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ABSTRACT

A lattice version of the Abelian Higgs model is studied in arbitrary
Euclidean dimension, Two different representations of the theory, one in
terms of the Higgs and gauge:fields and the other in terms:of the topological
excitations, are used to understand what phases exist for the system. In
addition to limiting cases there is, in two dimensions, a plasma phase of
vortex excitations., The vortices (instantons) in this phase cause confine- -
ment (in the sense of Wilson) of fractional, but not integer charges.
In three and more dimensions, there is a plasma phase similar to the one
in two dimensions as well as another phase which does not confine any

charge. We argue that the confinement due to topological excitations in

" the plasma phase has the same physical basis as the usual large coupling
constant (high temperature) confinement of the lattice gauge theory.

Effects of a background field in two dimensions are also described,
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I, INTRODUCTION
In this paper we will study the Abelian Higgs model in various
dimensions primarily with a view toward understanding,at least quali-
tatively,what phases may occur in the model. The physical motivations for
studying this model have been discussed in Ref. 1 and will not be

repeated here,

We formulate the Abelian Higgs model on a d~dimension, Euclidean
hypercubical lattice, The partition function (generating functional) for
the theory is

i
[ o0 oxge?

=T

Z

™

86 (8% ()Exp [Kiws (AHX 6) -0 G )) (1.1)

=T

B 1 .
++—712 e———— .
2 5% (<d 2% p B B, 8.8 60 Y ))]

The sum over £ is a sum over all links of the lattice, and the sum over
p is a sum over all elementary two-dimensional squares, or plaquettes
of the lattice. It was shown in Ref. 1 that when factors of the lattice
spacing, a, are properly included, (4, 1) becomes the generating
functional of the continuum Abelian Higgs theory in the naive limit

a —> 0, ¥ (j)is the phase angle of the Higgs field and 6 H(j) = aAM(j)
where Ap(j) becomes the gauge vector potential in the continuum. In

(1, 1) the radial degree of freedom of the Higgs field is completely frozen,
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For large B and k (low temperatures), a very good approximation to

(1.1) is"l
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In this expression, unlike equation (4.1), to avoid infinities we must
choose a gauge when integrating over X and 6 " (this is indicated by the
prime)., The integers - «< ap, b}.L v <w are included in Z so that this
Lagrangian has a periodic structure like that of (1.41). The tilde over
the sum reminds us that it is redundant to sum independently over all
integer values of a.H and bpv‘ As discussed in Ref. 41, one must also
"choose a gauge' for these integer fields so that Z is finite, . -

Using an exact duality transformation, 1 the partition function (1.1)
can be rewritten in terms of the topological excitations of the angles x
and BH. In Ref, 1 we showed that the: = topological excitations of this
model in d-dimensions are closed "vortex'' surfaces of dimension d-2,
and open vortex surfaces of dimension d-2 bounded by monopole surfaces
of dimension d-3., A similar duality transformation applied to (4., 1)
results in an expression which contains the same topological excitations

as the dual form of (1.1), and coincides with it when B, x >> 1,
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Now the dual form of (4, 1) is an exact representation of the theory.
In this paper we shall use both (4.1) (or its approximate form (1.2))
and its dual form to understand the different phases of the theory. It
turns out that a very simple picture of the nature of the different phases
emerges from a consideration of the topological excitations, In some
phases the topological excitations are very large and influential, and in
others they are small and relatively unimportant. In addition to
examining the partition function, we will discuss the expectation value,
T", of a large electric gauge loop integral,“% sometimes called the Wilson
loop integral, 2 The large distance behavior of this object is also
determined by the presence or absence of certain topological excitations.
We show that the asymptotic behavior of the gauge loop integral can
also be used to discriminate between certain phases of the theery.

Section V contains a review of our results, but we will briefly
summarize the most important points here., In addition to phases which
are naively associated with the limits B,« > 0 or », we find in two
dimensions only one other phase. This is a plasma phase of vortex
points which have only short range interactions. The gauge loop integral
behaves like e_A for fractional charges and e“P for integer charges where
A is the area enclosed by the loop and P is its perimeter, We also study
the effects of a background field in two dimensions and find that in the
presence of such a field the qualitative behavior of T can be changed

drastically.
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In three or more dimensions (again, aside from limiting cases)
there are two phases. One phase is characterized by a massive
vector boson; the topological excitations (e.g. intree dimensions
open vortex strings with monopoles on the ends and closed
vortex loops) are small and not too important. I" ~ e-P for all charges,
Another phase, a plasma phase analogous to the phase in two dimensions
described above has very large open and closed topological excitations,

and in this phase I ~ e“A for non-integer charges and IT" ~ e-P for

-, integer charges.

