00 O( ]x-—zj-’*) .

The condition {(ii) requires the gauge potential to be inthe

)

singular gauge.
Due to presence of a normalizabie zero mode, the massless
fermion propagation function in a single (anti-) instanton field

cannot be defined. Thus, we may regulate the zero eigenvalue
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by introducing a small fermion mass m and solve the Green's

function equationlo -

(VDo + im) S, =1 0

?

where we employ the operator notations, S{x,y)= {(x|s]y),

§%(x-y) = (x| 1] y), etc. Rearranging the fermion propagation

functicn, we may writelo 1

-— i 11Yg {1 F Y . 1 )
St_[-wﬂﬁ*'m ¥ ¢¢+m,¢ : s]- Y w

Y%
)

terms inside the square bracket in Eq. (il} has a well-

We now note that, due to projection operators « the

defined zero mass limit9

- | 11 \
S. = Bgg3¥ + gpBiit =
Oon the other hand,
3 { - \‘h*)(’l'ﬁt{
m BT wa o v + O(m) ’ U3)

where |}, denotes the fermion zero mode discussed earlier.

Using the representation (12), it is a simple matter to show

. 9
TN LA @)
a1 =5 (4.5
Qs = silgy =0 | - (14.C)

The explicit expressions for §! in the exact classical solutions {2}
have been constructed in Ref.9. For |x-z,| + = and {y-z | + =,
the propagation function {x |S;| y )approaches the free mass-

less propagation function

sy = @ 15)



Or. the other hand, for |x-zil + @ but ]y-zil finite, Eq.

o se i > O3 ) titg-m (16)

Ix-2; ’

(14a) indicates that

where we assumed the asymptotic behavior of the zero mode
wave function as given by Egq. (9}

We now proceed to the construction of the fermion
propagation function in the background gauge field (1l).
The gauge potential {1} has the total Pontriagin number
W= n ~{n-n), and, according to the general theorem (7),
the operator vy D possesses at least {n -(n-n_} |-number of
exact fermion zerc modes. We again introduce a small fermion
-mass m to regulate such vanishing eigenvalues and define the

propagation function S by
n -
(YuDutim) S = [ ;‘(g_-igiz_'.llﬁ-.-_%) + nn.] S=1 . (N

For small m and %/1:1-:j| (i#j, i,3=1,2,...n), we wish to

express S in terms of individual fermion zero modes [¥;

and fermion propagation functions si defined by Eq. (14).

Here, we note that the operator_ynnu + im is non-hermitian,

and we prefer dealing with a hermitian operator. We thus introduce

S = -i1% § as)

then Eq. (17) becomes ’

(%0, - m¥%) S = 1 an



where we denoted ?“ = —iysyp = -?uf. The operator ?u Dp -
mYg is a hermitian operator and thus the inverse must be also
hermitian, viz.
'§+ = § @0)
Since this hermiticity relation is very useful, we shall first
construct § as a double power series in m and l/d (*'ad*
characterizes the relative distances between instantons and
anti-instantons), and then use the relation (18) to find S.
Note that we do not make any assumptions about the magnitude
of nd,
Let us write
~ o ;/ = ~
S =8 + Z(%-S) + T @n

with

[ d

So = 1% S, ) §: = —'IYSS’; . k2)
Prom-Eq. {19} and the relation
(G(on-ithed) - mG]E = T -Gl |, o

we then obtain the following differential equation for by

(%D —m%) T = 5 1<kl + R ah
with

~e n - | 3 ' n ~ f

EPANACE SRSV LSRRI CESACERS I
in im

Note that the function ﬁ is at most of order 1/'d2 or 1n,.lnence-

forth, we will use the notation 0(m, 1/d%) to indicate this).

At this stage, we find it very convenient to introduce |ai) by
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( ?f*DF "mYs) lﬁ.) = H:-) , a6)
assuming that (tlai)'s are sufficiently bounded at infinity.
Later, we will be able to express |Q,» in terms of g'j and

‘4§> (j=1,2,.,.n). At this moment, it is sufficient to note
that the functions Qdéh) are expected to involve large
numbers like 1l/a or |zi-zj|3, since there is no bounded solution

to Bq. (26) with m=0 and the replacement

¥.D, — “}",(9,.-':33;-%) en

[If there should exist such a solution, we could have constructed
a completely regular massless fermion propagation function in

a single instanton potential.]
A

As the starting approximation for T (See Eq. (24}),

let us consider

TO= 2 a0 ey

Then, from Egs. {(21) and -(24], we obtain the integral equation
~ o~ » L o~ ooh §~
S Se + iZt(S'.---.S.) + T + SR
[ 3
= J + J

where we defined I ,3 by

(29)



I =3+ 2G5+ IR &o)

ot

J = i’.‘la;m;-.l + IR . (31)

