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A. INTRODUCTION 

Quantum chromodynamics (QCD) has been proposed as a complete 

lagrangian field theory for the description strongly interacting particles. 

The theory consists of colored quarks coupled to a color octet of Yang- 

Mills vector bosons. This theory can be solved in the short distance 

region using renormalization group methods as the effective-coupling 

constant vanished in this limit. This “asymptotic freedon” at short 

distance provides a fundamental basis for understanding the success of 

the quark-parton phenomenology. 

Various methods have been employed to study the large distance 

behavior of this theory in then attempt to interpret strong interaction 

physics in terms of confined quarks and gluons. Classes of perturbation 

theory diagrams have been analyzed in order to extract the leading 

infrared behavior of the theory. While renormalization group equations 

seem to be applicable, 
1 

no self consistant solution to the infrared 

problem appears to exist at weak coupling in a manner analogous the 

behavior at short distance. Another approach employs semiclassical 

methods’ to include effects missing in a perturbation theory analysis 

but present at small but non zero effective coupling. Instantons and 

other semiclassical objects appear to have important consequences for 

the chiral structure of QCD3 but their possible role in the confinement 

mechanism is not yet evident. A third approach involves the reforma- 

tion of QCD in terms of lattice gauge theories. Wilson4 has studied 
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QCD using a four dimensional euclidean lattice while Kogut and Susskind5 

have constructed a hamiltonium version of QCD on a three dimensional 

spatial lattice. The lattice formulations permit a study of the strong 

coupling limit where confinement is a manifest consequence of gauge 

invariance. Whether these lattice versions of QCD truly reflect the 

confinement aspects of continuum QCD remains an open question at this 

time. Also the qualitative success of these theories with respect to strong 

interaction physics is certainly not excessively successful quantitatively 

particularly with respect to aspects involving chiral symmetry. 

In this lecture I will discuss yet another approach to QCD based 

on a reformulation of the theory using a transverse lattice and infinite 

momentum frame techniques. This formulation of QCD has the unique 

advantage (disadaantage) that neither the weak coupling limit nor the 

strong coupling limit are trivial in the theory. This theory was developed 

in conjunction with R. B. Pearson. 
6 

The strong coupling aspects of the 

theory were analyzed by R. B. Pearson and E. Rabinovici. 7 

In Section B, I will briefly review certain aspects of the axial 

gauge description of QCD relevant to confinement. The transverse 

lattice theory is formulated in Section C with particular reference to the 

strong coupling (confinement) phase of &CD. The methods developed for 

study of hadronic bound states are described in Section D and Section E. 

In Section F, the preliminary results of this program are discussed. 
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B. AXIAL GAUGE FORMULATION 
OF QUANTUM CHRGMGDYMANICS 

The quantum mechanics of non-abelian gauge theories is com- 

plicated by the fact that only the transverse degrees of freedom are 

independent. The standard methods of quantization (convariant gauge, 

temporal gauge, or coulomb gauge) all involve the introduction of 

additional unphysical degrees of freedom or “ghost” contributions. 

Hence the physical aspects of the theory may be obsured.~ This is true 

for both continuum and lattice versions of the theory. 

In the axial gauge only the two independent degrees of freedom 

associated with each vector potential are quantized with the other fields 

determined as dependent variables. The standard lagrangian for QCD 

is given by 

where 

and 

p=- $ G’ .Z + q(iD-m)q, 
IIV Ilv 

2 
PV 

= a,A - avXp+gXpxXy , 

DP= aP+ig?,x . 
P 

The rest frame axial gauge is defined by sz = 0. Standard canonical 

quantiqation results in the hamiltonian of Eq. (2) where the field x0 has 

been eliminated in favor of a “coulomb” potential, 
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where 

H = fix, jdz { $ $t + $ (azsa)2 + a GzP 

+ 
+ q 

[ 
aZ + vz + ap + DP +Pm q 

I 
\ 

! 

