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I. GENERAL OVERVIEW
Quantum Chromodynamics (QCD) is the most promising candidate for a
theory of strong interactions. In these lectures we shall discuss higher order QCD
predictions* for

a) Inclusive deep-inelastic scattering

eh + e + anything ,

vh + p~ + anything (1.1)

etc.
We shall also present the basic structure of QCD formulae for semi-inclusive

processes such as:

b) e'e” > h+ anything (L.2)
c) eh; + e+h, +anything (1.3)
d) hih, > utu” + anything (1.4)
and

e) ete™ » hl +h, + anything (1.5)

where hi stand for hadrons.

Finally we shall make a list of some recent higher order QCD calculations.

*
For recent reviews see refs. 1-3, 57.
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In the simple parton model,4 in which strong interactions and mass scales are
neglected, the cross-sections for processes (1.1)-(1.5) are expressed in terms of

. . - - . *
parton distributions and parton fragmentation functions as follows :

f
a) oEIs(X) = lzelz [Xq?(xhxal;()o] (1.6)

for deep-inelastic scattering (1.1),
ete” I 2r .h h
b) ot € (@) = E% zgﬁﬂ+ﬂﬁ&i] (1.7)

« o . 4+ - e s .
for semi-inclusive e e” annihilation (1.2),

f h h h h
DIS _ 2. M 2, ="y 2
c) ohlhz(x, z) = iZI e/ [xqi (X)Zin () + xq, (x)qui (z)] (1.8)

for semi-inclusive deep-inelastic scattering (1.3),

dx dx + -
do 1 2
d) — = [ =] = ol ¥ x5 x) (1.9)
sz x2 x2 h1h2 12 72

with (t = Q%/s)

*In order to simplify the presentation we suppress obvious factors such as
(4 naz)/(BQz) in Egs. (1.7), (1.9) and (1.11) and color factors: "3" in Egs. (1.7) and

(1.11) and "1/3" in (1.9). Furthermore to unify notation we denote the well-known

structure functions Fz(x) and Fz(x, z) by o}? IS(x) and GEIE (x, z) respectively.

172
Finally, unless otherwise specified, we restrict our discussion to the transverse

parts of the cross-sections for processes (1.2) and (1.5).
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hl -—h2 T
X,q; (xl) X59; (xz) 5(1-;1)(—2) +" 2" { (1.10)

for massive p-pair production (1.4),5 and

I
%hh, (eps %)) = Z ef

ete” L2 h) hy
Ghth(zl, z,) = i:zl e; , [ zDg (zl)] |:22Dai (22)] + " > 2" (1.11)
for two-hadron semi-inclusive e*e”™ annihilation (1.5.)

In the above equations qih(x) and Eih(x) are the parton distributions (quark,
antiquark) which measure the probability for finding a parton of type i in a hadron h
with the momentum fraction x. Similarly Dg-(z) and Db-'(z) are the fragmentation
functions which measure the probability for a 1quark q orlantiquark Ei to decay into
a hadron h carrying the fraction z of the quark or antiquark momentum
respectively. Finally e stand for quark charges and f denotes number of flavors.

The following properties of Egs. (1.6)-(1.11) deserve attention:

i) Bjorken scaling: parton distributions and parton fragmentation functions
depend only on x and z respectively.

ii) Factorization between

x and z in 0}[312

172

(x, 2)
+ -
x; and x, in oﬁlﬁz(xl, x2)
and

. € e
z and z, in ohlhz(zl, 22) .
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iif) The building blocks of all parton model formulae are universal (process
independent) parton distributions and fragmentation functions. Therefore taking
into account ii) we observe that if we can extract all parton distributions from
inclusive deep-inelastic processes (a)) and fragmentation functions from e'e”
annihilation (b)), then the cross-sections for the remaining processes listed above
can be predicted. This implies that in the simple parton model there are relations
between various processes.

iv) The gluon distribution G(x), and gluon fragmentation function Dg(z) do not
enter any of the formulae above.

v) Finally all cross-sections above can be reproduced from diagrams of Fig. 1
by using the "Feynman rules" of Fig. 2.

It is well known that in QCD quark distributions and quark fragmentation
functions acquire Q2 dependence and it is of interest and importance to ask:

—whether QCD predictions for semi-inclusive processes amount to using these
Q2 dependent functions in the parton model formulae (1.6-1.11);

—whether factorization properties listed under ii) (and correspondingly
relations between various processes) are still satisfied;

—whether gluon distributions and gluon fragmentation functions explicitly
enter QCD formulae, and

—whether one can find a simple extension of the rules of Fig. 2 which would
allow us to construct in an easy way cross-sections for the processes a)-e) in QCD.

In these lectures we shall address these questions on two levels:

a) so-called leading order of asymptotic freedom and

b) next to leading order
with particular emphasis on the latter case.

To be more specific, if the QCD predictions for the moments of deep-

inelastic structure functions are given as follows
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1 —d £
[ dxx"%F(x, Q) = A_[InQ?1 ™ [1 L +] (1.12)
0 InQ

then keeping only "1" on the r.h.s. of Eq. (1.12) corresponds to the leading order
whereas the second term fn/ln Q2 stands for the next to leading order corrections.
The numbers An, dn and £ n will be discussed in subsequent sections.

Before going into details it is perhaps useful to get a general overview and
list how the parton model properties above are modified in QCD.

The cross-sections for the processes (1.1)-(1.3) are given in QCD as follows

o Q) = T ob(}.0%)[ e, QD] (1.13)
] X
- 1 .
o S = 11 %ah(2, ) [enfie Q)] (1.18)
] Z
and
1dg, 1dg, .
DIS 2 1 2~jk{ x z A2
(, ’ ) = F —= 51 (—’_, )
%hyh, 0 B Q jgiﬁi 5P e 5 °
h h |
[E’lfj fe, Q0 [e:znkz(gz, Q2>] : (1.15)

The processes are shown schematically in Fig. 3. Similar equations exist for
massive p-pair production and two hadron semi-inclusive e*e™ annihilation. In Egs.
(1.13)-(1.15) the sums run over quarks, antiquarks and gluons and fih(g , Qz) denote

generally parton distributions. Furthermore

*
There are so many papers on this subject that we cannot list all them here.

Representative are refs. 6-8 where further references can be found.
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—ojp is the photon-parton j cross-section,
—Ejp is the cross-section for the production of the parton j in e'e”
annihilation, and

—Ejk stands for the photon-parton j cross-section with the parton k in the
final state.

Depending on the order considered (leading order, next to leading order) there
are different rules for the parton cross-sections, parton distributions and parton
fragmentation functions, which are the building blocks of the QCD formulae above.

For the first two orders the rules in question are as follows:

a) Leading Order Rules

Rule 1 (Parton cross-sections)

2 X a
£s(1-2) i=agq
i[ x 2) 1S £
°P( g Q 0 j= (116
2 z P
. 8(l-2) ] = 49
~ji[ z A2\ _ e] €
op< E,Q ) 1 . . (1.17)
2 X z P~
b (&, &) - Fue (g () ety

etc.