"]
If we define (Pil by the integral eguation

Bl =<l + (BIR ,
the integral equation (31) takes the following simple form
) ’ﬂ P g
5 = T |a><{Fl &3)
Tmt [ ]
Note that Egs. (29)-{33) are still exact. Moreover, the
integral equations ('30) and (32) do not involve yet unknown
functions ]31) . and thus, by iterating these integral equations,
. <~ -~
one may calculate s} and J to any desired accuracy. To

determine the functions lai} , we note that, from Eq. {(26),

&y = 5 1% e
= JI%D + ;ll'éj)('é-lil”z)

ox

315> (s Bl =3 14 6%

j=1 ‘
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In principle, Eq. {35} allows one to determine laj) to any
desired accuracy. However, for the purpose of practical
calculation, Eq. (35) is not so convenient since one has to
often deal with the ratios of very small numbers here.
Actually, it is simpler to use the differential equation (26)
directly (rather than its integrated form, ﬁq. {24}) and the
hernigicity relation (20). This will be explained below.
From the hermiticity relation (20) and Eq. (29), we

eoncllude that |
-3t = -3+ 1

where the estimate has been made from Eg. (30). Using the

(1Y)

’

g
representation (33) for J, .ne relation (36) now reads

)‘?.{l&)(f’ai "“Fi)(ﬁil} = O(m,-i\) '.‘ o7

The equation (37) implies‘ that
P~ -4 4 [
Q> = Gy | Pp + O(m, -a'i) as)

with the constants 'e satisfying the hexrmiticity relation

™ g = EJ . (39)

The numerical values of the constants ﬁ aay be determined

by inserting the form (38) into the differential equation (26).
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Before we look at the differcntial equation {26),
let us first study ]31) , Gefine” by Eq. (32), a bit in
detail. Iterating Eq. (32) once md using the explicit
expression for ﬁ(Eq. (25)), we obtain

1By = 1% + {%@}-’iﬁzi(&%-&:'?) +["s'.+;2‘3‘(§{-§.)]m\g} 1>

+ O(m‘, ‘mia , -}g) 40)

where we used the ket-notation instead of the bra-notation
uged in Eq. (32). Further ignoring terms of 0(1/d5} in Bg. {40),

we obtain
By =1 + %icgg-iﬁ;*f,.xf---’% [
+ 5-80igRAE - A DI + (84 EE-SIm% 10D
+ 0w ms, 5) BT

However, we now note that the second term in the right hand

side of Eq. (41) can be written as

it

LS AL $ AT A RAL S
jii( §j -S) *:,ka,.\*l;;) = 'j%iﬂg)(%w’.a) t j%i Sj14%A4 S AR A “2)

From Eqs. {41} and ({2}, we now abtain

7y = 1t - 1l + ;,(§;'+ §-50(is%Rs 5 +mR) WD
J¥ L

+ 00, mg F) 4
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From Eq. (43), it is a simple matter to obtain the result
A > - RARY )

Py’ T a2 l 1

- Jiﬁl'kp(*lcjl ¥R E1%y + 00 mp 5

We have Fhus found that (?unu—mmsllii) yields a linear
combination of fermion zero modes. (For this, astute readers
will realize that the first iteration term in Bq. (40) is
absolutely necessary). This is precisely what is expected
from Egs. (26) and (38). Now, let us define the constant

matrices B and ¢ by
{Btia = (‘bl ('i",‘D,.- mY;) | "ﬁi) ) “5)

{E}ih = Cu , (46)

then, from Egs. (26) (38) and (44), we obtain the matrix
equation
CB =1 | “n
If we denote
CEAWIE> =-5i  (Simt for imtwmy and Gmet for oMt o)
R . (48
(Ygliﬁ-trj‘%\%)= (‘kjli%%"hi'sz'.l‘lz? = 'b’.j; , @
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Eg. (49) indicates that

{Blu=m3% %% - Bui + O("i‘.m;:a,qfi) . {0
Since a,:u ™ a-ih « we have §+=E and E}- E . up to the order
being considered here. Moreover, from the asymptotic behavior

(9) for zero mode wave functions, we observe that, in general

05 = 1D
Zero , if WA = WA

Also, simply by checking chiralities (or ‘(..’-Symmetry) in
Egs. (32) and (45), one immediately concludes that

“~ { - .

Bl =m{s% + O(m BT  f »a=»A &V
Prom these behaviors, it is clear that the constrants 315
are in general of order 1/m or ds.

Now, we thus conclude that the functions Ia;. y are given by

&> = 187 + 1% )
with . N . .
& = EH{N’.J) +[g‘(§2-§.)-3"?,.(2,.§ '-KF"%) +[§.+§“(S.r3a7]mfi’} N:P'
13> = Ofm, i—;) _ (s5)

Due to Eqs. (26) (38) (44) and (47), the correction l-{,) in

Eq. (53) obeys
(%Do-m%) 150> = 14> = (3.0.-m[ED
= O(mims. ) .

(s6)
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1f we denote

15> = 1% - (GD-mW) &7 (sm

'we now obtain the integral equation
&> = 8™ + SIE

L 2
= {5 + J1E> + T [GXPIED

Equations (29) (30) (32) (33) {58) form a complete set of integral
equations which allow one to calculate 2 to an arbitrary
accuracy.

