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ABSTRACT 

We calculate the full order g2 corrections to the coefficient functions which 

determine the QL dependence of the moments of deep-inelastic structure functions. 

The calculation is performed in the minimal subtraction scheme of ‘t Hooft. The 

results are combined with the recent two-loop calculations of anomalous 

dimensions by Floratos, Ross and Sachrajda to give the full g2 corrections to the 

leading order of asymptotic freedom. We present results for C,(I, i2) relevant for 

electroproduction and neutrino reactions for both nonsinglet and singlet combi- 

nations of the structure functions. Phenomenological consequences of the full g2 

corrections to the nonsinglet structure function are discussed. The corrections to 

the Gross-Llewellyn-Smith and Bjorken sum rules are estimated to be of the order 

of 15%. 
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1. INTRODUCTION 

In the last two years there has been considerable interest’ in the comparison 

of asymptotically free gauge theories (ASFj2 with the deep inelastic data. Most 

analyses so far have concentrated on the leading asymptotic behavior of the 

moments of the structure functions, in which only the [ In Q2/A2 Id” terms are 

retained. The conclusion has been reached’ that this leading behavior is consistent 

with the scaling violations observed in ep, up, vN and TN deep inelastic scattering3 

except for a large ratiooL /uT seen at SLAC.4 However at Q2= few GeV2 the 

leading asymptotic behavior cannot be the whole effect and it is of interest to ask 

whether mass corrections and higher order corrections in the effective coupling 

-2 2 constant g (Q ) modify these results. Mass corrections when treated in the manner 

of Nachtmann-Georgi-Politzer 5-10 improve the agreement of the theory with the 

data for v~~~p, vW2’ ?’ and give a small but non-vanishing oL/uT ratio. 

As concerns higher order corrections in g2 only the calculation of 

u L/u T~O(g-2) is simple and the result is well known. 11-14 These corrections 

together with the mass corrections are unable 6,7,14 to explain the large value of 

a L/u T measured at SLAC at large x. 
- 

The analysis of the g2 corrections as applied to v~~~p, v W2” ’ ‘and VW,” ,’ 

is much more involved.697y’1 To see this consider the moments of a non-singlet 

structure function (vW2ep -V WZen, v W2vp - vw2’p, etc.), which in ASF are 

given2 as follows 

Mn(Q2) 5 i ’ dx x~-~ 

0 
FNS(x, Q2) = An c,(I, g2) exp -j-;;2$% x]. (1.1) 

0 
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Here g2(Q2), yn(i2)and 8G*)are the effective coupling constant, anomalous 

dimension of the spin n operator in the Wilson expansion of the product of two 

currents and the standard 6 function respectively. Each of these quantities and 

C,(l, g2) can be calculated in perturbation theory. The constants An are to be 

found from the data at some arbitrary value of Q2 = Qo2. 

By expanding Cn(1, i2), TnG2) and 8G2) in powers of z2, calculating i2 in 

the two-loop approximation for BG2) and inserting everything into (1.1) one 

finds”11 

Mn(Q2) = An 

L 
f (I) f (2) 

I+n +” In In 2 

lnQ1 ln$ A2 

A2 I? 
II 

In QZ 
A2 

Q02 
In - 

A2 I 
d 

n 

, (1.2) 

with f n (l), f (2) n and dn depending on the parameters in the expansion of Cn, y, 

and 8. We shall give explicit formulae for fn (I), f (2) 

and fn(” 

and dn in section 2. Here 
7,11 

we only recall that in order to find fn (I) the knowledge of Tn(g2) and 

BG2) to 2 order and of C,(l, z2) to s2 order is required. The g2 corrections to 

C,(l, g2) and the 2 corrections to vn(i2) deserve particular attention. As 

pointed out in ref. I5 these two corrections are renormalization prescription 

dependent and only when both are calculated in the same renormalization scheme 

can a physically meaningful answer be obtained. So far only in ref. 7 have both 

contributions in question been included in a phenomenological analysis. To this 

end the results for C,(l, g2) of ref. 6 together with those for y nG2) of ref.15 

have been used. Unfortunately it is now clear16that the renormalization scheme 

used in ref. 6 is not the same as that used in the two-loop calculation of vnG2). l5 

Therefore the results of ref. 6 and I5 should not be used together. 
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In order to calculate C,(l, i2) both the z2 corrections to the virtual 

Compton amplitude and the i2 corrections to the matrix elements of local 

operators are needed. 17 In a general renormalization scheme both of these 

quantities are sensitive to infrared structure of the theory and are gauge 

dependent. We show however that in the renormalization scheme of ref. 15 the 

gauge dependences of the virtual Compton amplitude and of the matrix elements 

of local operators are the same and cancel when C,(l, E2) is calculated. 

Consequently in the renormalization scheme in question, C,(l, i*) is gauge 

independent. Of course C,(l, g2) remains renormalization prescription dependent. 

This renormalization scheme dependence of C,(I, g2‘2, is then cancelled by that of 

two-loop contributions to u,,(i2). Since yn(g2) in the minimal subtraction 

schemeI used in ref. 15 is gauge independent 19,20 and 8(g) to two loops is gauge 

and renormalization prescription independent, 19,20,21 when all corrections are 

combined in (1.2) the physical result is obtained. 

In the present paper we shall calculate C,(l, i2) to E2 order in the 

renormalization scheme which has been used in ref. 15 to calculate yn(g2) to 2 

order. This we do not only for the non-singlet electromagnetic structure 

functions but also for singlet structure functions and neutrino processes. 

Our paper is organized as follows. In section 2 we formulate the problem in 

greater detail and state a general procedure for the calculation of C,(I, z2). We 

subsequently focus on the renormalization scheme used by Floratos, Ross and 

Sachrajda.15 In section 3, we calculate those quantities necessary to determine 

the coefficient function C,(l, g2) for non-singlet operators, and the significance 

of the scale parameter A is discussed. 
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In section 4, we calculate C,(l, g2) for non-singlet contributions to neutrino 

deep inelastic scattering and discuss g2 corrections to the various neutrino sum 

rules and parton model relations. 

We compare our results to the recently measured 10 moments of the non- 

singlet structure function xF3 in section 5. We find that the order g2 corrections 

do not change the conclusions of previous analyses I,10 based on the leading order. 

In section 6 we extend our calculations of C,(l, g2) to singlet structure 

functions. We use again the renormalization scheme of the authors of ref. 15. 

Section 7 contains a brief summary of our paper. The contributions to the virtual 

Compton amplitude and to the matrix elements from the individual Feynman 

diagrams are collected in an Appendix. 

2. BASIC FORMALISM 

2.1. Preliminaries 
- 

In what follows we shall discuss the spin averaged amplitude TUVaa for the 

forward scattering of a current J,,“. In our case J a will stand either for the 
!J 

electromagnetic current (ep scattering) or a weak current (v, 3 scattering). The 

amplitude T 
UV 

aa can be decomposed into invariant amplitudes as follows 

- 

T uvaa(q2,v 1 q 1 i d4x eiq* ‘<P ITUua(~)JV?O)) Ip >spin averaged 

(2.1) 

with v=pqq. Here J a 
!J 

= (Jua)+ and 1 p> is for instance a proton state. The 

tensors e and d 
UV 

are defined as follows 
uu 
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epv = g!.lv - gugu 
q2 

d 
llv 

Using the operator product expansion for currents2 we can write equation (2.1) as 

T ,%q2, v) = i -j ellV f CL,nivaa $, g2 
( > 

cd -ic 
!.I vctf3 

+F c3,;7az($,g2)I A;($g2) 

where Q2 = -q2 and p2 is the target four-momentum squared. Furthermore, x is the 

Bjorken variable (Q2/2v), g2 is the renormalized coupling constant, p2 is the 

subtraction scale at which the theory is renormalized and Ain are constants 

specified in equation (2.8). The sum on the r.h.s. of equation (2.4) runs over spin n, 

twist 2 operators such as 22 

I.ll...!Jn .n-I 

Oi3 
= + C vAgyu*gu2...g”n $I+ permutations] 

PI... “n .n-I 

OJ, 
= $J- TV’ ‘g’...gihJI + permutations] C 

and 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

OG 
!.q- !+ 

+ permutations] . (2.7) 
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P’i”‘Un 
OB 

are the fermion non-singlet (under physical symmetries) operators 

whereas 0 
JI 

“I”‘% and o h”’ Ifi 
G are singlet fermion and gluon operators 

respectively. Gin are the corresponding coefficient functions of the Wilson 

expansion. The constants A i 

elements of Oiu ‘“’ ’ as foflois 

are related to the spin averaged proton matrix 

<PlO. 
!Jl..‘!Jn 

I lp > = ALpuL...pu, + trace terms . (2.8) 

In our field theoretical calculations we shall deal with the matrix elements of the 

operators in question between quark and gluon states rather than between proton 

states and therefore it is convenient to generalize (2.8) to 

<Pi jIOi 
!J’l...u, 

Ip;j > = Anjipul...pun + trace terms (2.9) 

with i,j = 8, I$, G. 