Jo = + aaPn.fXaxS 
(Y 

- q'sq. 

The specification of A’ and x0 
Z 

does not completely determine 

the gauge. The hamiltonian of Eq. (2) is invariant under the residual 

symmetry of transverse gauge transformatives which are local in x1 

but are global with respect to (z, t). The charges which generate these 

transformatives are given by 

Q(7i) = fdx g a 
.DT +&q+?q , (31 

with ii’ = x(x,) independent of z. These charges satisfy the local 

algebra [Q(x), Q(xl)] = i Q(x x x1). Each term in the hamiltonian of 

Eq. (2) is seperately invariant under this residual symmetry. 

The linear potential in Eq. (2) represents the focusing of the “coulomb” 

electric fields along the z direction in the axial gauge. If this theory is 

studied perturbatively, the usual quark-gluon dynamics is recovered but 

in a manner which is reminiscent of the spontaneous breakdown symmetry 

in a Higgs theory in the coulomb gauge. We may see this effect by first 
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ignoring the “coulomb” term in Eq. (2). To lowest order, the gluons have 

two independent modes. The mode with transverse polarization, 

k E I~ I~ = 0, has the usual dispersion w 
2 
lk~ 

= k2+i;’ 
z I’ The “longitudinal” 

mode, E =^k 2 
la .lcU’ 

satisfies w = k2 
Ik a’ When we include the “coulomb” 

term the linear term in J’ 0 implies a mixing between the longitudinal 

mode and the “coulomb” potential which results in the usual dispersion 

for the longitudinal mode o,:k, = kz+ kf in perturbation theory. As in 

the Higgs theory, this effect may be interpreted as arising from the fact 

that there is a complete screening of the local color charge in the 

perturbation theory vacuum with only the global color charge as a 

residual symmetry. The local color screening may also be seen in the 

static coulomb potential where the linear (confining) “coulomb” potential 

of Eq. (2) is screened to become the usual l/r potential. 

At this point it is natural to speculate that color confinement would 

result in the true vacuum if the screening of the local color were incom- 

plete. In this case the linear “coulomb” potential of Eq. (2) may reflect 

the true infrared structure of &CD. It is difficult to see how this 

II symmetrical” phase can naturally occur directly in the continuum 

theory. In the next section, we formulate a cutoff version of QCD 

where the possible realization of a symmetrical phase is more evident. 
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C. TRANSVERSE LATTICE FORMULATION 
OF QUANTUM CHROMODYNAMICS 

A gauge theory may be seperated into potentials and the independent 

physical degrees of freedom. The precise nature of this seperation is 

of course gauge dependent. In the axial gauge, we have indicated the 

possibility of different realizations of the residual gauge symmetries 

than that indicated in perturbation theory. In order to discuss these 

symmetry properties, we introduce a cutoff version of QCD where all 

the gauge symmetries are preserved but where only the independent 

degrees of freedom are directly affected by the cutoff. 

The cutoff procedure makes use of a discrete spatial lattice for 

the transverse directions (a,(3 = x,y) while the longitudinal directions 

(p, v = t, 2) remain continuous. The transverse gauge degrees of 

freedom are associated with links of the transverse lattice. The 

longitudinal gauge potentials and quark fields are to be associated with 

sites of the lattice. The gauge fields are defined by 

L&t.z) = a XP(n’a,t,z) , p = t,z 

- -9 
Mza (t, z) = + eig T- A, (Fiat, z), Q = X,Y, 

(4) 

where a is the lattice spacing and {T} are a matrix representation 

for the color generators. The link variables M, (t, z) are analogous 
na 
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to the U variables introduced by Wilson4 except for their normalization 

and the fact that they are fields in the longitudinal variables. 