Rule 2 (Parton distributions and parton fragmentation functions)

The Q2 evolution of the parton distributions is governed by certain equations. In

the case of non-singlet quark distributions

2 2 2
Aij(x’ Q°) = qi(x, Q) - qj(x, Q)

(1.19)
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these equations have a very simple form

2
nE |9
<8.0Q%> = <4.(Q)> 22 (1.20)
ij n = ij" <o’ "n Q2 )
o
In —2
A
where
2 b onl 2
<Ai'(Q )> = [ dxx"A(x, Q) , (1.21)
J n 0 1j
ch) is a reference momentum at which Aij(x’ ch)) is to be taken from the data, dn

are known numbers and A is a scale parameter to be discussed later on. More
complicated equations exist for the sums of quark and antiquark distributions (so-
called singlet distributions). In the form of integro-differential equations they are
often called Altarelli-Parisi equa’cions.9 Similar equations exist for the Q2
evolution of the parton fragmentation functions. For nonsinglet combinations of
fragmentation functions the equations are the same as the Eq. (1.20). For the
singlet combinations of fragmentation functions there are slight modifications of
the Altarelli-Parisi equations which are discussed in ref. 10. Using the rules 1 and
2 in Egs. '(1.13)-(1.15) we observe that the leading order corresponds to the
parton model formulae (1.6)-(1.8) with qih(x) and Dg‘(z) replaced by qih (x, Q2) and
Dh.(z, Q2) which have calculable Q2 dependence giveln by the equations mentioned
abolve. Consequently all the parton model properties (except for the breakdown of
scaling) are still satisfied. The following comment is however necessary.

On the basis of these results one could expect that if we extract parton

distributions from inclusive deep-inelastic scattering and fragmentation functions
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from e*e” annihilation then the cross-sections for the processes (1.3)-(1.5) and in
particular their Q2 dependence can be predicted. This is not exactly true. The
reason is, as we shall discuss in next sections, that in the leading order the
numerical values of the scale parameter A extracted from the data need not be the
same for different processes. Therefore a meaningful comparison of scaling
violations in different processes can only be made if at least next to leading order
corrections are included.11 This point will be discussed in detail later on. The
phenomenological applications of asymptotic freedom in the leading order have
already been discussed in other lectures at this Summer School12 and we shall not
present them here.

*
b) Next to Leading Order Rules

Rule 1' (Parton cross-sections)

8(1-%) + Q) i=4,9
i[x 2 qE
Up(g“’Q ) = (1.22)
CHCRINEY j=G
o1 -2) + g4 &) j=aq
~ Z 2 e
cp(g,Q) - (1.23)
= z .
sf1-2X\s/(1-2\,352%0°% X Z\lj=k=q,q
(1 51) (1 £2)+g(Q)qu(€1,g2 j 4 q
~jk( x z 2’) , 72(02 X z i=q, k=G
op ( 5-1’ EZ’Q 8 (Q )qu (51’ (,;2) 1=4q (1.24)
=2/~2 X z . _
where bq’ dq’ qu, qu and qu are calculable functions to be discussed below.

Similar rules exist for processes (1.4) and (1.5).

*
We drop charge factors in the following.
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Rule 2' (Parton distributions and parton fragmentation functions)

The Q2 evolution of parton distributions and parton fragmentation functions is
governed by new equations which differ from the leading order equations (Rule 2)
by calculable corrections of order EZ(QZ). These new equations will be discussed in
the course of these lectures.

The new features of Rules 1' and 2' not encountered in the parton model and
in the leading order are as follows

i) Factorization between x and z is broken through the functions fij’ Similarly
the factorization between x ] and X, in the process (1.4), and between z 1 and z, in
the process (1.5) is broken by calculable corrections to the parton cross-sections.

ii) The explicit EZ(QZ) corrections to the parton cross-sections depend on the
definition of parton distributions beyond the leading order. In other words the rules
1' and 2' are not independent of each other and must be consistent with each other
in order that a physical answer independent of any particular definition is obtained
for the measurable quantities as UEIS(X, Qz),o §+e_(z, Q2), etc.

iii) The §2(Q2) corrections to various parton cross-sections depend on the
process considered. There exist however certain relations between some of the
parton cross-sections (see Section VI).

iv) Because the parton cross-sections involving gluons are non-zero the gluon
distributions and gluon fragmentation function enter the QCD formulae explicitly.

This completes the general overview. In what follows we shall show
systematically how to obtain the rules 1' and 2. In Section II we recall the
ingredients of the formal approach to deep-inelastic scattering based on operator
product expansion and renormalization group equations. In Sections III and IV the
inclusive deep-inelastic scattering beyond the leading order is discussed in some

detail. Subsequently in Section V we present the basic structure of next to leading
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order calculations for semi-inclusive processes. In Section VI we will list other
recent higher order QCD calculations. We end our lectures with a brief summary

and outlook. A detailed plan of our lectures can be found in the table of contents.

II. BASIC FORMALISM

In this section we shall recall the basic formal tools used to extract QCD
predictions for deep-inelastic scattering. Generalization to other processes will be
discussed in Section V.

Let us imagine that we want to find QCD predictions for deep-inelastic
structure functions. We can proceed as follows:
Step 1
We consider the spin-averaged amplitude Tu\) for the forward scattering of a weak
or electromagnetic current JLl' The amplitude Tu\) can be decomposed into

invariant amplitudes as follows:

_ i [ 4%, Jigex
Tu\) - lf d'xe <P | T(Ju(x)Jv(O)) I l3>spin averaged
- 2 2 ). Palg & (2
= euvTL(Q » V) +duvT2(Q ) V)'leu\)aB 5 T3(Q% V) . (@

Here v =peq, Q2 = -q2 and |p> is, for instance, a proton state. The tensors €y

d. . and € are well known.

uv uvad
Step 2

We expand the product of currents, which enters Eq. (2.1) as a sum of products of

local operators Oin of definite spin n times certain coefficient functions (NIIn called

13

Wilson coefficient functions. We write symbolically this operator product

expansion (OPE) as follows:
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3(x)30) = _Zéin(xz)oi“ . (2.2)
i,n

- . * -
The sum in Eq. (2.2) runs over spin n, twist 2 operators such as the fermion non-

n and On

singlet operator O&S and the singlet fermion and gluon operators O " G

respectively.

For readers less familiar with the operator product expansion we only recall
that the matrix elements of local operators between proton states can be
interpreted as moments of parton distributions (see Section IIl). Notice that any
deep-inelastic structure function can be expressed through three types of parton
distributions: non-singlet, singlet quark and gluon distributions. Correspondingly
there are three types of operators Orl\lIS’ OE and OE. A careful discussion of

operator product expansion can be found for instance in refs. 1, 13 and 14.

Step 3
Inserting Eq. (2.2) into (2.1) and using dispersion relations between deep-inelastic
structure functions and the invariant amplitudes of Eq. (2.1) we obtain15
2 L n2 2 o240 (QF 2
M, QD = [dxx"F (x, Q) = ] alw )Ckn( z,g) (2.3)
0 i '\

where CL n are fourier transforms of the coefficient functions in Eq. (2.2) and Aln
’

are the matrix elements of operators Oin between the hadronic state [p>.

Furthermore g is the renormalized quark-gluon coupling constant and uz is the

subtraction scale at which the theory is renormalized. The important property of

Eq. (2.3) is the factorization of non-perturbative pieces Ain (uz) from perturbatively

calculable coefficient functions Cik’n(Qz/uz, gz).