The coefficients C2,n i,aZ 
’ ‘L,n 

i,aZ 
and ‘3,n iya;i as defined in equation (2.4) 

are related to the moments of the standard structure functions 

Flaa(x, Q2) z Wlaa(x, Q2), F2aa(x, Q2) a vW~~‘(X, Q2), F3aa(x, Q2) E vW~~‘(X, Q2) (2.10) 

as follows 23 

dx x n-IF aa 

0 
I (x, Q2) = 1 Ani 

1 

j’ ;dx x”-~F~~‘(x, Q2) = 2 ; AniC2,niyaa (2.12) 

and 
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f :, dx xn-’ F3(x, Q2) = 2 1 AniC3 
i 

. (2.13) 

In spite of the fact that there is a set of non-singlet operators corresponding 

to various X 
6’ 

the Q2 dependence of their coefficient functions in the Wilson 

expansion is in common since they neither mix under renormalization with each 

other nor with the singlet operators. Therefore it will be convenient to factor out 

the dependence on the SU(n) nature of the operator as well as the current involved 

and write 

C 
r,n 

= Kaa7Bc 
r,n 

r = 1,2,3 (2.14) 

with Cr n NS(Q2/u2, g2) being common for all non-singlet operators. In what 
I 

follows weshall directly work with Cr n NS(Q2/ u2, g2). In addition we shall choose 

the overall normalization of Cr n NS ’ 
t 

m such a way that in the go order 

c (CONS _ 1 
r,n (2.15) 

The relative normalization of the Born term and the g2 correction is then fixed by 

the minimal subtraction scheme used. 

Correspondingly for the coefficient function of the singlet fermion operator 

we shall write 

c 
r,n 

= Ka;i?$c 
r,n 

r = 1,2,3 (2.16) 

where the overall normalization of Cr n + 
f 

is chosen in such a way that in the go 

order 
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c (O)J, = , 
r,n (2.17) 

Similarly we shall choose (see 2.5-2.7), the overall normalization for the 

matrix elements of the local operators so that in go order 

(2.18) 

As in the case of coefficient functions the relative normalization of the Born term 

and the g2 corrections to the matrix element of local operators is fixed by the 

minimal subtraction scheme. 

We shall now present in simple terms the general structure of our 

calculations. To simplify matters we shall neglect Lorentz indices whenever 

possible and only write formulae for structure functions which do not vanish in the 

leading order (e.g. vW2). For completeness however we shall comment from time 

to time how the formulae change when applied to the longitudinal structure 

function which vanishes in the leading order. We shall keep all Lorentz indices in 

section 3. 

2.2. Wilson Coefficient Function to Order g2 

For the non-singlet combinations of the structure functions (e.g. F2ep-F2en, 

F2’ p-F2v p e tc.) equations (2.11-2.13) simplify to the following general expression 

. (2.19) 

The Q2 dependence of CnNS 2 2 2 (Q /u , g )IS governed by the renormalization group 

equation’ 

i u $p+ B k) ig - -,.(,,,c~S(~ 2) = 0 

which has the following solution 
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= CnNS(I, g2) exp [-f;;;)dT$$] . (2.21) 

Here g2(Q2) is the effective coupling constant which satisfies the equation 

-2 
+- = 9B@ , Elt = 0) = g (2.22) 

where t = In Q2/u2. y n(a is the anomalous dimension of the operator 0 lq-u n 

In order to find explicit expressions for fn (1) and fn(2) in equat: (1.2) we 

follow ref. 7 and expand first y,@, B(a and CnNS(I, E2) in powers of g 

(2.23) 

B(g) = - B. -$ - BI 4 + . . . 

(16~~) 
(2.24) 

CnNS(l, g2)= I + B NS 2 + . . . n 16n2 
, (2.25) 

For the longitudinal structure function the first term on the r.h.s. of eq. (2.25) is 

zero. 

We next expand $Q2), the solution of equation (2.22) with B(g) given by 

(2.24), in powers of go2(Q2), the effective coupling constant calculated in the one 

loop approximation with the result 

B 1 ifo4(Q2) 
i2(Q2) = io2(Q2) - - 

B. 16i~~ 
+ 0@,9 (2.26) 

where 
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so2(Q2) q 
48n2 

(33 - 2f) In Q? 
A2 

(2.27) 

with f being number of flavors. 

In equation (2.26) and following ref. 7, the constant A has been arbitrarily 

chosen so that there are no further terms of order go4. A little algebra shows that 

’ u t I? and g2 are rela ted to each other by 

A2 = u*exp 
[ 

-- In (2.28) 

Clearly this choice of A is not unique and we shall discuss in detail in section 3.4 

definitions for A which lead to additional terms of OEo4) in equation (2.26). 

Inserting (2.23)-(2.26) into (2.21) and expanding in powers of go2 we obtain’ 

c/s($g2) = c,, i+B,;Pi (BnNS+Pn+Ln -Y0n’2Bo (2.29) 

0 
A2 

where 

‘n 
Y,” 4Y On 

= --- 2 2Bo ’ 2B 
0 

Ln = X$mQj 

2B0 

(2.30) 

(2.31) 

and Cn is an overall Q2 independent constant. In the case of the longitudinal 

structure function P n’ Ln and the leading term 1 are absent and Bn NS is replaced by 

BNS nL ’ 
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The parameters y 9”, BO and 8, are gauge and renormalization prescription 

independent and are given for an SU(3) gauge theory with f flavors as follows 2,21 

Ygn = ; I- L 
2 1 

ni +4 f -1 
j72 J 

B. = II-$f 

B 1 = 102-Ef 3 

(2.32) 

(2.33) 

(2.34) 

The quantities Bn and yin are renormalization prescription dependent (and in 

principle also gauge dependent). However as pointed out in ref. 15 the 

renormalization prescription dependence of Bn is related to that of yf” and when 

these quantities are inserted in equation (2.29) a physical, renormalization 

prescription independent answer is obtained. In other words, the calculation of Bn 

and yl” may be performed in any renormalization scheme but care must be taken - 

that these two quantities are calculated in the same scheme. 

The yin for non-singlet operators has been calculated by Floratos, Ross and 

Sachrajda,” who have used ‘t Hoof&L8 muumaf subtraction scheme to renormalize 

the amplitudes. In this scheme the Feynman diagrams are evaluated, using 

dimensional regularization, in d = 4 - c dimensions and singularities are extracted 

as poles l/c, l/c2, etc. The minimal subtraction then means that the amplitudes 

are renormalized by simply subtracting the pole parts I/E, I/ e2, etc. 

The coefficients BnNS existing in the literature 6,ll have been calculated in 

schemes which differ from the one above and cannot be combined with the results 

of ref. 15. Therefore in our paper we shall calculate them in the minimal 

subtraction scheme. ‘We now outline a method for calculating B NS. ” 
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2.3. Procedure for the Calculation of B NS ” 

We first remark that in order to find Bn as defined in equation (2.25) it is 

sufficient to calculate Cn(Q2/u2, g2) in perturbation theory to order g2 and put 

Q2 q u2. This is obvious from equations (2.21 and 2.22). 

Writing next the non-singlet version of (2.4) symbolically as follows 

TNs(Q2, v) = 1 (i)” CnNS 
” 

(2.35) 

we see that in order to find Cn NS(Q2/~2, g2) we generally have to calculate both 

TNs(Q2, v) and AnNS 2 2 2 (p /u , g 1. Since the coefficient functions do not depend on 

the target we can choose as a target any state for which calculations can be easily 

performed. In what follows we shall choose either quarks or gluons as targets?4 In 

order to be consistent with the calculations of ref. 15, we shall deaf with massless, 

off-shell quarks or gluons with space-like momenta p2 < 0. 

Having all information at hand we can now state the procedure for extracting 

CnNS(Q2/u2, g2) and specifically the constants BnNS. 

The procedure is as follows: 

i) Calculate TNS(q2 , u) (forward amplitude for scattering off quarks) in 

perturbation theory to order g2 and expand in powers (I/x)” for x > 1. The 

coefficients of this expansion will have the form 

T NS = n,“d-i , -d?!+, (2)NS 
” -p2 2YFn u2 I-I 1 (2.36) 

with y0” given by (2.32) andy F being the anomalous dimension of the quark field. 