Using these Iattice fields, the lattice analogue of the action of 

Eq. (1) for the pure gauge theory becomes 

S = jdtdz -$ && 
t 

+ ldtdz 1 
n’pa 

tr 1 DpMxa” Dp I\.zgB ( (5) 

where G’ 
iipv 

and D MXi;= aIIMz,+it?. B 
P w 

MnG-itMn2y*g 
w’ 

The action of Eq. (5) is the simplest lattice action which reduces to 

continuum action in the naive continuum limit a + 0 with g, H = g2* 

and {xP(xP)} fixed. This action is not unique and other terms may be 

needed to obtain physical results for large lattice spacing. 

This lattice action was constructed to be invariant under a full set 

of local gauge transformations. These transformations are associated 

with local color rotations at individual sites on the transverse lattice 

and may depend continuously on the longitudinal variables. The link 
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fields, M 5G (a. t), are matrices which transform on the left according 

to color rotations at (ii, z, t) and on the right according to color rotations 

at @r+ a^,z,t). 

We may make use of this gauge freedom to study the theory in a 

longitudinal axial gauge. For the purposes of this lecture, we will use 

an infinite momentum axial gauge defined by sn- (z, t) = 0 where 

x.$* = (IL& * A’+ n s)/&. The longitudinal potential An+ may be 

eliminated in terms of the independent transverse fields, M 
X2 

using 

the equations of motion. In this light cone gauge, the action of Eq. (5) 

becomes 

S =jdx,dxi c tr tap Mza a; M&) 
w 

+ dx+dx 
/ - c 5 tr (Miis MT+3 Mz I\ ML) 

nffP 
n+p 6 np (6) 

+ /- dx dx+dx: & (x-x+) Ix+-x;I L (x-,x;), 
n 

n- 

where the longitudinal charge density ?$- (x-,x+) is given by 

K& (x-,x+) = ?(M.+$ i ‘8_ M&) + T’ 
(Y 

As was the case in Section B, the axial gauge leaves a residual 

gauge symmetry. The action of Eq. (6) is invariant color rotations at 

each site of the transverse lattice which are independent of t and z. 
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The conserved charge is given by 

Ga = jdx+ $ (x-, x+). 

A perturbative treatment of the gauge theory assumes that this 

residual symmetry is spontaneously broken as the link fields are 

expanded as MXs = i I + a?. Xs(fiaa,z,t) +--. With this formulation, 

the possibility that this residual gauge symmetry is not dynamically 

broken can be investigated. 

If we focus only on the first term in the action of Eq. (6), we 

recognize SU(N) x SU(N) sigma model ins two dimensions in the case 

where the full theory is a SU(N) gauge theory. The nonlinear sigma 

model is asymptotically free and renormalizable in two dimensions. 

The large N analysis of similar theories8 indicates that only the 

disordered, symmetrical-phase is expected to exist contrary to the 

result of perturbation theory. 

We may also study another piece of the gauge theory if we also 

include terms from the coulomb potential and focus on a single link 

of the lattice. An analysis of a similar theory 9. mdicated that there 

could exist a broken symmetry, perturbation phase for weak coupling 

while the symmetrical phase exists for strong coupling. By studying 

these elements of the full gauge theory we conclude that the longitudinal 

dynamics of the lattice theory is nontrivial with respect to the possible 

realizations of the residual transverse gauge symmetries. Which 
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phase actually is realized in the transverse lattice gauge theory 

would appear to be a detailed dynamical question. However it should 

also be clear that confinement of color would result in the disordered, 

symmetrical phase. For the remainder of this lecture we shall 

assume this to be true. 

The link fields,M.&, t), used. to define the action in Eq. (6) 

transform linearly under the transverse color rotations but are 

restricted by the nonlinear constraints, MM+ = M+M = I/g2 and 

det{Mg} = 1. The independent degrees of freedom have nonlinear 

transformation properties. If the gauge theory results in a symmetrical, 

disordered phase, then we expect linear realizations of the symmetry 

to provide a more appropriable discription of the physics especially 

for large lattice spacing. 