In addition to these phases, other phases exist as limits of the
coupling constants x and B, Of particular interest is the limit B ~ «
in which the model becomes equivalent to the globally invariant x-y
model. 3 As we shall discuss, there is some reason to believe that
these phases also exist for large but finite values of £,

The rest of the paper is organized as follows. In the next section
we discuss the model in two dimensions. We give a complete discussion
of the various limiting cases including the x-y limit mentioned above.
We then argue that there is one and only one additional phase,and we
approximate the behavior of T" in that phase. Finally we describe what

happens to the theory inithe presence of a background field. Section III
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deals with the model in three dimensions. We describe the different
phases in terms of the topological excitations and discuss the behavior of
T" in these phases, Section IV generalizes the arguments of section III
to four (and more) dimensions, Finally, some remarks and a summary

comprise section V,

II. THE TWO-DIMENSIONAL CASE
A. Description of the Phases in Terms of the Topological Excitations

In this section we will describe the phases we expect to occur for
our model in two dimensions. We shall usually deal with the periodic
quadratic form of the Abelian Higgs model. As discussed in Ref. 1, this
may be thought of as an approximation to the full, compact theory. Both
the full theory with cosine interactions, and the periodic quadratic
theory have the same topolegical singularities, and are therefore
expected to have qualitatively similar phase transitions. Thus, our
considerations should apply equally well to both theories.

We will first discuss the model assuming periodic (spherical)
boundary conditions. At the end of the section we will describe what
happens when we impose certain other boundary conditions which corres-

.pond, in instanton language, to different 6 -vacuua.
We begin by recalling that in two dimensions the partition function

(1. 2) which is the periodic quadratic form of (1. 1) can be writ’cen1
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and D(j - k; mz) is the two-dimension lattice Green's function satisfying

2. 2. o2y
(-A'_L G)+m DG -k;m”) = 6jk

with m2 = k/B. Z, is the partition function of a free massive spin-wave

0
(massive scalar field). The integers {‘ﬁ“(j )-} are the vortex excitations
of the original X and 6 " fields and range from -« to », The position
vectors, i,refer to the sites of the dual lattice. The dual lattice is
obtained from the original lattice by shifting the lattice by half a lattice
spaeing in each direction.

To get a feeling for the possible phases of the model, it is useful
to consider various limiting cases. Only the vortex contribution is
relevant since, at finite mz, the contribution from spin waves, ZO, to
Z is analytic, First of all, in the very large m2 limit, it is easy to see
explicitly that there is only one phase, To be precise, consider «

getting larger with fixed p. Expanding the lattice Green's function in

powers of (mz)-i, we have for the leading term

(2.1)

(2.2)

(2.3)
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Hence the partition function (2. 1) becomes
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which is a theory of non-interacting vortices. (N is the number of

lattice sites. )

The last factor is a product of Jacobi theta functions5 which are

(2. 4)

(2. 5)

analytic for g > 0 and so the free energy, F = 1/N 1n Z, has no singularities

in this limit, It is also easy to show using (4.1) that the free energy of

the full Abelian Higgs model is analytic in this limit and is propotitionpkdo

Ing +cln Io(ﬁ), c being a constant,

As a second limiting form, consider the behavior as p - » for fixed

i

k. This limit corresponds to the familiar x-y model. 3 To see this,

look at equation (4.1). As B - », the only values of ¢ p'(j ) which contribute

to Z are those for which FH »° 0. Hence Gp(j) can be written: as

0 M(j) = AHA(j ), and so the combination X(j) - A(j) can be thought of as
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the angle of the x-y model spin, [Note that AM(X G) - AG)) is gauge
invariant, ] 7/When m? - 0, the Green's function D(j - k; 0) = In h\, - Ii,[
when IQ\. - Ii [ >>1, Furthermore, a careful analysis of this limit reveals
that with spherical boundary conditions there is a memtrality condition on
the total vorticity: _’cvhe only configurations allowed in the sum of equation
(2. 1) are those for which Z ®'§j) = 0,