It is 2 simple matter to translate our findings for

% into those for S via Eq. (18). The results may be summarized

by the following equations:

S=4 +3J3 , {51.2)
A= St Z(s-5) + AR(M (51.b)
J = £ (aXPl | ot

Rm) e 5‘_;' arrc(&-'%-xﬁ.;)rsf_s.) ~im[s, + S';I( si-s] (s
Pl = CHl + (P RCm
= (% + |Rm + O, "“':F ESI (s1.€)

Q) = 16> + 4 1> + :Eg'lay(ljls.-) ) 52.§)
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(> = oy { 1% + Remld} s1.9)
(B=1 | (51.h)
= Ciu , {Bli = 1M 3u + Oy . (51.1)
O = 0w = (¥l -ig %R T 1Y (59. 5>

18y = 1% — (4Dt im) @) (= Ol mE §)) sk
In leading order, the fermion propagation function § is given

by g

S = Sg + I%'(S:-S.)
+ G+ Remliy}{ <4l + (el Rem} (60)
+ O(m &) |

[Precisely speaking, the expression (60} for (x|Sly) is valid

only for Ix-y] <<m-1. This is because a constant mass term

in the Green's function equ#tion does not damp asymptotically.

However, this can be easily fixed by keeping the asymptétic

mass tail of a free particle when we take the zero mass limit
in Eq. (l1) and then rep;ating the above constructionl.

With the exact classical solutions (2} for ﬁ;; , A

simple calculation using the zero mode wave functions (S)

yields

= i 400 -2Z:). t
Oy = —} I_Z::;I"'Uz* Z;) ‘Li] { { + 0( li-'rzsl')] (m
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for u\(Ai) =1= —h’(Ak) , where [ .qh-)u is a real four-vecter
specifying the relative global gauge orientation according to
. = i ] -
'w '.I .I o'r ‘..n-.m
e L L - e jih - e i°2
R Byl > ’ c2)
— ¥ t. w 7
(qui),a = (wy Sm =% eos —z'ﬂl)
? .

Por 4 specific relative global gauge orientation satisfying
(Z-h"zi)'q-hi = 0 , (63)
the constants cij involve terms of O(Izk-zils), and one must
include the second (or more) iteration for IPi) in Eq. (40)
before one determines ]ai) by Eqs. {38) and {(26). We have not
done this calculation yet, and the physical significance of
guch specific relative gauge orientations are not clear.
If all the higher order terms also vanish, that implies the
presence of an exact fermion zerc mode. Thus, we may say that,
if a certain widely separated instantoﬂ-anti-instanton system
(i.e. n = n-n_ = 1) might possess an exact fermion zero mode,
the relative global gauge.orientation between the instanton
and anti-instanton should obey Eq. (63).

3

In the limit m >> d ~, the expression (60) is reduced

to

S =S + 2 [S+ vl _ S ] «n
) m ’

which is the expression used in the dilute gas approximation.
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For m 2 d-3, it depcends crucially on what kind of background

gauge fields are being considered. If the gauge field A:

includes only instantons {(or anti-instantons only), then

i

a 0 and the expression (64) still provides a good approximation.

ki
On the other hand, if n, # 0 or n, one has to solve the full
matrix eguation (59h) and keep the full expression (60).
For example, for n_ = n-n_ = 1 (i.e. an instanton and an

anti-instanton), we obtain

S = Sy + S,—S- —;:mTa—'r{W)+Rt- 1};,)}{(4;,[ + <) R(m)}
I {14 + Rem 0} Chl + <l Rom)
= +1m"{ Iy + Rlem G} <l + (el R}

e —& Tkt R(—m)l‘]’,)}{(‘h-l + (G \Ram} + Qfm, lz.-zﬂ

(65)
+

?

where tﬁe constant a is given by
a = (‘k:.‘ "'.'3\9&&&:-'% Pk|> (66

Bote that, in the limit m << ————&——3 {(or, more precisely,
lz,~2,1
1 72
m << |a|), the expression (65) approaches the following

m—xndepandent expression

S = S! + 5= S+ € {1 + Koy} {<hd + &l Ré-e}
+@T{ >+ R ¥}l + cilRed + O( 57

Here, we note that the terms like R+(n=0) l%;}(‘kﬂ_l in Eq. (67)

(&7
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represent intexference terms between the zero modes and
non-normalizable continvum, and in general are of the same order

with, say, l’ol”"otl' For example, when x any y are close to
1

zl—zzl

 :2. bath <k|n*{*n)|¢01)(tzl§> and (x|tof( iozly) are 0{ ).

For a background gauge field with n_ ¢ n-n_, even in the

+
limit m << 1/d3 the propagation function involves a singular
tern prorortional to 1/m as well as m-independent terms as
shown in Eq. (67). Of course, this implies presence of exacf
normalizable zero modes for the massless Dirac egquation, in
accordance with the general theorem (7).