We may obtain a linear realization of the symmetry by relaxing the 

nonlinear constraints on the link fields. Each component of the matrix, 

%Lv 
becomes an independent field. The physics of the nonlinear theory 

may be preserved through the addition of a local potential function of 

“ira- 
The potential may be constructed such that the nonlinear theory 

results as a strong coupling limit of the linear theory. It may also 

be the case that the effective interactions in a large lattice approxi- 

mation need not be strong. The nonlinear limit may then be combined 

with the continuum limit of the lattice theory. 
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In the linearized theory the full action may be written as the sum 

of the action of Eq. (5) and a local potential, V. V contains terms of 

the form 

V=/dtdz 1 {mtrMitdM& 
na 

+ Al tr WB.M;&2 

+ x2 [ det M-M + det ncr M&l f.. . > I 

where we have explicitly indicated those terms necessary to achieve the 

nonlinear theory as a strong coupling limit. In the light cone axial 

gauge, the linearized theory is obtained by adding the potential of 

Eq. (7) to the nonlocal terms in Eq. (6). 

Since we will be interested primarily in the construction of the 

color singlet hadronic bound states of the theory, it is useful to con- 

sider the hamiltonian formulation of the theory. The infinite momentum 

frame hamiltonian is simply obtained from Eq. (6) and Eq. (7) with the 

result 

H = -/dx+ zP : tr (MaMZ,+PMi+pG M&) 

-/ dx, dx; z -$ Tn- ix+) Ix, - x;1 Tn- (x;) 

+px+ 2 
{m tr (MmM&) + A tr (M&I&)’ +. . . > . 
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In the symmetrical vacuum, terms arising from normal ordering the 

hamiltonian may be absorbed as a mass renormalization. In the 

following sections we show how this hamiltonian may be used to 

determine what might be considered the strong coupling limit for the 

hadronic bound states of the non abelian gauge theory on the transverse 

lattice. 

D. LONGITUDINAL DYNAMICS 

In the previous section, a linearized hamiltonian formulation of 

QCD was defined on a transverse lattice. The physical degrees of 

freedom are associated the transverse link fields, M-++, which create 

and destroy the transverse gluons, link mesons in the linearized theory. 

The link mesons are generally expected acquire mass as indicated in 

the effective local potential, Eq. (7). On the lattice, the linear coulomb 

potential associated with each site of the lattice implies that finite 

energy states are color singlet bound states of link mesons (and quarks). 

In addition to the coulomb interaction the magnetic term (nonlocal box) 

in Eq. (8) results in a nonlocal interaction between the link mesons. 

In this section, we focus on the longitudinal dynamics responsible 

for the color confinement of this theory. For a given configuration of 

link mesons in a color singlet state, we may indentify the direct coulomb 

interaction which does not change the link meson configuration. This 

part of the dynamics must be treated nonperturbatively as it is respon- 

sible for the binding of the link mesons. 
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In order to study the bound states we first expand the link meson 

fields b creation and destruction operators appropriate to the infinite 

momentum frame 

Mb,) =Jom T {Ax fk (x+) + B; i; (x,,} 

[Ak> A;,] = 2k 6&-k’) > IBk Bl,] = 2kd(k-k’), 

(9) 

where the color indices have been suppressed. A color singlet two 

gluon state is easily constructed using these operators. 
6 

jMz P> = dx ZJ (x) (2x(1-x)) 
-1/2A+ t 

xp B(i-x)pl O’ 

<Mz P’IMzP> = 2P6(P-P~),/bdxIm(n),2 = 1 . 

(10) 

If we include only the mass term and the direct coulomb interaction 

in the hamiltonian, the equation of motion may be obtain simply by 

applying H to the state of Eq. (10). In this approximation, the two- 

body wavefunction, a(x), satisfies the wave equation 

2P+P- m(x) = m2($ t +--)a($ 

(11) 

22 1dy WY) (2-x-y) 
2 ‘N f 0 k-YJ2 

Q(Y) 
la. 4[Y(l-Y)x(l-x)] 

i/2 ’ 

where C N 
is the SU(N) Casimir in the singlet representation and we 

have used a principle value definition for the coulomb potential. This 
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wave equation is analogous to the one considered by ‘t Hooft for the 

meson bound states in two dimensional &CD. It differs from his 

result by the “spin” factor which follows G(y) in Eq. (ii). This wave 

equation can be solved numerically to obtain an approximately linear 

trajectory of states. 