The overall normalization has been chosen in accordance with equations (2.15 -2.18). 
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ii) Calculate A NS 2 !.?, g2) by considering the matrix elements of non- ” (P/ 

singlet operator between quark states with the result 

A NS = 21 
” l”=P--y I”=$ + A”(2)NS 

u2 2 F 1 . 
iii) Insert (2.37) and (2.36) into (2.35) to obtain 

C/S($,g2) = ~+--$[-$Or’In$2+T~2)NS-A~2)NS] . 

iv) Finally evaluate (2.38) for Q2 = u2 and compare with (2.25) to find 

B NS = T (2INS _ A (2)NS 
” ” n 

(2.37) 

(2.38) 

(2.39) 

This equation applies to the non-singlet components of the structure functions F1, 

F2 and F3. In the case of longitudinal structure function, which vanishes in go 

order the corresponding expression is 

BL,fl 
NS = TL,n(ZJNS . (2.40) 

The above procedure applies for any renormalization scheme. However as we 

already stated above different renormalization schemes lead generally to different 

values of Bn. If Bn and y n 
I 

are calculated in the same scheme, a renormalization 

prescription independent result for the moments of the structure functions is 

obtained. 

In the scheme of de Rujula, et ai., the matrix elements of operators are 

normalized so that An (2) - 0 - . Therefore in that scheme we have simply 

B NS q T (2)NS 
n n * Unfortunately we cannot use this scheme for our calculations 

since the only existing results for Y1 ” have been obtained l5 using the minimal 
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subtraction scheme. As we shall see in the next section in the latter scheme 

A (2)NS 
” f 0 and must be calculated in order to extract the coefficient function. 

3. C,,(Q2/u2, g2) TO ORDER g2 FOR ELECTROMAGNETIC 

CURRENTS (NON-SINGLET CONTRIBUTIONS) 

For electromagnetic currents, the calculation of the non-singlet contributions 

using equation (2.4) simplifies to 

T uvNs(q2, V, p2) = I: ( !j )” e uvCL,nNS ti2 , g2 
( > 

+ 

+dp”c2,nNyjd2)\ A/s($g:) . (3.1) 

T NS. 

!JV 
is the forward spin averaged amplitude for scattering of photons off off- 

shell massless quarks with space-like momentum p2 < 0 and A, 
NS 

are the matrix 

elements of the non-singlet operators of equation (2.5) between the quark states in 

question. CL n NS 
a”d C2,” 

NS are the coefficient functions which we want to 
f 

calculate in perturbation theory to order g2. To this end according to the 

procedure of section 2.3 we begin by calculating TuvNS to order g2. 

3.1. Calculation of the Virtual Compton Amplitude to Order g2 

We first recall that the calculation of T NS ’ 
!JV 

m g order involves diagrams of 

Fig. 1 and when the result is expanded in powers of I/x we find in the normalization 

of (2.15-2.18) 

TL “(‘jNS = 0 
’ T2,” 

(0)NS = 1 (n even) . 
, (3.2) 

The calculation of T NS . 
VW 

m g2 order involves diagrams of Fig. 2. We use an 

arbitrary covariant gauge a where the gluon propagator is given by 
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-’ g 
‘[ 

%I& 
k2 )I”-(-) k2 1 (3.3) 

Using the minimal subtraction scheme and dropping terms of order p2 we obtain the 

following result for the coefficients Tn (2)NS defined in equation (2.36) 

T2 n(2)NS 
, =C2(R) 3 f &-8jtlj+ “+$- 4 

1 j=I I n+l 
(n + 1j2 

(3.4) 

-1-i +(In 4n-yE)+(l-CX) k +jzlj!-l-In4n+yE)/ 
( 

n even 

and 

T 
L,n 

(2)NS : C (R)L 2 n+l ’ C2(R) = ; . (3.5) 

The contributions from individual diagrams are collected in the Appendix. The 

gauge dependence and the presence of the term (In 471 - y E) where yE is the Euler- 

Mascheroni constant are due to the normalization procedure and will be discussed 

in section 3.4. 

3.2. Matrix Elements of Non-singlet Operators to Order g2 

The calculation involves the diagrams of Fig. 3. Using again minimal 

subtraction scheme, we determine the constants A (2)NS 
” defined in equation (2.37) 

with the result 

A (2)NS = C2(R) 8 -; + n& + z- - 
[ 

4 
n 

“2 (n + I)2 

-4 E r j=l j2 + “h jfl ; - 4 ,r,i ,2=I 1’ + (3.6) 

+(ln4*- k)(“& -4i2f)+(l-~)(A +~l~-I-l~4~+yE)] n-even . 
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Details of the calculation are given in the Appendix. 

3.3. Final Result forCL r,NS(I, z2) and C2 nNS(I, i2) 
, , 

Inserting (3.4), (3.5) and (3.6) into equations (2.39) and (2.40) and using the 

definition (2.25) we obtain the following results for CL r,NS(I, i2) and C2 nNS(I, g2) 
t 

to order E2 
f 

C2,nNS(~, S2) = I + 2 NS 
16i? B2,n 

and 

c~,“~+I, g2, = 2 C2(R) & 
16n2 

where 

B2,” NS = C2(R)]3.$ f-$ -n& jJ; 

+4J,:it;,;+; +n+ ++ -9 
” 

+ “y%n 4s -YE) , 
t 

n even 

(3.8) 

(3.9) 

and 

- ” 
YO 

= I- “&+4! 4 4Ygn 
ji2 1 

. (3.10) 

The result (3.8) is well known.‘!-14 On the other hand the result for B2 ,,NS in the 
, 

particuiar renormalization scheme considered is new. 

Notice that the gauge dependence of An (2)NS cancelled that of TJ2jNS 

leaving B2 ,“’ gauge independent in the minimal subtraction scheme. Numerical 
‘NS 

values of B 
2,” 

together with those for y ln and yen are collected in the Table. 
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There are only two calculations of BySnin the present literature. One by 
, 

CaIvo’ ’ and another by de Rujula, Georgi and Politzer.6 None of these results for 

EPS 
0 

can be directly compared with equation (3.9) because the renormalization 

schemes used in refs. 6 and 11 are different from ours. On the other hand we can 

directly compare our result for (2INS T2 n wrth that obtained by de Rujula et aL6 
2 

Setting CL = 0 in equation (3.4) we obtain their result except for the numerator of 

the term l/(n + 1) which in our case is 6 and theirs 10. 

3.4. Discussion of the Results for Non-singlet 
Structure Functions 

In this section, we discuss some technical aspects of our calculations 

including infrared sensitivity, gauge dependence, and normalization dependence. 

We defer discussion of phenomenological aspects to section 5. 

In the previous sections, we have calculated the coefficient functions, Cn, 

using ‘t Hooft’s minimal subtraction scheme. This normalization procedure is 

insensitive to the infrared structure of the theory for large Q2; corrections are of 

order p2/Q2 or mq2/Q2 for the coefficient functions. The amplitudes, Tn and A,, 

which were used for our calculation of C, are sensitive to the infrared behavior 

since they involve matrix elements in particular states, free quarks in our case. 

Although our states are only logarithmically off shell (p2-+ 0, In p2 finite), 

numerator factors of order p2 may still contribute as the Feynman integrals can 

yield terms of order l/p2. Therefore one must be careful when dropping p2 terms. 

Such terms are responsible for the gauge dependence of the amplitudes, T”(3.4) and 

A&3.6). 

The question of gauge dependence involves a number of aspects. We have 

noted that the spin averaged matrix elements of the correlation function, Tn, and 

the local operators, An, are found to be gauge dependent. On the other hand, the 

coefficient functions, C,(3.9), are found to be gauge invariant. This result is 
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expected as the C, appear as coefficients in the Wilson expansion involving gauge 

invariant operators. The coefficient functions are not automatically gauge 

invariant as the local operators may be given a gauge dependent normalization in 

some renormalization schemes. 