*
Neglecting operators of higher twist corresponds to neglecting contributions,

. i s . 2 .
which with increasing Q“, decrease as inverse powers of Qz.
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Step &4
We decompose Fk(x, Qz) into a sum of singlet and non-singlet (under flavor

symmetry) contributions as follows
F (6, QD) = FRot, Q9 + Fix, @D (2.4)

We have in an obvious notation:

2
NS 2 NS, 2,~NS 2
i
and
s, A2 Y20 1Q° 2\ . .G 2.G [Q° 2
Mk(n, Q%) = An(p )Ck,n'( 5,8 | + An(u )C k,n( 518 . (2.6)
Y u u
Step 5
We use renormalization group equations, which govern the Q2 dependence of

Cik n(QZ/ uz, gz). These equations are given as followslez
b

[u%w(g)%—ygs(g)] cﬁfn(%i,gz) =0 (2.7)

and

2 2
2 3 2 2\ ..
[“8_11+B(g)5§] Clk,ﬂ(%z’g ) ) ]ZY?i(g)C]k,n(%_’S ) bj=9,G . (2.8)
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Notice that the Q2 dependence of Cllp,n and Cﬁ,n is governed by two coupled renor-
malization group equations due to the mixing of the operators O:I;‘ and Og under
renormalization. yRIs(g) is the anomalous dimension of ORIS and y?j(g) are the
elements of the 2 x 2 anomalous dimension matrix ?n(g). B (g) is the well-known

renormalization group function which governs the Q2 evolution of the effective

coupling constant §2(Q2):

—2
gdgt_ = gRlg ; glt=0) =g = g(uz) (2.9)

where t = In Qz/pz.

The solutions of Egs. (2.7) and (2.8) can be written in terms of gz(QZ) as

follows:
NS [ Q% 2 NS, =2 gQ)  vRs®)
Ck,n( 518 ) = Ck,n(l’ g )exp 'f_ 2 dg' _BTS'T (2.10)
u g(u") :
and
& (12 2) [T fg(u)d An("]ﬁ (1,89 (2.11)
' 8 = €Xp J_ g' 1 ' 8 2.11

where G, _is the column vector whose components are Cw and CG . Equations
k,n k,n k,n

(2.9)-(2.11) combined with Egs. (2.4)-(2.6) give us general expressions for the Q2

evolution of the moments of the deep-inelastic structure functions in terms of the

renormalization group function R(g), y&s(g) and Y"(g) and the coefficient functions

Clk,n(l’ gz)'
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Step 6

In order to find explicit Q2 dependence of Mk(n, Qz) we have to calculate B(g),
YRIS(g)’ (@) and Cik,n(l’ gz). This is done in perturbation theory in g. We shall
discuss explicit examples below.

Step7

So far our discussion was very formal. In order to have relation with the parton
picture of Section I we can cast the formal expressions for the Q2 dependent
structure functions into the parton model-like formulae with effective Q2

dependent parton distributions. We shall discuss such expressions below.

. NEXT TO LEADING ORDER ASYMPTOTIC FREEDOM CORRECTIONS
TO DEEP-INELASTIC SCATTERING (NON-SINGLET CASE)

3.1. Derivation of Basic Formulae
In order to find explicit expressions for the leading and next-to-leading
contributions to CESn(QZ/HZ, gz) as given by Eq. (2.10) we expandy KIS@)’ B(g) and
’

Cﬁs (1, gz) in powers of 'g'2
,n

n 0n_§_2_ (1),n _Ez_ 2
‘YNS@ = 'YN’S 2 -+ ‘YNS ( 2 ) + ees (3.1)
16T lé6m
=3 =5
B@ = -8, B> -8 —E— +.. (3.2)
1em (167)

and (through order gz)

=2
NS, =2, .k g~ NS _

Here 61&15 are constants which depend on weak and electromagnetic charges.
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For the exponential in Eq. (2.10) we obtain (through order gz) with u2

=Q

oN

-2, 2 n -2, 2y =2,.2 d?
g Q) vns(8) [g Q%) -¢g (QO)] NS [ 72(02) ] NS
exp |-f _ dg' , = |1+ ya g Q) , (3.4)
Q) - 86 16n2 n g2
where
(1),n (0),n 0,n
NS _ NS NS 6 . 41 _ NS . (3.5)
n 28 253 1 NS = 28,
Combining Egs. (3.3), (3.4), (2.10) and (2.3) we obtain
L =2, 2y —2(~2 n
NS, 20 <k zNS,2 [g Q") -8 (Qo)] NS [ 22Q? | Ins
M “(n, Q%) = 6 A QYD) | 1 R y (3.6)
k NS“*n ‘o M L6n2 k,n gz(Qg)
where
NS NS _NS
Rin = Brn*Zn ’ (3.7)
2,2
NS\2) _ ANS/2 87 Q) ns 3.8
Ra Q) = AQ | 1+ —5 By, (3.8)

and EZ(QZ) is to be calculated by means of Eq. (2.9) with the B function given by

Eq. (3.2). In phenomenological applications it is often convenient to insert into Eq.

(3.6) the explicit expression for EZ(QZ),

2
_2 2 B ln]n%
g7(Q) _ 1 1 A 1
Z - 7 "3 5 + O] 5 (3.9)
l6m Boln 9—2 Bo In? Q_i > <
A A %

with the result
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n
]ngz ~dns

NS NS (Q ) (Q 2 It
MRS, Q) = 6 K ANSQP) | 14+ Kl A : (3.10)

B an— Qo Qo

o A2 Boln — In —

A A

where
S (0% = rNS b 00y 1 @ (.11)
QY = Ry h-—Zvnsinin >3 ' .
280 A

Equation (3.10) is the basic formula of this section. The value of Qg in Eq. (3.10) is
arbitrary as required by the renormalization group equations and the predictions for
MES(n, Qz) should be independent of it. Therefore it is sometimes convenient to

get rid of QZ by writing Eq. (3.10) as

_ R, (Q9) 2 7 -d?
MNS;, %) = sk ANS| Kk = _ mnE | NS w23 L a2
K Ns“n 2

Here K?S are constants (independent of Qg).
3.2. Discussion of Basic Properties and Subtle Points
a) We first notice that in order to find the next to leading order corrections
to the non-singlet structure functions, one has to calculate the two loop
contributions to YRIS(g) and B(g) and one-loop corrections to CE,Sn(l, —g'z) i.e. the
parameters Yélls)’n, B; and Bll\i,sn respectively. The parameters y ISIOS)’n and B, are
17

known already from the leading order calculations.

b) The two-loop contributions to the B function, i.e. the parameter Bl’ has

been calculated in ref. 18 and for an SU(3)  8auge theory with £ flavors is given by
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38
B, = 102-5 1 ) (3.13)

It should be remarked that B | as well as Yﬁ’sn and B, are renormalization

prescription-and gauge-independent.

é}ls)’n are separately renormalization prescrip-

c) The parameters By , and Y
N
tion dependent (i.e. they depend on the way one renormalizes the quantities used to

calculate them (see appendix)) and in principle gauge dependent. However as shown

19

by Floratos, Ross and Sachrajda”” the quantity

(1),n
NS YNS

Brnt 28, (3.14)

NS (1),n

is renormalization prescription independent if (of course) Bkn and vy NS are
’

calculated in the same renormalization scheme. Consequently the parameters

Rﬁsn of Eq. (3.7) are renormalization prescription independent. From this we can
’

draw two lessons:

NS

1) care must be taken that Bk n and Y
H

ISIIS)’n are calculated in the same

renormalization scheme and

2) without doing explicit calculations one cannot a priori neglect any of the

two quantities BIESn and Ylills)’n/z Bo in any higher order formulae. The reason is
’

that in some schemes the two-loop contribution is dominant in the sum (3.14)
whereas in other schemes Bl:]lsk is more important.
4

BNE n is described in the Appendix.
9

The method of calculation of the parameters
d) The full calculation of the sum in Eq. (3.14) has been performed in the

*
literature only in the 't Hooft's minimal subtraction scheme (MS) . The parameters