The fermion propagation function (x| S]y), given in
Eq. (§0), is particularly simple when the space-time points

x and y are not close to a certain (anti-~) instanton simultaneously.

Naopely, if Ix-zil and |y-zil are not simultaneously of order of
{oxr smaller than) the i-th (anti-} instanton size for any i, the
expression (60} may be approximated by ()

S, + Gyl

The second term here is precisely what one would expect from

2'13: i.e. restrict the

the so-called zero-mode approximation
Hilbert space to zero-mode subspaces and find the inverse of

the operator
1%> <8 wDu+imlkO<hd GV

However, in a background gauge field which
includes both instantons and anti-instantons, the zero mode
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approximation (68) for &|sly Y is a bad approximation when
X,y are close to a single (anti~) instanton simultanecusly.
Thus, to calculate guantities such as vacuum polarization
currents {(which involve the propagation function at x=y},

one must use the full expregsion {60). Here, we note that the
zero-mode-approximation is a priori mot justified in a gauge
field including both instantons and anti-instantens. For
example, in the instanton-anti-instanton system, absence of
exact normalizable zero mode immediately implies that we have
only non-normalizable continuum (PP is a positive semi-
definite operator). This simple fact indicates that, if one
wishes to use the degencrate perturbation theory, one must

do so with two normalizable zero modes znd non-normalizable
continuum.13 Acute rcaders will realize that we have
effectively solved this seemingly very delicate problem with
a judicious use of the propagation function in the non-zero-
mode subspace. Finally, we note that, using the fermion
propagation function (60) with appropriate regularization of
short-distance divergences (for example, see Ref. 11 and also
see the next section for the isospin current), one may

explicitly verify the following divergence relations
W 0> = -1 R T (GHESID) = 0, . (0a)
D¢ 30y = —i( 3+ 3Eus o) (LT GSIO) = 0, (70b)
(WD = { T (%N HSID)
= -2imT (% &ISID) - & Flw'EL 0 |

up to D{m,lfdz). We leave this exercise to interested readers.

(10¢)
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II1. Fermionic Effective Action

Using the propagation function cbnstructed in the previous
section, we now calculate the fermionic effective action.

The fernionic effective action rf(A) is defined by
det[-1%,3 + m] .

Using the variatjonal feormula

Sdndet X = T (X $X) 2)

we obtain {Nf: number of fermion flavours)
ST = —gN | dhe (e M0 rs)

where the isospin current (J:(x)) due to fermion vacuum

70

polarization is given by
ey = 1 (GTWSID) (14)

The isospin current (74) is actually infinite, and requires a
careful regularization and renormalization. The simplest
regularization procedure is that of Pauli-Villars; i.e. introduce
Nf*number of regulztor fermi fields with very heavy mass M

and coupled to gauge fields according to a minimal gauge
invariant coupling. Then we may define the regularized isospin

current such as
‘<:E:6d>i = i-§ig:'5i{1$t%;tl<§455|4> - <¥I:Sg|ﬂba.} {5) |
’ L

where the regulator propagation function SR satigfies



-23-

(YD + MY Sy = 1 (76)

[ ]
It is a simple matter to show that the expression {75} is

logarithmically divergent as M + =, being proportional to

2 [t ob |
-‘3('8—{)(.9«1”) Dy k() . ()
This is a standard renormalization problem, and the infinity

{77) i absorbed into the coupling constant renormalization.

Thus, we may define the renormalized isospin current by

Ty, = Yo [ SL-.:; T{ LT (« s\:p - &4 Sl
o
3= (Lﬂﬁ M ] a)

uhere/;o is the renormaljzation mass necessary to fix the
coupling constant. Now the renormalized effective action

satisfies the variational formula
$17 (W) yen, = wga (T, SALG

For the background gauge potential (1), Dabe (x} is

strongly localized around individual (anti-)instantons, and

thus, up to O(l/dz), the rencormalization counter term in

Eq. (78) simply renormalizes the individual vacuum polarization
currents due to non-zero modes. From the propagation function

{60), we thus obtain the renormalized isospin current

(T, = _5;1< hed) + GG+ < Rom| T {(:l by +4d Rew
+ ()(u"m,'ZE) (80)
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with

< J:;(x)i“- -&_’”[ t ga'm Ta{ Vg ((’4 S.l‘.l> (“I Sml'i))
%(81‘)%}&) i ;wi ] o0

[ 4

b e

: a A? 2
whers we denoted F, i( x} = a vi - avnv i ¥ 9pc uihux
The exact expressions for Ga(x)) in the exact classical

ren.
solartions (2) (i.e. 3bF2v{x) = ) have been calculated in

Ref. 1l with the result

’ a -115:1 1?9 (ﬁ—!} TA' ] ZE
4 T v .a
ey T =€ L)L e 7 f:]L e &2

¥e wxll assume that the currents {J:i(xﬂ; are strongly localized
arcumd x=z;, as the expression (82) in the exact classical
soluaion indicates. Note that the isospin current given in
Eq. .BO) is then sirongly localized around x-zi's.