The gauge dependence of the theory also affects the renormalization group 

equations which are used to convert the perturbation theory results into the true 

asymptotic behavior of the theory. Except in the Landau gauge, the usual 

renormalization group equations involve a derivative with respect to the renor- 

malized gauge paramete!P The solution of the renormalization group equations usu- 

ally requires full knowledge of the gauge dependence of the renormaIized group 

parameters. However, the two loop anomalous dimensions have only been 

computed in the Feynman gauge. I5 The renormalization group equations for 

amplitudes in Feynman gauge must be modified by the inclusion of inhomogenous 

terms. The Feynman gauge amplitudes for Tn and An will satisfy renormalization 

group equations of the forms 

Da ,+B(g)ag-2YFiTn = AT n 

IP a ~ + B(g)a 
g 

+ Y,-ZYFIAn = AA, . (3.11) 

The inhomogenous terms result from the variation of the bare gauge parameter as 

we change the normalization scale while remaining in Feynman gauge. In the 

minimal subtraction scheme, these terms may be computed for the relations in 

(3.11). However the analogous relations for the coefficient functions C, will not 

involve inhomogenous terms. Hence the naive renormalization group equations 

used in (2.20) for the coefficient functions are correct for Feynman gauge 

calculations in the minimal subtraction scheme. 
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We now turn to problems associated with the solution of renormalization 

group equations which relate to the significance of the parameter A and the 

presence of terms like In 4x and y E in our expressions for the coefficient functions. 

The coefficient functions for nonsinglet operators satisfy homogenous renormaliza- 

tion group equations in the form 

[~~a~+~(da~-~~(g)ic, ($g2) = 0 (3.12) 

where u is the normalization scale and g the renormalized coupling constant. 

These equations may be solved in a standard manner by introducing a renormaliza- 

tion group invariant coupling constant, g(Q2h 2, g). The result (2.21-2.22) may be 

expressed as 

= C,(l, g2)exp [ $’ dr y”(r )/B(T)] 
s 

2 
-$I”% = J- ” drW6 CT)) 

u g 

(3.13) 

(3.14) 

As noted in section 2, C,(l, g22, is simply evaluated in perturbation theory by 

computing Cn(Q2/u2, g2) at the normalization point Q2 = u2 as the exponential 

factor in (3.13) is one if g is defined as in (3.14). 

The leading order results are obtained by evaluating C,(l, i2) in zeroth order 

and truncating y”(g) and g(p) in one loop order. Using the expansions in Eqs. (2.23) 

and (2.241, eqs. (3.14) and (3.13) may be integrated to obtain 
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16n2 1 16,’ 1 --=-- 
30 p2 60 g2 

(3.15) 

and 

qp, = ;(Y:fiO)‘“g’~ = [,kQw]-~On’260 . (3.16) 

For asymptotically free theories (8 o > O), this result represents the true asymptotic 

behavior of the coefficient functions as Q2 +m. If the full theory were precisely 

given by the truncated theory, then the parameter, A, would have significance as 

the scale of strong interactions. However, in the full theory there are corrections 

of order (l/In Q2). These corrections cannot be uniquely specified independent of 

the scale, A, as changes in the value of A may also be represented as order (l/In Q2) 

for large Q2. This fact becomes more apparent when considering the first 

systematic corrections to the behavior of the coefficient function. 

This next order calculation requires the knowledge of the one and two loop 

contributions to the anomalous dimension, Y”, and the B-function as well as the 

entire one loop contributions to the coefficient functions. As discussed in section 

2, the calculation of these quantities must be done in a consistent manner. The two 

loop B-function 2,21 and the two loop anomalous dimension for nonsinglet 

operators I5 have been computed using ‘t Hooft’s minimal subtraction scheme. I8 we 

have presented our results for the full one loop coefficient function using this same 

scheme in section 3.3. 
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These results may be combined to obtain a solution to the renormalization 

group consistent to second order. One such solution is discussed in section 2, 

equations (2.26 - 2.29), with the result 

C”($E2) = c”[l+60’$p+q&~) 

y ZBl -- 
ao2 

In In Q ,: II (In5 ) 
-y ;mo 

(3.17) 

The equation (3.17) is exact through order O(l/ln Q2/A2) in the expansion for large 

Q2 with the scale A. Asymptotic expansions of this type are also possible for some 

other choice of scale, say Ao. To be specific, take A0 = 1 GeV and re-expand (3.17) 

in powers of l/In Q2 to find 

C&g) = Cn[l + Bol~Q2[B”s+~y~lnA2+; ($ -3) 

y31 - 2 In In (In Q2) 
-Y;/2f30 

2g0 
, (3.18) 

through order O(l/ln Q2). An important observation is that the effect of the change 

of scale is equivalent through order I/In Q2 to the shift of the constant B NS by an n 
amount proportional to the one-loop anomalous dimension y 

0 
n. This may be seen in 

(3.18) explicitly. Thus any term proportional to y i in B/’ can be absorbed by the 

redefinition of the scale A. In particular the term In In -yE in (3.9) may be 

absorbed by choosing the new scale Aexp )4(ln 4s - yE). 
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From the point of view of the renormalization group equation, the ambiguity 

of g2 corrections in terms proportional to $ as well as in the redefinition of A are 

related to the freedom of defining the effective coupling constant in solving the 

renormalization group equations (3.12). In fact a new solution for g may be 

obtained by adding a constant b to the left-hand side of (3.141, yielding 

2 g 
-ilnQ+b=.f dr I 

lJ2 g-m-J 

With this normalization i(Q2) is equal to the renormalized coupling constant g at 

Q2 = u2e-2b (= ug2) and not at Q2 = u2 as defined in (3.14). Since A is proportional 

to u (see (2.28) and (3.15)), we observe that any redefinition of the scale A 

corresponds to redefinition of the effective coupling constant. If the new 

renormalization scale u’ is used, the solution of the renormalization group 

equations takes the following form, 

Cn($,g2) = Cn($,i2)exPj irk ‘$ , (3.20) 

with g( u - 12 I = g. Although the expression of Cn(Q2/ u2, g2) in terms of g and p in 

(3.20) is different from that in (2.21), the physical result is identical. 

It is clear that the addition of the constant, b, in definition of E2 (3.19) just 

reproduces the effect of shifting A to absorb terms proportional to yi in Bn. The 

complete second order contributions to the coefficient function given in Eq. (3.18) 

are, of course, independent of this redefinition as would be full all order 

calculations. However if we truncate the calculation in second order in z2, 

different choices for b correspond to different estimates of the higher order terms 

in g2 for the coefficient functions. The choice for b must give results consistent 

with the asymptotic perturbation expansion and the normalization scheme used. 
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This freedom in choosing b can be exercised separately for each n when 

solving the renormalization group equation. One possible procedure, therefore, 

involves the introduction of a bn in Eq. (3.19) such that in Eq. (3.20) 

with u,’ = ue -bn and gn2 depending on n through 

A n 

, 

, 

so the n dependence of An is calculable. This procedure has the nice property that 

the relative n dependence between Bn NS andy i, i.e. the difference in n dependence 

between order gz and leading order, is isolated in An and in the two-loop anomalous 

dimensions (the effect of the latter is small for n < 12). This procedure is similar 

/ 25 to one proposed by Bate. The phenomenological implications of our calculations 

are discussed in section V. 
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4. g2 CORRECTIONS TO ” AND\, SCATTERING 
(NON-SINGLET CONTRIBUTIONS) 

4.1. Calculation of g2 Corrections 

The evaluation of g2 corrections to v and 5 deep inelastic scattering proceeds 

as in sections 2 and 3 except that now we must also deal with axial-vector currents. 

It is convenient to consider certain combinations of the v,v structure functions 

which have simple properties under crossing. These are 

F;JP-F;P 

F2uP+F;P 

F3” p - F3” p 

(4.1) 

(4.2) 

(4.3) 

and 

F:P 
3 + F; p (4.4) 

The remaining structure functions for scattering off neutron or nuclear targets can 

be directly obtained from (4.1)-(4.4) using charge symmetry. For instance 

-n - F2’P-F2vP = F2Vn-FVP = F2VnwF2v -n 
2 = F2VP-F2V . (4.5) 

In order to calculate g2 corrections to F2 one considers again the diagrams of 

Fig. 2 except that now diagrams with both vector currents replaced by axial-vector 

currents also contribute. 8ut since we have put masses to zero the axial-vector- 

axial-vector contributions are equal to vector-vector contributions. Obviously 

calculation of the g2 corrections to the combinations (4.1) and (4.2) corresponds to 

subtracting and adding crossed diagrams respectively. 
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The structure function F3 corresponds to the vector-axial-vector interference 

and therefore the diagrams contributing to it are obtained from Fig. 2 by replacing 

one of the vector currents by an axial vector current. Again the calculation of the 

g2 corrections to the combinations (4.3) and (4.4) corresponds to subtracting and 

adding crossed diagrams respectively. 