*

In this scheme the Feynman diagrams are evaluated, using dimensional regulari-
zation, in d = 4 - € dimensions and singularities are extracted as poles 1/k, l/s2
etc. The minimal subtraction then means that the amplitudes are renormalized by

simply subtracting the pole parts 1/e, 1/ €2 etc.
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Bﬁsn have been calculated in ref. 20 and recalculated in ref. 21. The authors of
b

ref. 19 have calculated the two-loop anomalous dimensions Yrsjls)’n' The latter

NS .
kn in

different renormalization schemes have been done in refs, 22-25, However these

calculation is particularly complicated. Calculations of the parameters B

results cannot be combined with the two-loop anomalous dimensions of ref. 19. In
spite of this the results of refs. 22-25 will turn out to be useful in the study of QCD
effects in other processes (see Section V).

e) In the minimal subtraction scheme one obtainsw’20

B = B + H1Rg10n b - vp) 6.15)
and
BNS - BNS 4 4n+2 (3.16)
3,n 2,n 3n{n+1
where
P20 3 3121%_412712-““31 Eﬁ*“srﬁl%éﬁ
+%+(ﬁf—15+‘27‘9 (3.17)

and Vg = 0.5777 is the Euler-Mascheroni constant. The "strange" terms (In 47 - YE)

arise from the expansion of I'(e/2)e(47) ¥/2 around € = 0. The numerical values of

NS NS NS
Bz,n’ B2,n and Zn

some values of n in Table 1. We observe that the terms Z

NS =NS
2,n and B 2,

for the renormalization scheme in question are collected for

E S are small compared to
S

In order to understand the difference between Bl\zI n
b

the parameters B
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and EI;I;Sn we now turn to the last important point which is related to the parameter
A and to the arbitrariness in the definition of the effective coupling constant.
3.3. Parameter A and Various Definitions of EZ(QZ)
The effect of the redefinition of the scale parameter A is equivalent through
order EZ(QZ) to the shift of RNS (Qz) in Eq. (3.12) by a constant amount

proportional to Yrersn 20 In fact rescaling A in Eq. (3.12) to A' by

A = A'exp(-Yik) (3.18)

where « is a constant, and dropping terms of order _g'q(Qz) generated by this
rescaling one obtains

n

’ -d
(Q ) 2 NS
MES(T‘, Qz) = SI&SANS 1+ _l_<_,_r1____7 [In % ] (3.19)
A'
Bo In 12
Al
where

R'ﬁf’n(qz) = RN (QZ) BYs € , (3.20)

The A' thus corresponds to the EZ corrections given by Eq. (3.20) and Ez(Qz) having

the form of Eq. (3.9) with A replaced by A'. To be more specific let us denote by

A the scale parameter which corresponds to RNs given by Eq. (3.7) with BNS
MS k,n k,n

given by Egs. (3.15) and (3.16). This is so called minimal scheme (MS) forA. In the
literature two other schemes have been discussed:

20

~MS scheme“” for which the parameters Rlﬁsn are replaced by
’

- VZYNS Min 4w - Yg) (3.21)
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and the corresponding A denoted by AI\—/E’ and

26,27

—~MOM (momentum subtraction scheme) for which Rl:S are replaced by*

o

NS _ NS 0,n
R k’nl MOM = Rion~%YNS (3.5) (3.22)
and the corresponding A denoted by AMOM' Notice that the MS scheme corresponds
to dropping terms in Eq. (3.15) involving factors (In &1 -y g) ® 1.95.
For the three schemes considered MS, MS and MOM the effective coupling constant
is given by Eq. (3.9) with A replaced by Aysy Affs and Ayiopy respectively. It is

NS NS NS .
kn’ Ricn and R k,nl Mo are different

obvious that since the functional forms of R
from each other so will be the free parameters AMS’ AKA_S and AMOM extracted from
the data. Needless to say the three schemes considered are equivalent representa-
tions of next to leading corrections. On the other hand they correspond to different
estimates of the higher order terms 0@4 (Qz)) not included in the analysis. In the
next subsection we shall present numerical values of A;s effective coupling constants
and explicit higher order corrections for the schemes considered.

Since the explicit higher order corrections and the parameter A are related to
each other we conclude that one cannot discuss numerical values of A in a
theoretically meaningful way without calculating at least next to leading order
corrections11 and without specifying the definition of the effective coupling
constant.2°

Once a definition of EZ(QZ) is made and is used in calculations of higher order

corrections in various processes it is possible to make a meaningful comparison of

*The EZ(QZ) defined by momentum subtraction is gauge dependent but the gauge

dependence is weak. The value 3.5 corresponds to the Landau gauge.
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higher order corrections to various processes.ll We shall see that these
corrections are generally different for different processes. This teaches us that it
is unjustified in principle to use the same value of A in the leading order
expressions for different processes. On the other hand, once higher order
corrections are included in the analysis and EZ(QZ) is defined in a universal way, it
is justified to use the same value of A in different processes.

Let us summarize two basic lessons of this section

i) the parameters YlsllS) M and BIE’Sn have to be calculated in the same renorma-
lization scheme;

ii) there is a well-defined dependence of the functional form of the explicit
higher order corrections on the definition of EZ(QZ) or, equivalently, on A.

3.4. Phenomenology and Numerical Estimates

The following values for A A—= and A have been obtained on the

Ms? “MS 2" “mom
28

v 3,20

basis of BEBC data“” for the moments of F;’

Ayg = 0.80GeV 5 Aoz = 0.50GeV ; Ay = 0.85 GeV' . (3.23)

MS S MO

28

We recall that the leading order analysis leads to A o= 0.7 GeV.”™ The errorbars

L
for the values of A are 0 (0.05 GeV). All three schemes agree with the BEBC data
for n <5. Higher moments are discussed below. The effective coupling constants

in the three schemes considered for AMS = 0.40, A'l\-/I—S = 0.50 and AMOM = 0.85 are

plotted in  Fig. 4, We  observe the  following  inequalities

*
These values are shown here as an example of a fit to a particular set of data.

29 lead for instance to smaller values of A. For a careful

The CDHS data
phenomenological study of both CDHS and BEBC data with higher order effects and
mass corrections included we refer the reader to the recent paper by Abbott and

Barnett. 30
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EZ(QZ) | om? EZ(QZ) Fite EZ(QZ) | MS which correspond to
RS 5 R'NS > RNS| | Furthermore in all cases considered the effective
2,n 2,n 2,n! MOM*®

coupling constant is smaller than that given by the leading order expression (the
first term on the r.h.s. of Eq. (3.9)) with A; § = 0.7 GeV.
It is instructive to calculate the term
RS @)
l + ——— i=MS, MS, MOM (3.24)
Boln

RS

in Eq. (3.12) which is equal unity in the leading order. The result is shown in Table
2.

We conclude that in the expansion in the inverse powers of logarithms the
next-to-leading order corrections to Mst(n, Qz) calculated in the momentum
subtraction scheme with a = 3.5 are larger than those in the MS scheme but smaller

than in the MS scheme.

On the other hand in the expansion in EZ(QZ) (see Eq. (3.6)) the momentum

subtraction scheme leads to a better convergence of the perturbative series than

RS and MS schemes. 26 27,98

From the discussion in subsec. 3.3 it is clear that if the coefficient of

1/( B, In QZ/AZ) in Eq. (3.12) were independent of Q2 and had exactly the same n

dependence as Ylel’sn’ then all §2 corrections could be absorbed in the parameter A,

and the higher order formula would look like the leading order expression.