It is generally a.c:cepil:ed3 that the d=2 x=¥ model undergoes a topo-
logical phase transition at some temperature k = Ko Because D(j - k; «0)
grows logarithmically and ?3 @) = 0, the low temperature phase of the
theory (kK > IIZC) is dominated by a few tightly bound vortex-antivortex

pairs, in addition to the spin waves described by Z  (with m2 =0)in

0
equation (2.1). But the entropy for finding a vortex-antivortex pair a

distance ir apart is also proportiomnd] to In r, and so for Kless than some

Kc,’che entropy dominates the free energy of a vortex-antivortex pair,

and it becomes highly probable to find pairs whose members are an

arbitrarily large distance apart. This unbinding tauses certaim correlation
functions which had been power behaved for « > Ky to fall exponentially,

and can be thought of as signalling a phase transition. Note that the x-y

model has only a global U(1) symmetry as-opposed 6 the:localst(1)

symmetry of the Higgs model. This breakdown of local gauge symmetry as m=0

will be important for distinguishing phases of our system, as we shall

discuss below.
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With this picture in mind, let us now consider the case of finite, non-
zZero mz. In this case we have no strict neutrality condition (although for
small mz there is some suppression of configurations with Z p'(j) £ 0).
Furthermore, D({j - k, mZ) ~ (e_m u -,1\{, l) /m Jfor large

n v ¥ ~n

[j -k [, so the attractive force between vortex-antivortex pairs is

~
short ranged. Since the entropy is still proportional to ln ] ’g‘ -k [ it will
be very likely to find isolated vortices rather than just tightly bound
dipoles at any non-zero temperature for any non—zer6 mz. Hence, our
naive expectation is that the theory is always in the plasma phase and
there is no phase transition at finite temperature. As we shall see in
the next subsection, this situation is peculiar to two dimensions.

We have described the finite mz case as well as the limits « - « with
g fixed and B — o with « fixed, Now consider the infinitely massive limit
B - 0, « fixed. This limit generates a trivial theory. From (1.1), we
see that if p = 0, the only term in the theory is the Higgs interaction.

But since we must still integrate over 6 " as well as x, we still have the
usual local gauge symmetry. Hence, no matter what configuration of
,%‘;Xa 0 u } we are given, we can always gauge transform the theory to a
state with all X(j) = 0. The theory is then a theory of non-interacting
gauge fields, or links, 6 W and contains no dynamics.

. Finally, the limit « - 0, p fixed describes the pure compact gauge
theory . Intwo dimensions this is also a trivial theory (in the
absence of external sources) since the gauge fields have no dynamical

degrees of freedom.,
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Our naive expectation that the theory has no phase transition for
finite m2 may have to be modified. A careful discussion requires
analyzing the large distance behavior of the theory, i.e., correlations
over distances large compared to the lattice spacing. In the language of
field theory, m2 plays the role of a bare mass when the theory is
defined with an ultraviolet cutoff 1/a, where a is the lattice spacing.

It is quite possible that there is some positive value of mz, mc2 (which
could be a function of k) such that for m2 < mc2 the renormalized mass
vanishes as a — 0. If so, then, for m2 < mcz, the large distance
behavior of the lattice theory will be that of a theory with m2 =0, viz.
the x-y model.

We now want to give a summary of the various phases we expect
this theory fo have. The discussion of the next few paragraphs will
be heuristic; nevertheless, it is a good path to follow to get some
feeling for the structure of the theory. The description will be couched
in terms of the behavior of the vortices. Later we will be more specific
and compute correlation functions in the different phases.

In Fig. 1 we have sketched what we believe is a schematically
correct phase diagram for this model. A distinct phase of the model is
defined by a range of the couplings p and « for which the large distance
behavior of the theory (to be determined, for example, by a renormalization group
calculation) is qualitatively the same. The dashed lines are lines of

constant mz. Phase I fulfills our naive expectation for finite mz, and
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is a phase which has a massive spin wave as well as a plasma of vortices
interacting through a short range potential. Phases II and III are the
high and low temperature x-y model phases, respectively. Phases IV,
V, and VI are the trivial limiting theories described above with VI

being the pure gauge theory. It is not clear whether these phases are
only limiting cases or whethef they have finite two-dimensional support
in the diagram, although we think it more likely that they only exist as
limits. Furthermore, the behavior of the theory at the corners of the
diagram is somewhat problematical and probably depends on how the
corner is approached. We shall not dwell on that here.