We now look at the v#riational formula (79) with the
posi—ion variation of the ji-th {anti-) instanton

SAL (0 = $Zp 2 A (x)
3z (33)

—sz,,.-- A (=232 -
- 5z,[ B (x-z.)-(a S+ $€ud At A - ""’] B
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Inserting the isospin current {80) and Eq. {83) into the
variational formula (79) and using the conservation law {70b),

we obtain
$G 0, _gu{afcred, +iGRER PR T T iRl
$Zjy
#i 3, Cyl i+ delRod) LI {db + le"em)l*};y}
+1i Ji';. Gt + <l le»}x;&‘{<xl%>+<»4mm>}] Foi
+ O(m ) . )

We now note that, since the gelf-action is translation-invariant,

we have
Sé‘x {713 ooim F,.t: (xz) = 0 . (es)
Also, we note that
£l + CLIRMDT LIy + WRemlE>})
= ~im{ 2 Yoz T [Smp+ ;2;.‘( S-S )] 4y
—-im S Atg \h?q-z;)[ Sayx) + ;2:_:,'( Sjcﬂ,x) -S.(g.x))] Y,‘T-{llgi (x-2;
= Of{mp) (8¢
and thus the term proportienal to C;; in Eq. (84) may be safely

ignored. Thus, ignoring terms of 0(m, 1/62) or higher, Eq. (84)
may be simplified to

ST (e, - o 2
_{;_i:_m - -quijzﬁc-.j{(thlv,.

Fai T 1D + (4B R’?-m] 4>}
-igh, TG 4l pBa 16y + g Rp B T 1)

+ O(m, & (®
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Using the explicit expression (59d) for R+(-m)

" note that
Ly = ¢ { %l Yﬁf'-:uvi'%l#:j> + 3(‘48;“ P 3 T R(m)l‘l’)
= 3(‘““’##\'- 2,{1 + Stlﬁvxn 2.} ‘k
+ O(“‘g‘a' ) (%)

vhere we performed some simple manipulations analgous to the ones
used in Eq. (42}. Writing

S-I'i.-:'fi = 1 [Du,bs] Dpi=3p'iaxj'i'i2: ) an

the expression (88) may be alsoc written ia the forms
Iv.ij = -i {10y Iﬂal\'g} 'l"‘(ﬁ{am»i[l-l%\)(%\].‘%“lxu Ez, \‘I@) + O("“;!l‘a 'i"s)
= - i igny 1) +i<kIDAIl g AT 14 + Ol L)
= -i2; GplingRaF 1 +icuDliTRe S 16 +0fry J;)

(10)
Similarly, we obtain
Re 2 AT L AR e ) AAES {4 an

== 2 <l ignhy F 1y +ict] DAty CllignAg T 16 +Ofmly 45)

Inserting the results (90) and (91) into Eq. (87) and using

. - ¥ o .
3.l ighed 1 = - 3,85 ()
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. - — _ 3 m.
%}(%Jll'ﬁ‘-’;ﬁw% % = 5,20 43

Gl Dl %> = -2 (Ll {%, Bk = © ,

14

we obtain
sl (A
—-f—.-m' = Nf z.,[cg- g'i’.'sji + th %’.By] + 0(""-. 'j'"a)

=NT(B'3 B) +0(m%)

In the limit 1/d << m, the effective action rf(A)ren

should approach the sum of effective actions due to individual

{anti-) instantons, viz.

n ¥
e Tem T (N ey + CUAD]  + Q(m) (6)

=l
4

where we denoted _
e!}'“m’r_ [ det’-i Yﬂ(gﬁ"iﬁﬂ?%)

i )
det -i YO rencrmolized

(Here, det' indicates that the zero eigenmode is to be deleted

from consideration, and for renormalization, see Ref. 1}.

From Egs. (95) and (96), we can uniquely determine the fermionic

effective action in the background gauge field (1);

[} (W), = N, Sng (det -iB) + 5 G + 00md)

(L}

(18)
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in particular, for an instanton-anti-instanton system, Eq. (98)

gives
? /
[} W= Ny Sog (4 100%) 4 [Au0) + F (A + Olm, i) (00

where the constant a is given in Eq. {66). We also note that,
with the exact classical solution (2) as a single {anti-)

instantoen potential, 't Hooft evaluated rf(aui) with the resultl'

!
GlAa) = N, Sog P — 2N, Sog (pofi) +2N, (0.1458 ---) 00

Again, the term N, log (det-iB) in Eq. (9B) has a simple
interpretation in terms of the zero-mode-approximationz’13: it
is simply the logarithm of the product of all the eigenvalues
of the operator (69) in the zero-mode subspace. However, if we
had used the zero-mode-approximation (68) for the propagation
function to calculate the fermion-induced isospin current and
the fermionic effective action, we would not have obtained
the result (93). {(Even the leading term, Nf log (det-iB),
cannot be obtained this way.) As we have already explained
at the end of Section II, it is crucial to include interference
terms between the zero modes and continuum when both instantons
and anti-instantons are present. In other words, the zero-mode-
approximations for the fermionic effective action in such
cases are, rather surprisingly, the results obtained after
including complicated mixing terms between the zero modes
and continuum. We have also shown that there is no undetermined
0(1)-term in Eq. (98). (This fact is important in the next
section, in particular to establish Eq. (109}.) For m=0, the
term N, log (det-iB)} describes logarithmic attractive interactions

bcetween instantons and anti-instantons.
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IV. Cluster Dccomposition in Massless 0CD