Inca similar fashion, multimeson bound states may be studied by 

simply constructing the appropriate color singlet state parametrized 

by a wavefunction @(y,--yN) as in Eq. (10). The wave equation for @ 

is simply derived by evaluating the matrix element of the hamiltonian 

in such a state. As an example the wave equation for a string which 

consists of a chain of mesons on different links bound together by the 

coulomb interactions at the connecting sites is given by 

IP a> = fiJds ,.... jdYN @ (y,. . .Y,) (2Y1. -. 2YN)-1’26(i-yf . . . -y,) 

At .A+ jO> 
Yips” YNP 

2P+P- g(y,...y$ = m 2 1_+ 
( 

. ..ti 
y i YN ) 

WYi...YN) 

2 

% cN f 
Y2 dz (2y1+z) (2y2-z) 

@(Yi+z.Y2-z’Y3-YN) 
ra Yi 

7 d 2(y1+s)2yt2( Y2-s)2Yz 

+ sum on cyclic permutations. 
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A WKB solution to this wave equation leads to a linear spacing of 

eigenvalues for the energy E2 1 
= 2P+P_. Complicated configurations 

with more than one meson associated with each link lead to modified 

coulomb interactions due to the more complex color structure of the 

bound states. 

While the wave equation such as exhibited in Eq. (12) seem somewhat 

complex, a systematic approximation scheme can be developed. 7 
It is 

easy to check that the amplitude @ must vanish at the endpoints y k=O, 

with limiting behavior @(y,. . . yk~. . . YN)+ Pk. as Y k -0. The param- 

eter p is determined from a self-consistancy relation between the 

mass operator and the coulomb potential, m 
‘ 

= 2~rp tan $i. This 

condition differs from a similar condition for the quark bound states 

discussed by ‘t Hooft. 10 
Contrary to the quark case, the “renormalized” 

meson mass can not be that of a tachyon. Since all binding energies are 

positive, this result implies that the gluon bound states should be 

heavier than the corresponding quark bound states. 

Except for the end point behavior determined by p, the wave 

function Q is expected to be a smooth function of {y,} . We have 

found that good approximations to the wave functions can be obtained 

using the form Q(y,. . . yN) = (y 
1 

. . . y,)‘x Polynomials. This form for 

the wavefunctions is also convenient for evaluating matrix elements of 

hamiltonian as all of the integrals can be computed analytically for 

polynomial wavefunctions. A systematic truncationof the longitudinal 
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dynamics results if only independent polynomials below a certain 

degree are retained. The truncation reduces the hamiltonian to 

matrix form. Since the matrix elements can be computed analyticly 

in this basis, the numerical problem is greatly simplified. 

As a result of these calculations, good numerical results for the 

spectrum of these bare hadron states are obtained as shown in Fig, 1. 

The bare hadrons are color singlet bound states of gluons (and quarks) 

and are identified with a specific configuration of link mesons on the 

transverse lattice. In the following section, transverse motion of 

these states is considered. 

E. TRANSVERSE LATTICE DYNAMICS 

The bare hadron states are static configurations on the transverse 

lattice. The remaining operators in the full hamiltonian generate the 

transverse dynamics for the bare hadrons. The magnetic, coulomb 

production, etc. interactions couple neighboring bare hadron states. 

These interactions cause a mixing of static configurations and result 

in transverse motion when diagonalized. The physical hadrons consist 

of those linear combinations of the bare hadrons which move together 

on the transverse lattice. 