Conversely, we could say that the leading order formula assumes that the next-to-

. n PO
leading order corrections have the same n dependence as the Yg’s . Therefore it is

of interest to see whether the next-to-leading order corrections, which we have

O,n

calculated in this Section, exhibit a non-trivial n-dependence different from YNS .
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This is most conveniently done by putting Eq. (3.12) into a form of a leading

order expression1 1,20
-d"
NS, ~2, .k zNS Q? NS
M, (n, Q%) = § LA In (3.25)
k NS"'n 2/~2
AL Q%)
with
2 Risn(Qz) Bﬁsn
An(Q ) = Aexp —-6—5-—-— = A exp —-—6?71 = An . (3.26)
Y NS YNS

The second relation in Eq. (3.26) is a good approximation if the quantities Z?S in
Eq. (3.7) are calculated in 't Hooft's minimal subtraction scheme. Needless to say
the n dependence of An(Qz) or A is independent of the definition of EZ(QZ). In Fig.
5 the formula (3.26) is compared3 1 with An extracted from the data of BEBC and
CDHS for F\B) and Fermilab and SLAC ep, en and up and uyn data for Fg— N we
observe a remarkable agreement of Eq. (3.26) with the data for FE". The BEBC

2
and in particular CDHS data do not show very clear n dependence of A pe although
at lower values of n they are consistent with Eq. (3.26). We may conclude in
particular, on the basis of Flz)'n, that there are indications in the data for the n
dependence of A N as predicted by QCD. It is of interest to see whether the new u-
experiments at CERN and Fermilab will confirm these results.
3.5. Parton Distributions Beyond Leading Order

So far our discussion of higher order corrections was very formal. We shall

now express Eq. (3.6) in terms of parton distributions and parton cross-sections to

*
obtain a more intuitive formula (1.13). Let us first recall that the parametriza-

tion of the QCD predictions (3.6), (3.10) or (3.12) in terms of an effective gz(Qz)

*In this section we discuss only non-singlet parts of Eq. (1.13).
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and explicit higher order corrections depends on the definition of Ez(Qz). Similarly
the parametrization of QCD predictions in terms of "effective" parton distributions
and parton cross-sections depends on the definition of parton distributions.

In order to illustrate this point, we consider the moments of a non-singlet
structure function which in the leading order is expressed through the moments of a

non-singlet quark distribution A(x, Qz) as follows

2 n
mn% | “INs
MEo(m, QD) = s4ANSQ?) (’2‘2 = 590D G
In -—%
A

with § (II\E)S being a charge factor; e.g. 6%)5 = 1/6 for F;p. Notice that

n
n% | “Ns
<a@>, = AQD - = ANSQ? (3.28)

i.e. the moments of a non-singlet parton distribution are equal to matrix elements
of a non-singlet operator normalized at Qz.

‘Beyond the leading order there are various ways of defining parton
distributions. We shall discuss here two examples:

a) Generalization of Eq. (3.28)32

2, (a) _ 4NS/.2 2@ TRsE) NS, 2
<a@Q)>% = APQYexp | - 262 dg' gy | = Ap Q) (3.29)
g

O
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where through order §2, the exp () is given by Eq. (3.4). Furthermore AES(Qg) =
< A(Q2)>(a) . In terms of <A(Q )> (a) we have, on the basis of Eq. (2.5) and (2.10),
M, @9 = <4 @5 1, ) (3.30)

which when inverted gives the form of Eq. (1.13)

Fro(x, @9 = ‘l"z[«z 3, o )] & 2 : (3.31)
Here
1
[ dxx" %D %, @0 = SO, 8D (3.32)
o ’

with C (1 g )glven by Egs. (3.3), (3.15) and (3.16).

21,24

b) In the second example one absorbs all higher order corrections to

Mlz\ls(n, Qz) into the parton distributions i.e.

MY, @2 = <a(@%)>P) 52 : (3.33)

< A(QZ) >£lb) is obtained by comparing Eq. (3.33) with Eq. (3.10) for k = 2.

Notice that the Q2 dependence of A(a)(x, Qz) and of A(b)(x, Qz) are different
from each other and so are the corresponding parton cross-sections. In the second
example the parton cross-section is trivial for k = 2. (b q in Eq. (1.22) is zero.) For
k £2 there are some non-zero Ez corrections to parton cross-sections even in the

second example due to the fact that BlI:I i are different for different k. The parton
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distributions and parton cross-sections in the example b) are separately renormali-
zation prescription and gauge independent. This is not the case in the example a)
but the renormalization prescription and gauge dependences of A(a)( s Qz) and of
olgi cancel in the final expression for FII:I S(x, Qz) (Eg. 3.31). Since one can define
parton distributions in many ways anyhow, one should not worry about this
renormalization prescription dependence of parton distributions in Example a).

We next notice that whereas the input distributions at Q2 = ch, in the example
b) will be (for k = 2) the same as in the leading order (i.e. the data does not change),
the input distributions in the example a) will differ considerably at low Q2 and
large x from those used in the leading order phenomenology. The reason is that
even in the MS scheme CE;(I, Ez) differs considerably from 1 for low Q2 and large
n. On the other hand the example a) turns out to be useful for inversion of

moments if Zl?}sk are calculated in the 't Hooft's scheme. In this scheme ZI:I\Sk are
3

’
small (see Table 1) and the equation for the Q2 dependence of the parton
distributions are essentially the same as the leading order equation (3.27) with
§2(Q2) now given by Eq. (3.9). Therefore the standard techniques used to invert
moments in the leading order can also be used successfully here. In particular one

(a)(X,

can find analytic expressions for A QZ) which to a good approximation
represent the exact QCD predictions. The function Cllj,i (1, gz), which contains all
non-trivial n-dependence of higher order corrections, can be inverted exactly
(analytically). As a result of this procedure one obtains approximate analytic

expressions for A(a)(x, Qz) and exact expressions for OE S'(x, Qz).

Inserting these
two functions into Eq. (3.31) leads to FES(X, Qz). Details of this inversion method

can be found in ref. 33.
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IV. SINGLET SECTOR BEYOND THE LEADING ORDER

The study of next to leading order QCD corrections to the singlet structure
functions is much more complicated than for the non-singlet structure functions
due to the mixing between fermion singlet and gluon operators (see Eq. 2.8). The
derivation of the formal and parton model like expressions can be found in refs. 3,
21, 34 and 35. Here we shall only make a few remarks.

i) The analysis of singlet contributions requires the calculation of the two-
loop anomalous dimension matrix and of the one loop corrections to the fermion
singlet and gluon Wilson coefficient functions Cg’n(l, Ez) and Cﬁ,n(l, Ez). As in
the non-singlet case, one has to take care that all these quantities are calculated in
the same renormalization scheme. The full answer has been obtained in the

20,21* 1he calculation of the two-loop

literature again only in 't Hooft's scheme.
anomalous dimension matrix performed in ref. 21 is particularly complicated and
involves 0 (100) two-loop diagrams.

ii) It turns out that the formal expressions for the Q2 evolution of the

moments of singlet structure functions are very simple% e.g.

r e Ba@ ] 2 74
M3, Q%) = SR 14+ B0 In<
Y 'n 2 A2
B an—
i o g2 ]
— - n
RS (Qz) 2 -d+
. a‘j)i;‘,» 1+ —212—7 [m% ] (4.1)
B A

*For calculations of Cﬁ n(l,gz) in other renormalization schemes we refer the
’

reader to refs. 22-25, and 36.
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where Ki and A are the only free parameters. The next to leading order
corrections turn out to be of the same order as in the non-singlet sector although
their n dependence in particular at low values of n is different due to the mixing.
Numerical estimates of these corrections are given in ref. 34.