In this section, we study the vacuum structure of QCD
with massless fermions, using the fermion propagatibn function
and the fermion-induced effective action determined in previous
sections. Without massless fermions in the theory, Callan,
Dashen and Gross,2 and also Jackiw and Rebbi,3 showed that
the physical vacuum states of QCD are the so-called |e)-vacuua

{(|af < »). Different values of 8 give inegquivalent vacuum

states due to guantum mechanical tunnelling between topologically
distinct winding number vacuua ( so called In) -vacuua) .

Of course, such tunnelling phenomenon may be described by
(anti-}instantons in Euclidean path integral language. ©On

the other hand, there is no tunnelling between different winding
number vacuua with massless fermions present. It is then natural
to suspect that the |o)-vacuua in massless QCD are merely
gauge-equivalent copies ¢f the ordinary perturbation theory

vacuum |n=0), and no physical significance at all. 1In the weak
coupling approximation and under some plausible assumptions, we
shall below show that thié is not s0. We will first show that

the ordinary perturbation theory vacuum in massless QCD cannot

be allowed since the cluster decomposition for certain correlation
functions is violated. 1In the Ie)-vacuua, the cluster decomposition
is restored, and different values of 0 correspond to ‘different .
vacuum states since certain operators of non-zero chirality obtain

different vacuur expectation values.
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Let us imagine fhat the vacuum in massless QCD corresponds
to the ordirary perturbation theory vacuum (i.e. unigue vacuvum},
|n=0). 1If at(x) is a local operator of chirality & 2w,
then, with the unique vacuum, we must have
(n=0] D 0|n=0) = 0 tion
We now recall that, for any proper vacuum, general guantun

field theory requires the cluster decomposition

o] Q)00 QL x{n=0) mﬁ(n-ol O olm=pér=d ‘é_bzpln.@ ' {to2)

and thus, according to Eq. (101), the right hand side should
vanish. We will pow demonstrate that this correlation function
actually approaches a non-vanishing constant asymptotically.

For definiteness, we will consider the operators
0.0 =:[ § Folt¥ Ilr(x)]N* (03)

where the notatien: : implies an appropriate subtraction of
short-distance infinities in such a way that Eq. (101} may be
satisfied. Using the Euclidean path integral representation,

we have

dn-0] Oy Qx| n=d

& . i&‘?ﬁﬁQﬂP
=}{JDA;]* (o9 ef it J

[1'*_ fs 5y --{;’*_‘m.—:w

(l04) ’

where, for a very weak coupling, we may take the normalization



-31-

N,
1 N (- QA-AIRA-AD + S Y]
N = SDA*]» Lotipt € o

By the assymption about the vacuum, we only include gauge
field histories with the total Pontriagin number zero in the
path integral (1l04).

| Naively, one may expect that, for lxl-le + =, the
correlation function (104) will be,0(¥/1xl-lesuf), as the free
field theory indicates. This is totally false with the

background gauge field of the type

o — a a _
Aa () = Ay 2 + Af..(x 7,) 10¢)

zlzxﬁ-, z,_::..'x1

L

where At+(A:_} describe a localized instanton (anti-instanton)

with the center x=z, (x=22}. To see that explicitly, let us
consider the simplest case, N£=1, and assume that an arbitrarily
large-size instanton {or anti-instanton) does not give a
significant contribution to the path integral (104). Then,

for sufficiently large fxl-le, we may write the total contributions
to the path integral {104) due to gauge fields of the type (106)

e L s

(A= - (t07>
. el ’S“*Aﬂ')-l-r(_fiz\_’:s(x,,x,)lgi ,S(x,,,x@ ’

where the normalization N is given by
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- 4\ d8% (M- AN A 3A)
)[G‘ =SBA;-]»-08 g *

In BEq. (107}, rf and S(xl,xz) denote the fermion-inducgd

(log)

effective action and fermion propagation function in the
instanton-anti-instanton background gauge field (106)., Using
the explicit expressions (67) and (99) [with m=0) for S(xl,xz)
‘and Tes it is easy to see that the expression (107) approaches
a constant asymptotically, i.e.