By inspecting the diagrams directly or by considering the decomposition (2.1) 

and taking into account known properties of various structure functions under the 

transformations I.I + V, x ++ -x one can easily find whether even or odd spin 

operators contribute to each of the combinations (4.1-4.4). It turns out 3 2 26 that to 

F2 
T-V and F3V’v only odd spin and to F2”+” and F “-” only even spin operators 3 

Finally we have to determine which combinations are independent of gluon 

operators and therefore satisfy simple renormalization group equations as given in 

eq. (2.20). The combinations (4.1) and (4.3) transform obviously as non-singlets 

under flavor symmetry and therefore satisfy equations like (2.20). ~~“p + ~~“p is a 

singlet combination which can be seen, for instance, by writing it in terms of quark 

distributions. Therefore because of mixing between gluon and fermion singlet 

operators this combination will satisfy more complicated renormalization group 
- 
v+v equations, which we shall discuss in section 6. On the other hand, F3 still satis- 

fies equation (2.20) in spite of having contributions from singlet fermion operators. 

This is because the gluon operators of odd spin27transform differently under charge 

conjugation than the corresponding singlet fermion operators and therefore there is 

no mixing. 
26 

In this section we shall restrict the calculation to the combinations (4.1), (4.3) 

and (4.4) and come back to the combination (4.2) in the next section. 



-27- FERMILAB-Pub-78/42JHY 

For F2’p 2 - F “p the calculation is exactly as in section 3 and we obtain for 

the corresponding coefficient functions defined in equation (2.4) the following final 

T-V 
‘2,n (I, E22, = c2 nNs(I, g22, , n odd 

f 

‘L,n 
“-“(I, g2, = CL nNs(I, i2;2, , n odd 

, 

(4.7) 

(4.8) 

where C2 n NS 
and ‘L,n NS are given by equations (3.7-3.10). 

, 
On the other hand, we find 

NS(l, i22, - d- C (R) n$$ , 
16x2 2 

n Odd . (4.9) 
n even 

4.2. Corrections to Sum Rules and Parton Model Relations 

It is well known2 that in the leading order of asymptotic freedom parton 

model relations and sum rules are satisfied. The i2 corrections calculated in this 

section can generally introduce violations of the sum rules and relations in 

question. 

Evaluating the formulae (4.7-4.9) for n q I and recalling that y,,l= 0 due to 

current conservation so that except for Bn NS calculated here, all contributions in 

Eq. (2.29) vanish, we obtain 

J;$ [F2’P-F2vP] = 2 

j. I dx [F3’p + F3vp] 
0 =-6[’ -Z$ ] 

(4.10) 

(4.11) 
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and 

/ ’ dx kf’p- Ffvp] = 
0 

These results disagree with those obtained by Calvo.‘f Notice that the Adler 

sum rule28 (4.10) is exactly satisfied, whereas both the Gross-Llewellyn-Smith2' 

sum rule (4.11) and the Bjorken sum rule 3o (4.12) are violated. In Fig. 4 we have 

plotted predictions of (4.11) and (4.12) versus Q2/A2. We observe that the 

deviations from the two sum rules in question are predicted to be non-negligible 

and accurate measurements should detect them. 

Equations (3.8) and (4.8) imply violation of the Callen-Gross relation 

2xFf = F2. Previous investigation 697914 has shown, however, that the violations of 

the relations in question seen in the data at large x are larger than predicted by the 

theory. 
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5. PHENOMENOLOGY OF THE ORDER g2 CORRECTIONS 

We discuss in this section the phenomenological application of our calcu- 

lation. The theory predicts directly the Q2 dependence of the moments of 

structure functions; we will use in our analysis the combined Gargamelle-BEBC 

data” for the non-singlet structure function xF3(x, Q2) to obtain the experimental 

values of the moments, thereby avoiding the somewhat involved problem of 

inverting the moments. Bosetti et aLlo have already analyzed the moments of 

xF 3 using only the leading order effects of asymptotic freedom. It is our purpose 

here to investigate the effect of including the order g2 corrections in the analysis. 

The moments of xF3 most appropriate for comparison with our calculation 

are the Nachtmann moments’ 

Mn(Q2) = J+ ; dxq xF3(x, Q2) [I + s 2 ( ; - ,)] (5.1) 

with 

EJ = 2x/(1 +/I + 4M2x2/Q2) 

and M the nucleon mass. The moments are obtained by straightforward numerical 

evaluation of the integral using the data of Ref. 10. 

In order to investigate the effect of the order g2 corrections, we have chosen 

four different schemes with which to compare theory and experiment. The first 

scheme, denoted LO, uses simply the leading order prediction of asymptotic 

freedom, which for the non-singlet moments is 

tMn(Q2) = A 
- Y;/2i30 

” , (5.2) 
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where the An are related to matrix elements of the relevant operators between 

target states and are taken as free parameters, yo” and B. are defined in Eqs. 

(2.32) and (2.33) and AL0 is the scale parameter defined by the leading order 

expression (2.27) for i2(Q2). 

The second and third schemes indude the order x2 corrections which multiply 

(5.2) by an additional term, yielding 

Mn(Q2) = An i I + (Bn + Pn + L,,) , (5.3) 

where 

YI” Won -- _ 
‘n -2Bo 20 2 

0 

won L” = -- 
Qo2 

In In2 
A2 MS 

and Bn is obtained for xF3 from Eqs. (3.7), (3.9), and (4.9). This expression uses a 

scale parameter AMs (MS for minimal scheme) corresponding to the definition 

(2.26) of g2(Q2) introduced in Ref. 7. As discussed in section 3.4, however, Bn is 

actually determined only up to a term proportional to y on, corresponding to an 

arbitrariness in the normalization involved in introducing g when solving the 

renormalization group equation. For the purposes of illustration, therefore, we will 

also use (5.3) with Bn replaced by 8, = Bn - Y2Yon(ln 4n -Y E) and AMS replaced by 

AM3 thereby defining the scheme MS. It is easy to see that the schemes MS and 

?% are equivalent (through order E2) provided 
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Am = AMS e 
b(ln 4n -y E) 

(5.4) 

Finally, we introduce a fourth scheme which, as discussed in section 3.4, 

treats the n-dependence of yl n exactly but absorbs the n-dependence of Bn into A. 

Thus using Eqs. (2.23) and (2.24), we evaluate the integral in Eq. (1.1) to obtain 

Yin Yen YOn - 

Mn(Q2) = A,, I (5.5) 

where g2 is the exact solution of Eq. (2.22) appropriate to our choice of An, 

16n2+3z2 
50 = ln9f 

An2 ’ 
(5.6) 

A,, = Ae 
en/Y; 

(5.7) 

This fourth scheme, which we denote as the An scheme, is clearly equivalent 

(through order g2) to the schemes MS and m. This scheme has the particularly 

nice property that if Eq. (5.5) is used to determine “experimental” An’s separately 

for each n, then the resulting An’s should follow the pattern of n-dependence 

predicted by Eq. (5.7). As a corollary to this scheme, we remark that the second 

factor in Eq. (5.5) is always very near unity (see Table) in the region of interest, 

hence Eq. (5.5) has essentially the same form as the leading order Eq. (5.2), and 

therefore this scheme is quite similar in spirit to one proposed by Bate. fl25 

We have used each of the four schemes LO, MS, MS, and An discussed above 

to determine the unknown scale parameter in each scheme (the constants An are 

also fitted but their values are uninteresting and are not given). We find 
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A Lo = 0.73 GeV 

A MS q 0.40 GeV 

Am = 0.52 GeV 

and 

A = 0.40 GeV 

These values are obtained using B o, B1, yo”, y ln appropriate to 4 flavors (using 3 

flavors shifts each A to a slightly larger value). The fitting program estimates the 

errors on each A at about ten percent. In each case we used moments for n < 8 and 

Q2 > 1 GeV2. The results of the fits do not change significantly if we restrict our 

considerations to Q2 > 2 GeV2. In all cases the quality of the fit was very good 

(X2/D.F. <I). 

We now proceed to discuss several important points related to the 

phenomenology: (1) Our fits for the four schemes are shown in Fig. 5. Somewhat 
- 

surprisingly (and disappointingly), we find that the LO, MS, and MS schemes are 

virtually indistinguishable for Q2 > 1.5 GeV2; thus they are represented by the 

same (solid) line in the figure. Of course, the fits differ for Q2 c I GeV2 but then 

-2 g IS large and the perturbation theory is meaningless. The fit using the A, scheme 

does not fit quite as well as the others, but the quality of the fit is still fairly good. 

The similarity of the LO, MS, and m fits simply indicates that it is possible for 

the An’s and A in each case to conspire to mask the combined n- and Q2- 

dependence of the order g2 corrections. This is in spite of the fact that the 

corrections in question are not necessarily small for low values of Q2 and n >3. 