iii) The equations for the Q2 evolution of the singlet parton distributions turn
out to be much more complicated than Eq. (4.1). As in the non-singlet sector they
depend on the definition of parton distributions. Explicit expressions for the singlet
analogs of examples a) and b) of the previous section are presented in refs. 3 and 21
respectively.

iv) Equation (3.31) is now generalized to
1 ‘
F3(x, Q) = ! & [zz(a, QAot, &, Q%
2, G x 2
+ £6(5, QA0G &, Q) | (+.2)

where I(§, Qz) and G(, Q2) are singlet fermion and gluon distributions respec-

tively. The important point is that only the sum of the two terms in Eq. (4.2) does

not depend on the definition of parton distributions. The separation of F; into

quark and gluon contributions depends on the other hand on the definition of parton

distributions. Some phenomenological applications of the singlet formulae can be

found in the paper by Anderson et a].3 1 and in ref. 35.
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V. SEMI-INCLUSIVE PROCESSES
5.1. Massive u-pair Production
We begin our discussion of semi-inclusive processes with the massive u-pair
production in hadron-hadron collisions. In the leading order of asymptotic freedom
one sums the QCD diagrams contributing to this process to all orders in g2 and
keeps only the leading logarithms. In the course of the calculation one encounters
mass singularities which are factored out and absorbed in the wave functions of the

6,38 the standard Drell-Yan formula (1.10) is

incoming hadrons.” As a result
reproduced with the scale independent quark distributions replaced by the Q2
dependent quark distributions with Q2 dependence governed by the leading order
formula (1.20) and its generalization to the singlet sector.

In order to discuss the structure of the corresponding calculations in the next

to leading order it is useful to take moments in T

2 n do
o (Q7) = drt — . (5.1)
n f sz
Formally on(Qz) can be written as follows®
.. 2
@ = 1 AN 0dcl (%, 67) (5.2)

U

where the sums run over q, q and G, and the indices (1) and (2) label the incoming

hadrons.

* . - . . - . - .
Since factorization of mass singularities have been discussed in other lectures at

12

this Summer School in detail, we do not demonstrate it here. Proofs of

factorization of mass singularities to all orders can be found in refs. 7, 8 and 37.
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The expansion in Egs. (5.2) is analogous to the operator product expansion of
Eq. (2.3). The An's which correspond to matrix elements of local operators in Eq.
(2.3) are called cut vertices.3 They are incalculable in perturbation theory. In

more intuitive language they can be related to the moments of the parton

2

distributions at Q2 = u°. The C;J(Qz/uz, gz) are the coefficient functions in the

cut vertex expansion in Eq. (5.2). They sa’cisfy8 renormalization group equations

2,

similar to the ones satisfied by Cin (Qz/ uz, g CH(Qzluz, gz) are calculable in

perturbation theory. Expansion (5.2) expresses the factorization of the non-

perturbative pieces (cut vertices) from the perturbatively calculable pieces

(coefficient functions) just as the operator product expansion. In what follows we

shall discuss the calculation of CE(QZ/pZ, gz) in the framework of two different

approaches.

Approach I3 9

We begin by expressing Eq. (5.2) in terms of parton distributions. It turns out
that the cut vertices for the incoming hadrons are the same as the hadronic matrix
elements of local operators which enter the discussion of deep-inelastic scattering.

Consequently the anomalous dimensions which enter the calculation of
C;j(Qzluz, gz) are the ones which we encountered already in deep-inelastic

2

scattering. Therefore if we put u2 = Q“ in Eq. (5.2) we can write

o (@) = iZj Al@A2@Ach 0, 84 (5.3)
= ] <@ <@M>Pcla, g9 (5.4)

1,

where <fi(Q2)>n are the moments of parton distributions (quarks and gluons)

defined as in example a) of Section 3 (Egs. (3.29, 3.30)). c;j(l,gz) can be
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interpreted in analogy with Eq. (3.32) as the moments of cross-sections for
parton j - parton i scattering or annihilation with a p*y” pair in the final state. We
know already the Q2 dependence of <fi(Q2)> n with next to leading order
corrections included (example a) of Sections Il and IV). What remains to be done is
to calculate the coefficients Cilj(l , gz). The procedure for calculation of C;j(l, Ez)
is a straightforward generalization of the procedure used in the calculation of
Cin(l, gz) for deep-inelastic scattering which we outlined in the Appendix. Let us
illustrate this procedure with i = q and j = g, i.e. Cga(l, gz) which through order Ez

has the expansion

- -2 —
cgqu,gz) = 1+-8-pY . (5.5)
lém

In order to find ng one considers qq annihilation in which case we have

_ —, 2
0 9%Q? - A(nl’)q(uz)A(nz’)a(uz)ng( %z,gz) ) (5.6)

Taking incoming quarks off-shell (p% < 0, p% < 0) one obtains in analogy with (A.2)

- 2 2 2 -
9902 - 1 4-& | L, 00, Q _1 0On Q  =qq
i Q%) =1+ 2[ 2yqqln > 2quln 5 +0 (5.7)
16’" "pl -pz
where qu are independent of Q2 and piz, and yg’qn = YISI,Sn‘ Next using Eq. (A.#)*
for A(nl)q and A(nZ)ﬁ we obtain from (5.6) and (5.7), after putting Q2 = u2
’ ?
99 _ 599 _ ;9
B = °n ZAnq . (5.8)

* .
g2 corrections to A(nl)q and A(nZ)a are equal to each other in this order and equal to
s t

g2 corrections to the matrix elements of non-singlet operator taken between quark

states (see Eq. (A.4)).
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Bga depends on the renormalization scheme through qu. This renormalization
prescription dependence is however cancelled in the final expression (5.4) by that of
<fi(Q2)>n if the two loop anomalous dimensions which enter Eq. (3.29) are
calculated in the same scheme as A(rl1q To complete the calculation of next to

leading order corrections to massive u-pair production one has to calculate
cS5(1, ) - £ BIC (5.9)
n ‘87 % 2 n : :
As the reader may easily check in this case in an obvious notation

BgG - BgG - 59G _ a9 (5.10)

n nG

with AEG known already from the analysis of deep-inelastic scattering (Eq. A.6). In

summary in this approach (dropping summation over flavors) we have

@ - <q(@D> <3P | 1+ B pI
0nQ = <qQ >n<qQ >n +16172 n |

-

=2
£ BdG } + Ogh (5.11)

+ <G(Q2)>n [<q(Q2)>n+<a(Q2)>n] 1 5
— L 1én

with ng and B?IG given by Egs. (5.8) and (5.10) respectively, and the parton

distributions defined as in example a) of Section 1L

Approach 1124’ 25

If the parton distributions are defined as in example b) of Sections III and IV
(i.e. the next to leading order corrections to deep-inelastic scattering are (for F,)
absorbed totally in the definition of quark distributions) then Eq. (5.11) is replaced
by
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2)

~ -2 -
o @ <§(Q%» n<E(Q2)>n [ 1+-BB1 ]

167

~ ~ =2 .
+ <G(Q2)>n[< €{(Q2)>n + <§(Q2)>n] [ 1—68—2 Bgc] (5.12)
i

where the parton distributions are modified relative to those in (5.11) and ﬁgq and

g;IG are

Bga - Bga- 28 - 525_ 253 (5.13)
and

BIG - pdG_ Y . 56 _g& : (5.14)
B?\, BS, Eg and ES are defined in the Appendix. We observe that in this approach

the An's do not need to be calculated to obtain Bga and EgG Furthermore contrary
to the previous approach, the parton distributions and parton cross-sections (B?ﬁ,
ﬁgG) are separately renormalization and regularization scheme* independent. It
should be however stressed that in both (5.11) and (5.12) only on(Qz) is independent
of the definition of parton distributions. The separation of cn(Qz) into qq and qG
term depends as we have seen on the definition of parton distributions used. In
particular the qG term and the next to leading order corrections to the Q2
evolution of quark distributions in the qq term depend on each other.