For the low mass spectrum of states the few body bound states are 

expected to provide a good approximation to the physical states in the 

large lattice approximation. If only a few bare hadron states are kept 
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the lattice problem becomes tractable. In Fig. 2, we show the com- 

plete set of two and four link meson bound state configurations on the 

lattice. Each configuration can be placed anywhere on the transverse 

lattice. The hamiltonian induces nearest neighbor type interactions 

between configurations. 

The transverse motion is more easily discussed if the transverse 

momentum is diagonalized. For each value of transverse momentum, 

the energy, ET (kl) = ZP+P-, acts as a matrix operator on.1 bare 

hadron states labelled by the specific type of lattice configuration and 

by the state of longitudinal excitation. For a truncated set of states, 

this matrix may be diagonalized for each value of kl . The results 

may be improved either by incorporating more complicated lattice 

configurations or more longitudinal states for each configuration. 

F. PRELIMINARY RESULTS AND CONCLUSIONS 

The calculational method described in Section D and E was 

implemented by R. B. Pearson and E. Rabinovici’l to compute the Low 

mass gluonic states of QCD on the transverse Lattice. For these cal- 

culations only the two and four link meson bound states shown in Fig. 2 

were included. The longitudinal dynamics was approximated by wave- 

functions involving low degree polynomials but consistant with the 

permutation symmetries of the two and four body wavefunctions. In 

this approximation eighty-two bare hadron states were used as the 
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basis for the calculation. For each value of the transverse momentum, 

the eighty-two by eighty-two matrix for the transverse energy, 

E: (ki), was constructed. The diagonalization of this matrix 

results in transverse energies for the eighty-two hadronic states. 

The masses of the hadronic bound states are obtained by evaluating 

El 
at zero transverse momentum. The mass spectrum is shown for 

the lightest states in Fig. 3. The labels, Al, B2, E, etc. ,refer to 

states having definite rotational symmetry on the lattice at kt = 0. Al 

is totally symmetric, E is a helicity one doublet, and so forth. 

We may also consider states with having nonzero transverse 

momentum. The transverse energy should depend on the transverse 

momentum through the usual relation, E; =m2+k 2 
1’ for each bound 

state. On the lattice, the relation is modified but it should be a good 

approximation at least within the first brillouin zone. In Fig. 4, we 

show the dispersion relation for EI (ki) for the lowest states of 

symmetry type Al, B2, and E. The two lowest states clearly behave 

as expected. These two states are largely two body states with 

sufficient mixing with four body states to have appropriate transverse 

motion. However the E states and the other excited states do not 

appear to mix properly and have unphysical dependence on the trans- 

verse momentum. Whether these results reflect intrinsic problems or 

merely reflect the fact that the higher states have energies comparable 
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to the gound state energies at the brillouin zone boundary is uncertain 

at this time. 

In this lecture I have presented a systematic analysis of the 

bound state structure of a transverse lattice version of Quantum 

Chromodynamics. In particular, the equivalent of the strong coupling 

expansions of the other lattice approachs 4,s requires a nontrivial but 

tractable analysis of the longitudinal and transverse dynamics. We 

obtain encouraging results for the behavior of the ground state hadrons 

but the behavior of the excited states indicates that we are far from 

the continuum limit for these states. Although only bound states of 

the pure Yang-Mills theory have been considered, quarks can be 

included in the lattice formulation in a number of ways. 

The transverse lattice, infinite momentum frame version of QCD 

represents the attempt to focus attention directly on the independent 

physical degrees of freedom of QCD while maintaining the full symmetry 

structure of the theory. The analysis of the longitudinal and transverse 

dynamics in this lecture represents the beginning to an understanding of 

the hadronic aspects of this theory. 
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FIGURE CAPTIONS 

Two and Four Body Bare Hadron Masses. 

Two and Four Body Lattice Configurations. 

Low Mass Hadron Spectrum. 

Transverse Energy VS. Transverse Momentum. 
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