For instance, for Q2 = 10 GeV2 and n = 5 the second factor in equation (5.3) is 
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roughly 1.2 and 1.5 for MS and MS respectively as compared to 1 in the leading 

order. The situation is much worse for higher moments since for fixed Q* the 

corrections in question grow due to y, (‘) like (In n) 3 15,20 
and perturbation theory 

breaks down. 

(2) The most important result of the analysis of Bosetti et” is the 

quantitative verification of QCD based on the leading order prediction 

din Mn yen 

dlnM =- m YO 
m (5.8) 

It is demonstrated in Ref. 10 that the experimental values of the 1.h.s. of (5.8) 

agree remarkably well with the QCD predictions for the ratios y On/yam. We find 

that the agreement between theory and experiment is not disturbed even when the 

order i2 corrections are large, i.e. as discussed in point (1) above, the schemes Lo 

and MS, m are indistinguishable (except that the An’s and A are very different in 

each case). 

(3) Finally, we have fitted the moments for each n separately using the An 

scheme, and the “experimental” results for An are shown in Fig. 6, along with the 

prediction of Eq. (5.7) using the value A = 0.4 GeV determined previously in the An 

scheme by fitting together all moments with n 5 8. The “data” points do not seem 

to follow the theoretical prediction, but we cannot claim that the disagreement is 

significant since, after all, the A, scheme is equivalent (through the order i2 we 

have computed) with the MS, m schemes, and the latter fit the data quite well. 

We believe, however, that the An scheme is particularly well suited to comparison 

with experiment because the n-dependence predicted by the theory is strictly 

enforced in the fit (thus prohibiting the kind of conspiracy between the A,% and A 

which occurs in the MS, m schemes). 
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(4) We have also shown (as a dashed line) in Fig. 6 the prediction of Eq. (5.7) 

for A = 0.5 GeV. This value of A gives good agreement with the An “data” for n < 5 - 

and isolates the disagreement at large n. We are motivated here by the conjecture 

of De Rujula, et, 6 which claims that the effect of higher twist operators in the 

operator product expansion is most strongly felt at large n, or more specifically 

whenever 

MO2 
n- - O(I) 

Q2 

with MO2 - O(A2) an appropriate (but unknown) scale. Mainly as a curiosity, we 

have included a term of the form 

MO2 I+n- 
Q2 

as an additional factor in (5.5) and redetermined the “experimental” A,%. With 

MO2 - - 0.16 GeV2, the resulting An “data” do in fact follow the trend predicted by 

Eq. (5.7), i.e. A, increases with n. Due to large theoretical uncertainties in the 

higher twist corrections, it is not appropriate to pursue this farther. 

We conclude this section with the following words of caution and recommen- 

dation. If the n-dependence of An as predicted by Eq. (5.7) is not eventually found 

in higher statistics experimental data, then one must conclude (short of abandoning 

QCD) that certain possibly strong effects not included in the analysis are present in 

the data. Possible sources for these effects would be higher twist operators, higher 

order gluon corrections to twist-two operators, or perhaps even nonperturbative 

(instanton) effects. It will be very helpful to isolate these effects phenomeno- 

logically, since the theoretical calculations are apparently rather difficult. Finally, 
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it should be apparent by now that due to the fact that Bn is determined only up to a 

term proportional to y on, any attempts to extract the scale parameter A of the - 

theory from the experimental data must be viewed with a certain amount of 

reservation. 
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6. Cn(Q2/u2, g*) TO ORDER g2 FOR SINGLET OPERATORS 

6.1. Preliminaries 

In sections 3 and 4 we have calculated the coefficient function to order g2 for 

non-singlet operators relevant for ep and v scattering. Here we extend our analysis 

to singlet operators. We begin with electromagnetic currents. 

The Q2 dependence of the Wilson coefficient functions CnJl and Cn G 

corresponding to singlet fermion On $ and On G operators is governed by the 

following renormalization group equations* 

[ p& + B(g)&]CL($,g2) = fYij%2’CJ($‘g2) (6’1) 

where i,j = $, G and yijn is the anomalous dimension matrix. 

The solution to (6.1) is given as follows 

ck($,g2) = f bgexp[+ ii* dz]\i%j(1’g2) 

with Cnj(l, g22, having the expansion in powers of g2 

Cni(,, ~2) = cn(Oli + Bni -$ + O@) . 

(6.2) 

It is instructive to expand Cni(Q2/p2, g2) as given by (6.2) in powers of g. 

Recalling that in the go order in the normalization of equation (2.17) 

(6.3) 

c (Oh q ’ 

n , c OX = o 

n 

we obtain 

(6.4) 
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-&Ic, In 2 u2 +BnJ, (6.5) 

and 

C:($,g2) = ${-$Y;~ ln$ +B:I . (6.6) 

Here yQJ, n is equal to yOn of equation (2.32). y 
G 

n is the non-diagonal element of 

the anomalous dimension matrix given by2 

Y@” = - 4f n2+n+2 
n(n + I)(n + 21 , (6.7) 

f being the number of flavors. In order to calculate Bni in perturbation theory we 

consider the two forward Compton amplitudes 

TJI(Q2,“) q il d4xeiqSx <$ ; pi T(j(x)j(O)) 1 $;p > (6.8) 

and 

TG(Q2, d = i ld4x eiqSx< G; pi T(j(x)j(O)) IG; p > (6.9) 

where p2 < 0. 

Using the operator product expansion for the appropriate currents we obtain 

the following generalizations of equation (2.35) 

(6.10: 
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TC(Q2,v) = l (a )n C jr ’ ( n ( y21g2)AnG’(~9g2) 

+c~~$,+nGG($~~2)] (6.11) 

The reduced matrix elements Anj’ defined in equation (2.9) can be calculated 

in perturbation theory and the result can be written as 

~,.,d + A .(2)i 
2 

lJ “I I 
(6.12) 

where Anj(o)i m the normalization of equation (2.18) take the following values 

A (Oh = A 
nJi 

A c"jG = A 
nJ, 

(Oh - 0 
nG - * (6.13) 

Inserting (6.5), (6.6) and (6.12) into (6.10) and (6.11) and using (6.4) and (6.13) we ob- 

tain in an obvious notation 

TnJ, = 1 n 
2 

- 7 ?J+ 
InA 

-p2 
+ B,G + A (2)$ 

“9 

and 

TG= 
2 

n Ina +B G+AnG(2h -p2 n 1 . 
Consequently 

B * = ,(2h-A (2hl, 
n n w 

B G = T (2~ _ A 
n n 

(6.14) 

(6.15) 

(6.16) 

(6.17) 



-39- FERMILAB-Pub-78/42-THY 

where Tn(2N and Tnc21G are the constant parts of order g 2 in the Compton 

amplitudes (6.8) and (6.9). For longitudinal structure functions which vanish in 

zeroth order only the first terms on the r.h.s. of equations (6.16) and (6.17) are 

present. 

Equation (6.16) is equivalent to (2.39) and using (6.3) we obtain to order i2 

c2,nJI(I, g2, q c2 nNS(L E2) 

cL,nQ(I, g2) = CL nNs(I, C2) , 

(6.18) 

(6.19) 

with the non-singlet structure functions calculated in section 3.3. 

On the other hand equation (6.17) tells us that in order to calculate B G we 
n 

have to find the forward Compton amplitude for a photon scattering off a gluon 

and subtract from it the matrix element of the fermion singlet operator (2.6) between 

gluon states. 

6.2. Calculation of Td2jG 

The calculation of TJ2jG involves diagrams of Fig. 7. We use again the 

dimensional regularization scheme and keep the gluons off-shell with space-like 

momentum p2 CO. Both gluons and quarks are kept massless. The diagrams 

separately are divergent but when they are combined the divergences cancel and no 

renormalization is needed. The result for TL n (2)G 
t 

and T2 n(2)G is 

TL,n(‘jG = -$ T(R) ln + I,$, + 21 n even (6.20) 

and 



-4o- FERMILAB-Pub-78/42-THY 

T2,n 
(2)G = -; n,61 n~2 2 4 +---+-- 4 

n2 (n + 1J2 + (n + 2)2 
n even (6.21) 

where T(R) = f/2, f being the number of flavors. 