As yet nobody has presented the full numerical calculation of next to leading

2).**

order corrections to ¢ n(Q Numerical estimates of the separate corrections to

*If the same regularization schemes are used for qu and ;g, and EgG and ES.

This regularization scheme independence has been recently questioned by Humpert

and Van Neerven.q1

*¥*
In all papers on higher order corrections to Drell-Yan process the leading order

formulae for the Q2 evolution of parton distributions have been used.
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parton cross-sections are however known. In particular the parameters ng and

62(1 obtained by various group524’25,39,40,4 1

are so large that the authors conclude

that at present values of Q2 the perturbative calculations cannot be trusted.

Further details can be found in refs. 24, 25, 39, 40.

5.2. Processes Involving Fragmentation Functions3#2:43,44
Here we shall comment briefly on the processes (1.2), (1.3) and (1.5). We

begin with the semi-inclusve e*e” annihilation. The expression for the moments of

+ - +_-
oﬁ € (z, Qz) which we denote bycﬁ €, Q2) can be written formally as®

+ -
UE e(n’Qz)

2
u

. . 2
21 [ Q 2
I Vi )cln( , g ) (5.15)
] Va@IE0,8Y

HI

i=q, a, G . (5.16)

Equation (5.15) is the analogue of Egs. (2.3) and (5.2) with Vin( uz) being called time-

8 (Nlin(QZ/ uz, g2) are the corresponding coefficient functions. In

like cut vertices.
analogy with Eq. (5.4), Vin(Qz) can be interpreted as the moments of Q2 dependent
fragmentation functions and éln (1, gz) as the moments of the cross-section for the
production of parton i in e*e” annihilation. Inverting the moments one obtains Eq.
(1.14). The structure of next to leading order QCD corrections to the process in
question is similar to that in deep-inelastic scattering. The questions of renorma-
lization prescription dependence of separate quantities entering (5.16) and the
freedom in defining fragmentation functions beyond the leading order also arise
here. The full study of next to leading order corrections to the process above has
not yet been completed. Missing is the calculation of two-loop anomalous

dimensions of time-like cut vertices. This implies that we do not know at present

the full next to leading order corrections to the Q2 evolution of fragmentation
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functions, which enter the QCD formulae for processes (1.2), (1.3) and (1.5). What
we know however are the relevant parton cross-sections which contribute to the
processes in question. They have been most extensively studied by the authors of
ref. 43. The calculations of next to leading order corrections to parton cross-
sections relevant for the processes (1.2) and (1.3) can also be found in refs. 42 and
44, The method used in these calculations is the extension of the approach II
discussed previously to processes involving fragmentation functions.  One defines
fragmentation functions by absorbing all next to leading order QCD corrections to
ete”> h+ anything into quark fragmentation functions. The cross-sections for the
processes (1.3) and (1.5) can then be expressed through so defined fragmentation
functions and parton distributions which we discussed previously. The form of the
resulting expression for ehl* eh2 + anything is shown in Eq. (1.1 5&, A similar
equation exists for ete™ > h1 + h2 + anything with fj 1 replaced by Dj 1 and 0 Ij,k by
parton cross-sections for production of partons j and k in e*e” annihilation. The
latter parton cross-section we shall denote by 3%,](. As in the case of massive Y -
pair production GEj,k and afj,k calculated in the approach in question are
regularization and renormalization scheme independent.

Let us enumerate some properties of 51]'3k and & Ej,k:

i) The §2 corrections to these cross-sections are only large at kinematical
boundaries.

ii) There is a breakdown of factorization in x and z in Gg,k which is of order

10-20% for small and moderate x and z but larger when both x and z are large.

iii) The authors of ref. 43 have found the following relations between 51j3k and

Q>
=

~jk/1 2 1~ jk 2 . -
CJP (; ,2, Q%) = - %x° lj:’ (x, z, Q%) ik = q,9,G - (5.17)



-38- FERMILAB-Conf-79/65-THY

Equation (5.17) is analogous to the parton model and leading order relations
connecting deep-inelastic structure functions and structure functions for
ete” +h+ anything, which have been proposed by Gribov and Lipatov#j and Drell,

46 It should be remarked that the relations like (5.17) are shown to

Levy and Yan.
hold only for properly defined parton cross-sections and are not expected to hold
beyond the leading order for parton distributions and parton fragmentation
functions themselves.

For further details related to the processes (1.2), (1.3) and (1.5) we refer the

interested reader to refs. 42.-44,

VI. OTHER HIGHER ORDER CALCULATIONS
There are a few recent higher order calculations which we did not discuss in
the previous section. We shall comment here on them very briefly.
a) Violations of Parton Model Sum Rules
Gross-Llewellyn-Smith relation and Bjorken Sum Rule are violated beyond the

leading order as fol]owszo’z#

1 p—
fde:va+F\’p] =6|1- 12 6.1)
9 3 3 2
(33-2f)ln%
A
1 —
VP vp _ 1. 8
{)dx[Fl -FIJ =1 > . (6.2)

(33 - 2f)In 97
A

This leads to 20% and 10% corrections respectively at values of Q2 w0 (10 GeVz).

There are also corrections to Callan-Gross re]ationlﬂ which turn out to be

much smaller than the violation of this relation seen in the data.
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b) Higher Order Corrections to Photon-Photon Scattering

The process Y + Y hadrons can be measured in efe” + e¥e™ + hadrons.l'L8
When one photon has large Q2 and the other is close to its mass-shell the photon-
photon process can be viewed as deep-inelastic scattering on a photon target. It
turns out that due to the point-like character of the photon the dominant
contribution to photon-photon scattering at large Q2 can be exactly calculated in

QCD with the result

1 2 2
[ dx xn'zF;(x, Qz) =02 | aln 9—2 + 5n Inln % +b +0 1 . (6.3)
A

0 n A m&z
2
A

Here F; is the photon structure function. a, have been calculated in ref. 49. The
a"n and bn have been obtained in ref. 50. The exact values of bn depend on the
definition of EZ(QZ) or equivalently A. Taking the values of A extracted from deep-
inelastic scattering in the same scheme for EZ(QZ) in which b s are calculated,5 0
one can make definite predictions about the moments of Eq. (6.3). The corrections
turn out to be slightly bigger than corresponding corrections in deep-inelastic
scattering and suppress FzY at large values of x. In the MS scheme bn's are negative
but in the MOM scheme they are positive. However when the corresponding values
of A(Aﬁg = 0.5, Agropm = 0-85 GeV) are inserted in Eq. (6.3) the same predictions3
are obtained for Fg (x, Qz). Bigger corrections are found in the MS scheme.

c) ocﬁ Corrections to e’e + annihilation

Recently ai corrections to R = o(e*e™ + hadrons)/o(e*e”™ + 1™17) have been

calculated with the resul‘c:51

R = 31Q] [1+(% +A( %)2] (6.4)

m
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where (for four bﬂavors) A =5.6, 1.5 and -1.7 for MS, MS and MOM schemes
respectively. Taking the corresponding values for A from deep-inelastic scattering
we observe that oci corrections to R are small.

d) Large QCD corrections to QQ + 2 gluon decay have been reported by the
authors of ref. 52.