Jim  {meo} O, 00 x| =0

16-Xa) -» 20 , apa o
- Do, IS o lfefor, £8P hsf
£ O , 1)

where v..(v. ) represents the fermion 2erc mode wave function
0+ 70~

. . a a
in the field A”+(Au_).
From Eq. (107), we now observe that

Sim {neo| O,000. 00| = = Guee] O, x0) = (=] Otnp @10

-%l->eo

where

e Booln=NAn], poriovi €

S&l[-4E0 Fu, +iFLD,

. - )
and <ﬂ<’|5"‘u’|‘"'> is given by an analogous path integral in
the Wu~1 sector. In fact, a straightforward calculation shows
that the result (110)is true for all N.. [Note that, to

calculate the expectation values of fermion operators in the
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w=t1 sector, the regulated fermion propagator (11}, with the
approximations (12) and (13), can be used effectively].
We note that a non~vanishing asymptotic value for (ﬂ:OI 61,(:,}6_&,)‘11-0)
has been achieved by a precise balance between the rapidly
vanishing fermion determinant[ ef; o< lai:mf = O(l_il—-ii-‘r'ﬁ)]
and the rapidly increasing product of fermion propagaéion
functions in the background gauge field (106) [ Six, %) o< a...l= O(lﬁ'zz]!)] .
Analogous behaviors in the Schwinger model has been noted
earlier by Niclsen and Schroer.! For a weak coupling and if
we can ignore arbitrarily large-size (anti-) instantons as we
have assumed, one can easily convince oneself that contributions
to the path integral (104) due to gauge fields of n_ = n-n_ # 1
are negligible in the limit fxl-le + =, Thus, we may conclude
that
~ ~
Lim (=] G 00000 n-c»; <v_:=;l 8.0 e ret] O_0x2{ =) -

This shows that the cluster decomposition is violated in the
ordinary perturbation theory vacuun.

It is well-known that general local quantum field theory
relates the failure of the cluster decomposition to degenerate
vacuua - here, the 6-vacuua. ¥Ve will now show how the cluster
decomposition is restored in the |8)-vacuua for the case of N=l,

leaving the cases with more fermion flavours to readers. In
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the ®-vacuua (and with Nf=.1), we have the path integral

s 2
representations

© 0.0 = —J(' ) {[DA,] LFIRY] 3 e[&[’ EoBe +iF%0.Y] Fralt b j:

’
(13)
and

L LR L
ol B Boale> =) Zf@rﬂﬁ] YY) € e I" iRz R g
.[:qr(xp H¥y: :_1’5(@-'-‘5’-'% 4»(&)] e

where @A;]M implies the integration over gauge field
histories with ¥=n. 1In Eq. (113), non-vanishing contributions
come from the ¥=3F 1 sector only, and we thus obtain

<6} B,wloy = e"“’{,g f%;] oI350 + A h‘:;f*’lz}

Puii

# 0 15)

!
i.e. the operator 32 obtains a non-vanishing vacuum expectation

valve. Simpilarly, in the limit le—le + =, the path integral
in Eq. (114} obtains a non-vanishing contribution from the

W= 0 scctor, and thus

Jlm (9[ 0, B8 = o] O, 00 Ot | nedy e
ix,~
| = oo Gyterfneiyume] O] nd
where we have used Egq. (112). Writing the xesult (11%) -such as

<e| B,0l6y = € tneo| Jytafm=iy | )
(ol Gwley = et {ne1) Q6o m=0) , &)



it is now clear that Eg, (116) implies
~
fim (o] GewB.wle) = (8] {ywley (el O-l8) 19
{x~Xal- 00 . ’
i.e. cluster decomposition is satisfied. Different values of ¢
correspond to differcnt vacuum states since the operators
at have different vacuum expectation values (See Eq. (115)).
The chiral-U(l) symmetry is explicitly broken by non-vanishing
vacuum expectation values for 31. However, it has been noted
that, despite the fact that the chiral-uU(l) symmetry is

spontancously broken, we do not have a physictl Coldstone cson
since conserved and gauge-invariant chiral charge operator does

not exist in the |6)-vacuua due to axial vector anomaly.l‘2

Finally we comment on the relation {110}. Though it
looks like precisely what one would obtain in the dilute gasg
type of approximation, the source of the term is quite different.
To illustrate this, let us ag#in take Nf=1 and introduce the

following source terms in the Lagrange function

i L0 P L}é Yoo + 1 I 1',!7&)1-'2—’-/5-' Y0 - “20)

Now, the corrclation function (104) can be expressed as

(meo| G, Ot nesy = }\{; [DA;I»-o e'ifc!‘ﬁ Frav Foaw

S VLS ) det-i(f + BEy + 52T
[('l SJ;.O‘;J( tSl"‘z’) :let -i; = L=L=0

(r21)

For the background gauge field of the type (106) (i.e. an
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instanten around x., and an anti-instanton around xl} and for

2
‘large ]xl-le, one may naively approximate the fermicn deter-

minant in Eq. (121) such as
deti(F-igh-igh + 180y + 5By det-i(g-igh+ EFx) det-ild-igh +1551)
det -1 det -:.;‘ det -i3

o - Rl InIy TR (1 oma] 2

{Tnis is the diiute gas approximation.) Upon differentiating

the expression (122) with respect to sources J,  and J_, one
immediately obtains the result {109). However, this is not
correct. Note that, in Eq. (122), (Tk.ll"k) (o}- <IK_I.LI1!’.))
takes the place of the zero eigenvalue for the fermion
deterrinant in the instanton {(or anti-instanton} field..