6.3. Calculation of AnG(2)q 

The calculation of AnG (2fi mvolves diagrams of Fig. 8. Using the minima) 

subtraction scheme we obtain 

AnG(2)Q = n&&n&+l-& 
n2 (n + 1)2 

+ n even 

where 

n2+n+2 
n(n + I)(n + 2j z-&y$nG - (6.23) 

and 

C2,“‘(I, g2) = -& T(R) 4 (A - (-& ’ 
16n2 1 + T- n(n + l)(n + 2) 

n2+n+2 ,!, f 

-TJInG (In 4tr - y,) 
I 

n even 

(6.22) 

6.4. Final Result for CL nG , (I, i2) and C2 nG , (1,E2) 

From equations (6.20 - 6.22) we finally obtain using (6.17) and (6.3) the 

following expressions for CL nG , (1, g2) and C2 nG , (1, i2) to order i2 calculated in 

the minimal subtraction scheme 

n even (6.24) 

The treatment of the In 4 TI - yE term is exactly the same as in the non-singlet case. 
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6.5. Results for v,; Scattering 

The results (6.18), (6.19) and (6.24) and (6.25) apply also to the structure 

function F2” +‘. On the other hand FJv” does not receive contributions from 
-- 

gluon operators by the discussion of section 4. The result for C3’“‘(l, g2) is given 

in equation (4.9). 

6.6. Discussion of Results for Singlet Parts 

At present we are not ready to apply (6.25) to phenomenologicaf analyses 

because the anomalous dimensions of singlet operators to order g4 are not yet 

available. However, the longitudinal coefficient function (6.24) does not involve 

two-loop contributions and hence may be used directly in phenomenology. Such 

analyses have been performed in reference 14. It should be remarked that in (6.24) 

and (6.25) the g 2 corrections are small and vanish as n+ m. Therefore for large x 

the gluon contributions and their mixing with quark operators are of little 

importance. 

To compare our results with those of other groups, we first note that the 

calculation of virtual photon-gluon scattering is equivalent to that of virtual 

photon-photon scattering if one replaces g2T(R) by e4. Accordingly, the 

coefficients of the expansion in l/x, TL nG and T2 nG, 
, 

are equal to moments of the 
, 

imaginary part of the virtual photon-photon scattering amplitude, Our result for 

TL,nG (6.20) agrees with the results of refs. 14,31 and 32, but disagrees in minor 

respects with refs. 11, 12, 13, 33,34. 

Special care is needed in comparing our result for T2nG with others. In the 

calculation of T2nG there exists an infrared divergence coming from mass 

singularities while no ultraviolet divergence appears due to the gauge invariance. 

We have kept the gluon mass p2 . fn-ute (space-like) to circumvent the mass 

singularities. Another way of avoiding the mass singularity is to introduce the 



-42- FERMILAB-Pub-7X/42-THY 

quark mass m while p2 = 0. This latter method has been used by other 

groups I I, 1W&33,34 Naturally the results for T2n G 
, are different in these two 

methods and should not be directly 
35 compared. On the other hand the coefficient 

function CZn G should be insensitive to mass singularities which depend on the 

particular gluon or quark matrix element considered. Calculations of the 

coefficient function must agree in two methods up to the normalization scale. Our 

normalization scheme of the operator matrix element is different from that of 

other groups where the operator matrix element is normalized on the mass shell so 

that T2n G = C2nG. In order to translate our C2n G. into theirs we must simply add to 

our C2n G the operator matrix element A2n G. in the minimal subtraction scheme 

with m f 0 and p2 = 0. We find 

A2n 
G 2 T(R)i;G = 4T2 

4nlJ In - 
m2 

-YE-l (6.26) 

We can now recast our result (6.25) into the form obtained by other groups: 

dx x n-2 F2’(x, Q2) = 9f. T(R) 
4n2 

(6.27) 

or equivalently 

2 
F2’(x, Q2) = g- T(R)x 

4l? 
(1 - 2x + 2x2) In Q2(1 - x) _ m2x 1+8x(1-x) 1 . (6.28) 

This result agrees with that of Witten 34 (if we correct the factor l/4) and 

Kingsley, 31 but disagrees with the result of Hinchliffe and Llewellyn-Smith. 14 
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7. SUMMARY AND CONCLUSIONS 

In this paper we have presented a general procedure (see sections 2 and 6) for 

the calculation of the Wilson coefficient functions Cn(Q2/u2, g2) to order g2. An 

important step in this procedure, not previously discussed in the literature, involves 

the necessity of calculating both g2 corrections to the virtual Compton amplitude 

and g2 corrections to the matrix elements of local operators in order to find 

Cn(Q2/p2, g2) in a general renormalization scheme. Using this procedure we have 

calculated quark and gluon coefficient functions as predicted by asymptotically 

free gauge theories. This we have done for both non-singlet and singlet structure 

functions (F2, F3, FL) relevant for electromagnetic and v processes. Our results 

when combined with renormalization group equations give g2 corrections to the 

functions Cni(l, g2) (i q q, G) which enter the solution of the equations in question. 

The results may be found in Eqs. (3.7)-(3.10), (4.7)-(4.91, (6.24), (6.25). We have 

emphasized following ref. 15 that the functions C$l, z22, relevant to “W2 and vW3 

are renormalization prescription dependent and that this renormalization prescrip- 

tion dependence is cancelled by that of two-loop anomalous dimensions yy when 

the full g2 corrections to the moments of various structure functions are computed. 

Of course in order for the cancellation to occur both C,(I, g2) and y: should be 

calculated in the same renormalization scheme. As a renormalization scheme we 

have chosen ‘t Hooft’s minimal subtraction scheme since the only existing results 

for yy have been obtained in this scheme. The longitudinal structure functions to 

order g2 do not depend on two-loop anomalous dimensions and therefore C n,,(l, E2) 

is automatically renormalization prescription independent. 

In the course of the calculation of the quark coefficient function Cf’(l, g2) 

we have found that the relevant Compton amplitude and the relevant matrix 
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elements of local operators were separately gauge dependent. We have 

demonstrated however that in the renormalization scheme considered these gauge 

dependences cancel each other leaving C,(l, g2) gauge independent. 

Another feature of the g2 corrections to C&I, g2) concerns the ambiguity of 

these corrections in the term proportional to Y:. This ambiguity and corresponding 

ambiguity in parameter A is related to the freedom of defining the effective 

coupling constant when solving renormalization group equations. We have discussed 

it in detail in section 3.4. 

In section 5 we have combined our results for non-singlet structure functions 

with those for two-loop anomalous dimensions of ref. I5 and two-loop 8 function of 

ref. 21 to obtain the full z2 correction to the leading order formula for non-singlet 

structure functions. We have compared our results with the recently measured” 

moments of VWi’S In order to demonstrate the ambiguity of g2 corrections 

mentioned above we have considered various schemes corresponding to various 

definitions of the effective coupling constant. All schemes gave a good agreement 

with experimental data although using one of them (An scheme) which is 

particularly suited for testing the n-dependence of g2 corrections, we have found 

that for n > 5 some indication of other effects (e.g. higher twist operators) not 

included in our analysis may be present in the data. It is important to check for 

these effects in experiments with high statistics. 

Our results for singlet structure functions can be combined with two-loop 

singlet anomalous dimensions calculated in the minimal subtraction scheme once 

such a calculation is completed. 16 

Finally we have calculated i2 corrections to the Gross-Llewellyn-Smith and 

Bjorken sum rules. Our results for these sum rules agree with those of Calve.” It 

turns out that the violations of the sum rules in question are of the order of 15% at 
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presently available values of Q2 and experiments with high statistics should detect 

them. 
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APPENDIX 

The details of our calculation of the coefficient functions in electropro- 

duction and neutrino reactions are presented here. The results of the calculation 

are given for the minimal subtraction scheme in the dimensional regularization. 

The calculation is performed in an arbitrary covariant gauge, and the gauge term is 

given separately. The nonsinglet Born amplitude is normalized to 1. The following 

projection tensors are used to project out invariant amplitudes: 

d qlpu 
pu = 

2 

(p.d2 

p~%+RJqu-g 
q + P-q uv ’ 

e 

(A.11 

(A.2) 

The constant yE appearing in the text is the Euler-Macheroni constant: 

yE = 0.5772.., and g is a dimensionless renormalized coupling constant in the 

minimal subtraction scheme. 

A. Electroproduction-Nonsinglet 

Al. Current correlation functions 

Internal self-energy diagram (Fig. 2a) : 

-$C2(RJn=,g Ii)” 
, . . . 

p”p” 2 1 
(P-s) 

24 n-l 1 (A.31 

Vertex-correction diagrams (Fig. 2b, cl: 
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$C2(R)n=2~ 
, . . . 