e) Higher order corrections to the polarized electroproduction structure
functions have been calculated in ref. 53.

f) qq contributions (order g“(Qz)) to massive muon production have been
calculated in ref. 54. They turn out to be small.

g) Finally the next to leading order corrections to large P; processes are

being performed.5 5

VII. SUMMARY

In these review lectures we have discussed higher order QCD predictions for
inclusive deep-inelastic scattering. We have also presented the basic structure of
QCD formulae and the methods of corresponding calculations for semi-inclusive
processes. We have seen that the structure of QCD formulae with higher order
corrections taken into account is fairly complicated and involves many features not
encountered in the leading order. These new features include:

i) gauge and renormalization-prescription dependences of separate elements
of the physical expressions;

ii) well-defined dependence of the functional form of the explicit higher order
corrections on the definition of EZ(QZ) or, equivalently, on A;

iii) freedom in the definition of parton distributions and parton fragmentation

functions beyond the leading order approximation.
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These features have to be kept in mind when carrying out calculations to
make sure that various parts of the higher order calculations are compatible with
each other. Only then can a physical result be obtained which is independent of
gauge, renormalization scheme, particular definition of EZ(QZ), and particular
definition of the parton distributions. .

We have seen that the higher order corrections are quite large and, moreover,
that there are some indications for their presence in the deep-inelastic scattering
data. This is most clearly seen in the n-dependence of the parameter An extracted
from the data on the basis of the leading order formulae. This n-dependence agrees
well with that obtained from higher order calculations.

In some processes such as massive u-pair production the next to leading order
corrections turn out to be too large at present values of Q2 that the perturbative
calculations could be trusted. This is also the case of n c decay. We thinks these
processes deserve further study. |

The calculation of two-loop anomalous dimensions to the Q2 evolution of
fragmentation functions is very desirable. Also more phenomenology of next to
leading order corrections to various processes should be done.

In our lectures we have not discussed the mass effects and higher twist
operators effects, which at values of Q2 of 0 (5 GeVz) are of some importance.
They have been recently discussed in refs. 30 and 56 which the interested reader
may consult. At low values of Q2 also nonperturbative effects should be taken into

account.

In spite of the fact that there is still much to be done, both theoretically and
phenomenologically, we believe that a lot of progress has been done in the past few
years in understanding QCD effects in the inclusive and semi-inclusive processes
and we are looking forward to the summer schools next year when surely more

progress will be reported.
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NS
k,n

as defined in Eq. (3.3) it is

APPENDIX Procedure for the Calculation of B

NS
k,n

sufficient to calculate Cﬁsn(Qzl uz, gz) in perturbation theory to order g2 and put
’

Q2 = uz. This is obvious from Egs. (2.9) and (2.10). In order to calculate

We first notice that in order to find B

Cﬁsn(Qz/ uz, gz) in perturbation theory we calculate first the virtual Compton
H
amplitude for quark photon scattering. Taking the incoming quarks slightly off-

shell (p2 < 0) in order to regulate mass-singularities we obtain for Tk(QZ,\) )

2
Tk(Q25V) = rzl_l-oﬁ,n(&:gz) (A.1)

2 2 2 2
9 (L o2) z249( L ,2) - 1+B8|-L1,0mQ . =q
°k,n( 78 ) ~c’n( 208 ) =gz lamsin 2o, (4.2)

where Eg are constant terms and x = QZ/(Zp- q). The diagrams contributing to 02 in
order gz are shown in Fig. 6. Now in accordance with the operator product

expansion

2 2 2
Q 2 NS{ Q 2 NS 2
og( z,g) =cn( 558 )An(&z,g) (A.3)
p M H
NS/(~2;,.2 2y . . . . .
where C_ (Q°/u%, g°) is the same coefficient function as in Eq. (2.5) but

A?S(pzluz, gz) are the matrix elements of non-singlet operator sandwiched
between quark states instead of proton states as in Eq. (2.5). The coefficient

functions are the same as before because they do not depend on the state between

*
We drop the index k and the charge factor § lliIS to simplify notation.
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which the operator product expansion is sandwiched. A?s(pz/uz, gz) can be

evaluated in perturbation theory (see diagrams in Fig. 7) with the resul t
ANS( B2 2) L _33_[1 Jn—R— + Al (A.4)
n\ 28 |~ 622 NS 2 " hng y

where Ag q are independent of pz. Combining Egs. (A.2)-(A.%) and using (3.3) we

obtain
= 1 -g9. Aq A
B B =0 . (A.5)

The point is that qu depends on the renormalization scheme used to render finite
the result of the calculation of diagrams in Fig. 7. In so-called p2 = -uz
subtraction schemes qu is put to zero. In the 't Hooft's scheme it is non-zero.
The evaluation of the gz corrections to the gluon coefficient function proceeds in a
similar way with the result

G( G —G

=2
c.(1,g%) = B ; BY = - Ad

(A.6)
161r2 nG

where ES is obtained by calculating photon-gluon scattering to order g2 and AgG is
the constant piece in the matrix element of quark operator between gluon states.
Eq. (A.6) is explicitly derived in refs. 3, 20. Details of the calculations using this

method can be found for instance in refs. 3 and 20.

* .
Generally Alnj are the constant pieces in order g2 of the matrix element of

operator Oi sandwiched between j state.
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= NS
n Bz,n Bz,n Zn
2 7.39 0.44 1.65
4 19.70 6.07 2.05
6 28.77 11.18 2.16
8 35.96 15.53 2.25

NS

Table 1. Numerical values of the parameters BZ,n’ Bz,n and Zn

(see Eqgs. (3.15), (3.17) and (3.5) respectively) for various
values of n and f=4. The values of ZES

of results of ref. 19 and correspond to minimal subtraction scheme.

are obtained on the basis



-50- FERMILAB-Conf-79/65-THY

Scheme Q2 [ Gev? ]
5 10 50 200
MS 0.97 0.96 0.95 0.95
MOM 0.68 0.73 0.80 0.83
MS 1.20 1.15 1.09 1.07
MS 1.10 1.05 ©0.99 0.97
MOM 0.63 0.65 0.71 0.75
MS 1.53 1.42 1.26 1.20
MS 1.24 1.15 1.05 1.01
MOM 0.69 0.68 0.71 0.74
MS 1.79 1.62 1.40 1.30
MS 1.37 1.25 1.11 1.06
MOM 0.79 0.74 0.73 0.75
MS 2.00 1.79 1.52 1.39
o RRL@ |
Table 2. The values of the quantity 1 + ——1——2— as a function of n and
B, In Q7
12

Q? in various schemes: MS (& = 0.5 GeV), MOM (A = 0.85 GeV) and
MS (A = 0.4 GeV).
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FIGURE CAPTIONS
Parton model diagrams for processes (1.1)-(1.5).
Parton model] rules.
Hlustration of the r.h.s. of Egs. (1.13), (1.14) and (1.15). The
sums run over quarks and gluons. The circles stand for parton
distributions or parton fragmentation functions. The squares
denote the parton cross-sections.
The effective coupling constant o_z(QZ) as extracted from the
BEBC data for the leading order (L.0.), MS scheme, MS
scheme and momentum subtraction scheme MOM.
Experimental An values obtained by Duke and Roberts using
the data of BEBC (open box), CDHS (open diamond) and the
entire SLAC data. The solid line is the QCD prediction of Eq. (3.26).
Diagrams entering the calculation of oﬁ’n(Qz/pz, gz) of Eq.
(A.2).
Diagrams entering the calculation of A?S(pzluz, gz) of Eq.
(A.b).
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