"But, external sources should be considered as infinitesimal

(compared to any other papameters ‘n the problem), and the approxi-
mation (122) will thus make sense only if P possesses two

exact zero eigenwodes. This is not the case in the instaﬁton—
anti-instanton system - here, the fermion zerc mode in the
instanton field gain 'smail energy' (and join the continuum)

by influence of the anti-instanton (rather than J_ )}, and vice
versa. This makes the interaction of massless fermions with
instantons strongly non-local, and one must proceed by calculating
the fermion propagation function and effective action as we

- have done in the present paper. In fact, the whole question

of the cluster decomposition in the |8) -vacuua depends on

E whether these strongly non-local interactions in the.D-O_

sector give the same contribution .to <0‘ 5*(11) 5_(&)‘0)
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-1

i

as the product of local contributions in the 3= 1 and »
sectors. This, we have shown in this section.
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APPENDIX

Iet us consider the gauge potential o} the form

o - 1 =) 22Xy
AP(X) = -é' ’2#,,“ Ty H(R) , (A.1)
where R = (xz)l/z. For the gauge potential (A.l), a straight-

forward calculation yields the classical gauge field action
. _._M’w 1 (dHY? T
5&1.-—- o ‘g‘ffl[ 3EIEFE) + (H fi.;] . (A.2)
and the Pontriagin number
» = —GEt%%(H—H‘)
= - - K
- ‘:( 2 3 )lhlo '

where we used the variable t = log R. To have a finite action,

it is evident from Eq. (A.2) that the values of H(R==) and
H{R=0) should be either 0 or 1. Typical shapes of the function
H corresponding to some interesting field configurations are
shown in Fig. 1l; Fig. la corresponds to an instanton in the
singular gauge, Fig. }b to an anti-instanton inthe regular
gauge, and Fig. lc to the superposition of the two.

We are interested in normalizable solutions to the Dirac

eguation

LG L R HR) Y =0 (A.4)

L
It is a simple matter to show that, for any radial function
H{(R) with H(R=0)=1 and H(R==)=0 (Fig. la), Eq. (A.4) possesses

a normalizable solution which is porportional to
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RH(R’)—] ] TOx
Y00 =| exp 3 dr'| “n2x oy (A.5)
ot RI +
R ’

where the constant state vector ?,’,,l_ is specified by Eg. (6)

in the main text. Note that, for large R, the zero mode

wave function {(A.5) behaves like 0(1/&3) regardless of a
detailed shape of the function H(R). We have assumed this
asymptotic behavior in Eqg. (9) of the main text. Similarly,

in a gauge potential with H(R=0)=0 and H(R==)=1 (Fig. 1lb},

there exists a normalizable solution which is proportional to
R
/.
- - R) dp’ A,
Y 0= [exP 35 ﬁ%;-alk] %o (A.6)

with the constant vector X_ given by Eqg. (6).
To study the Dirac equation (A.4) with an instanton-anti-
instanton system shown in Fig. lc, we first note that the

partial wave (f and g denote arbitrary radial functions)

b= 3R KR T

is form-invariant under the operation of TuDv with the gaﬁge

——#x,, + f(R)R Y LA

potential (A.l). Explicitly,

- ¥ ’
YuDF =[4h ¢ MRN] R by, o [42 SR E . am

Since both zero modes given in Egs. (A.5) and {(A.6) belong to
the partial wave (A.7), we may now conclude that, if there '

exists an exact zero mode in a widely-separated instanton-anti-instanton



FIGURE CAPTIONS

Fig. 1 Shapes of the function H for an instanton [{(a)], an
anti-instanton [{(b)], and an instanton-anti-instanton

system ((c}].
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system shown in Fig. lc, it must occur in the partial wave
(A.7) with the functionc f,g satisfying
df 3H-%) ¢ _ o A
+ R ————— 1
dR R

and

_iﬂ:.;.Q.(_H:_‘l:Q;::O (A.10)
dR R

With H(R=0) and H{R==)=]1 (see Fig. lc}, it is a simple matter

[ ]

to show that there is no bounded solution to Egs. (A.9) and (A.10).
This illustrates the absence of normalizable fermion zero mode

in the spherical-shell-like configuration shown in Fig. lc;

a singular instanton at the origin and a regular anti-instanton

At R==. By performing a conformal inversion around )l:‘l = Z

u

S, »> |z e see Fig. lc) with the inversion radius f’

2 ‘e
(a, >> P >> 1z} >> 1)), this spherical-siiell-like configuration
can be changed into the widely separatéa instanton-anti~instanton
system in the singular gauge.12 Since the Dirac egquation (A.4)

is invariant under the cénformal inversion, the above example

also shows the absence of normalizable fermion zero mode in

that conformally inverted system.
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