+x +4 j i-8 
j-1 J 

Box diagram (Fig. 2d): 

Gauge term for the whole amplitude: 

. (A.6) 

Definition of the gauge parameter a is given in (3.3). The whole expression: 

$C2(R)ny24 (41” e,,,A +d -yOnlngf -yE-lnd 
, . . . PV -P2 Qnu2 

-1-k +A+- _ n+l ,“z s-k. +3 ; i-8 F r 
(n + 112 j=l J j=l j2 

(A.7) 

where 

-n 
YO = I- 

ni + 4 j12 f , (A.s) 
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A2. Operator matrix element 

We present the product of the operator matrix element and the lowest order 

coefficient function. Triangle diagram (Fig. 3a): 

2 
R C 
161~’ 2 

(RM,,, 

* (A.9) 

Vertex-correction diagram (Fig. 3b): 

iiS?- C (R)d 
161r2 ’ (YE++ +8-4.$ j 

I 
(A.101 

Gauge term for the whole amplitude: 

(1 - a) 92 C (R)d 
161~~ 2 

. (A.ll) 

The whole expression: 

2 
g C 
16n2 2 

(R)d 

2 

+-+s- 4 ntl (n + 1)2 -4[,j +ni jJ f 

(A.12) 
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A3. Coefficient functions 

2 ‘2(R) n=2 ; (; )” (ellv’&, + Qj2,,) = (A.7) - (A.12) , 
, . . . 

C2n = -ic(yE+ln-$$) -9+i +$ 

+$ +3jp-” f -i -n&n ,p,; j=l j 

, (A.14) 

where CLn and C2n are related to CLn NS and C2n NS defined in (3.7) and (3.8) such 

that CLnNS = @2/16~2)C2(~)CLn and c2nNS = I + G2/i6n2)~2(~)C2n at Q2 = p 2. 

8. Electroproduction-Singlet 

Since the quark contribution to the singlet part is exactly the same as that of 

the nonsinglet case, we discuss here only the gluon contributions. 

81. Current correlation functions 

The contributions of diagrams Fig. 7d, e, f are equal to those of Fig. 7a, b, c 

respectively and Fig. 7b is a crossed diagram of Fig. 7a. Here we present the 

results corresponding to 2(a + b) and 2c. 

Contribution of 2(a + b): 

T(Rjnz2S, ($)n 
, . . . 

A’$$ -i++) 
n 

-5!5 q2( ’ 
(p * qJ2 n-l -Al] +$T@) [-4euv+2gNv(L-YE-ins)] (A.15) 
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Contribution of 2c: 

. . . 

6 4 

+ ~TGf+e 

4 
+n+l-n+2- -+- 

(n + 1j2 (n + 2J2 

2 2 

2 uv- 2QJ ( l-YE-In %- 
4ilu2 )I 

The whole expression: 

f$ T(R) n=2; (;I” 4 

, . . . epv(n+IJ(n+2j+duv/ 

2 6 6 -- 
n +Fz-l-,,-z +- - n’ ’ + (n r2j2 (n + 1j2 * 

82. Operator matrix element 

Contribution of Fig. 8aand b: 

Contribution of Fig. 8c and d: 

(~.16) 

(A.171 

(A.18) 

2 2 
+n+l--- n + 2 * (A.19) 
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The whole expression: 

9f. T(RJd 

4s 
2 uVn=2$ , . . . 

-2 2 
ii +n+l 

2 

---+s- 

4 4 
nc2 (n + 1)2 + (n + 2)2 + 

83. Coefficient functions 

d. T(R) n=2 f (i )nk c 
4n2 

uv Ln + dNv?2n) = (A.17) - (A.~o) f , . . . 

CLn = 4 
In+lJ(n+2j , 

e n2+n+2 
& q n(n + I)(,-, + 2) YE + In 5 + 4 - Ir + n+l nt2 

n2+n+2 
- n(n + I)(n + 2J j$ ; . 

(A.20) 

(A.21) 

(A.22) 

where ? Ln and ‘2” are related to CLn c and C2n G. In (6.24) and (6.25) such that 

CLnG q G2/4 I?JT(RJ~,~ and C2nG = @‘2/4s 2JT(RJe2n at Q2 = u2. 

C. Neutrino Reactions 

For the combinations T2’ ,T2v and Tc + T c defined in section (4.1) the 

results are exactly the same as in the case of electroproduction with even n for 
v 

T2,L + T2,LV and with odd n for T2,L 7 -T 2,c . The operator matrix elements 

are also the same as (A.12) with n even and odd, respectively. 

For T3V 3 tT v which correspond to the VA intereference term, we obtain 
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& (R) 
16n2 2 

1 
n=1,3... 

2,4... 

-1-i +4 +- - 

4 
n+l n42 (n + 1)’ 

+ yE +InL 
4n u2 11 (A.23) 

The corresponding operator matrix elements are identical to (A.12) with n odd or 

even. Consequently the coefficient function is given by 

UiV 
‘3n = I+d&c2(R)[-i~(YE+ln$) 

-9,; + 2 
n+l ++ +?f,f-‘(j~, j 

(A.24) 

withnoddfor 3+v andnevenfor J-v. 
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Table I: 

TABLE CAPTION 

The values of various quantities which enter equation (2.29) for 

-NS NS f = 4. 52,n = B2,n - fiy$n 471 - y,). The values for odd n 

contribute to By”, in V, 7 reactions. 
, 



NS n B2,n 
BNS 

24 

1 0 0 0 0 

2 7.39 0.44 4.28 -2.63 

3 14.08 3.22 6.05 -4.11 

4 19.70 6.07 7.21 -5.16 

5 24.53 8.73 8.09 -5.98 

6 28.77 11.18 8.82 -6.66 

7 32.55 13.44 9.44 -7.23 

8 35.96 15.53 9.99 -7.73 

9 39.08 17.48 10.46 -8.17 

10 41.96 19.30 10.91 -8.57 

I1 44.63 21.01 11.31 -8.93 

12 47.12 22.63 11.68 -9.27 
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Table 1 
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Fig. I: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

FIGURE CAPTIONS 

The Born term for virtual Compton scattering. Inclusion of 

the crossed diagram is understood. 

Diagrams contributing in order g2 to the virtual Compton 

scattering. Inclusion of the crossed diagrams is understood. 

Diagrams contributing in order g2 to the matrix elements of 

the non-singlet operator between quark states. 

Order g2 deviations from the Gross-Llewellyn-Smith and 

Bjorken sum rules. The dashed lines c---l are parton model 

predictions. The solid (-) lines follow from Eqs. (4.11) and 

(4.12). 

Nachtmann moments of xF3(x, Q2) E Q2. The data are from 

ref. 10. The solid (-1 lines represent the LO, MS, and MS 

schemes; the dashed (---) lines represent the An scheme. 

The n-dependence of A,, in the An scheme. The “data” points 

come from fitting each n separately. The curves are the 

predictions of Eq. (5.7). 

Diagrams contributing in order g2 to the virtual photon-gluon 

scattering. 

Diagrams contributing in order g2 to the matrix elements of 

the quark operator between gluon states. 
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Deep Inelastic Scattering Beyond the Leading 
Order in Asymptotically Free Gauge Theories 

WILLIAM A. BARDEEN, A.J. BURAS, D.W. DUKE and T. MUTA 

We would like to correct one error and a few misprints which occurred in our 

paper. ALL corrections will be made in the published version of our paper (Phys. 

Rev. D). 

Our procedure for calculating the gluon coefficient functions (eqs. 6.25 and 

A.221 does not exactly correspond to the minimal subtraction scheme used by 

Floratos, Ross and Sachrajda (Nucl. Phys. 8129, (1977) 66) in their calculation of 

the two-loop anomalous dimensions. We have applied the minimal subtraction 

scheme to the spin averaged matrix elements of the local operators whereas 

conventionally and in the calculation of Floratos, et al. the minimal subtraction 

scheme is applied to the operators. Both schemes are valid normalization 

procedures but lead to slightly different results. In order to be consistent with the 

calculation of the two-loop anomalous dimensions of Floratos, et al., we should 

rather use the conventional minimal subtraction scheme. 

The proper result for the gluon coefficient funciton is obtained by replacing 

yE by yE-I in equations (6.22), (6.25), (6.261, (A.201 and (A.22). Correspondingly a 

term 

should be added on the r.h.s. of eqs. (A.181. Our results for the quark coefficient 

functions are unchanged. 



Our paper contains the following misprints: 

I. On the r.h.s. of equation (4.11) 6 should be replaced by -6. 

2. In ref. 31 Kinglsey should be replaced by Kingsley. 

We are grateful to E.G. Floratos, D.A. Ross and C.T. Sachrajda for informing 

us about the discrepancy between their results for the gluon coefficient functions 

and ours. 