The three interesting phases for finite, non-zero g and:x are
delineated by the separatrices AB, BC, and DB, We do not know the
precise shape of these lines, but their:general features can be understood
as follows: Point A marks the critical point of the x-y model. For
B = oand (v + 1):4'1 < A, the system is described by tightly bound
Vortex-antix}or*tex pairs. These pairs become effectively unbound by the
thermal motion when we raise the temperature so that (k + 1)—'1 > A,
Now, if we make the intervortex interaction weaker the vortex pairs will
unbind at a lower temperature. Adding a mass to the vortex-vortex
interaction certainly weakens its large distance effects. Therefore,
for those values of m2 and k for which we will be driven by the renor-

malization group to the left-hand side of the diagram it follows that the

larger m2 is the larger x must be in order that we stay in phase III. This
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accourﬁ:s for the general downward slope of the lines AB and BC. The line .
BD is drawn vertically for the following reason: Both phases I and II

are vortex plasma phases, They are distinguished by the fact that in

phase II the gauge fields are effectively frozen in the large. (As we shall
see below, this has implications for the behavior of the Wilson loop
integral.) But this effect, naively, seems to be controlled only by<the

size of p, hence BD is expected to be vertical.

These speculations could be wrong in several ways. First, it is possible (though
doubtflﬂ) that AB is horizontal, or that point B coincides with point A, or that point
C is really at the origin. (This could happen either smoothly or discontinuously--i.e.
the separatrix BC could have a discontinuity at the x-axis of Fig. 1.) The line DB
could also have a different shape; it could even collapse onto the left axis so that
phase II would only exist for m2 = 0. Finally, it is also possible that phase III
exists only for m2 : 0. | |

None of these possibilities can be ruled out without doing a
renormalization group calculation for this model (and we would not be
too supprised if some of them turned out to be correct). Nevertheless,
there is some support for the general picture painted in Fig. 1 from
calculations done on similar models. A self-consistent Hartree-Fock
calculation for the d=2 O(n) Higgs meodel was carried out by Bander and
Bardeen7 to leading order in 1/n. They foundi two phases which roughly
correspond to the phases I and Il in Fig, 1. Phase III is not expected
to exist in two-dimensions for the O(n) sigma meodel withn > 2, so

it is not suprising that it did not appear in their calculation. Of even more
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direct interest is the approximate renormalization group calculation of
Kosterlitz and Thouless8 discussed also by Kadanoff. ? This calculation
was done on a version of the x-y model which was modified to incorporate
a kind of local gauge symmetry. Roughly speaking, it corresponds to
taking the periodic quadratic model (1.2) and setting all 6 " = 0, The
local gauge symmetry is then expressed through the integers, | a b“v}.
Their computation showed very clearly the existence of two-dimensional
support for phases I and III, and in particular showed very nice renor-
malization group ﬂéw lines leading into the line of fixed points between
0 and A on the left-hand axis from region IIl. On the other hand, phase II
was relegated to the left-hand axis of the diagram in their calculation. In
addition, there was some evidence for an additional .‘phase sitting where our
phase II sits, But the nature of this phase and even its existence in the
sense of having long range behavior distinct from phase Iis in :doubt.
B. The Gauge Loop Integrai

We have qualitatively described the phases of Fig. 1. We now want
to describe the behavior of the Wilson loop in’cegral2 <eiq’s 0 HdXH> for
both integer and fractional charges, g. We have computed some other
physically interesting correlation functions such as the vortex-vortex
correlation function and the Higgs-Higgs correlation function. We will
not discuss them in detail, but will refer to them when appropriate.

In computing correlation functions of fractionally charged objects,

one must face an important technical problem. 10 It is easy to see that
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using the Lagrangian (4. 1) and simply computing <<—':ic1 f 0 HdXH> will

give nonsensical results. The point is that the U(4) gauge fields must

be periodic with respect to the smallest charge in the theory. Hence

if quarks of charge,say.1/A (X an integer) are introduced as external
sources, the gauge fields must be able to couple to them in a U(1) invariant
way. This can be accomplished by defining the unit charge to be 1/ x

and coupling a Higgs particle ®f charge X:.to the gauge field, The

Lagrangian one uses is then

Y = = cos (A X-\O )+%Zcos
7 K e

1
o [(d-z)'.eu v,ﬁ,,.,ﬁd_zeﬁ,...ﬁd_z,pcAped]°

(2. 6)

One can now compute <elcf 0 dei*> with this Lagrangian where c is an

integer, 0 = ¢ S\, This is the correct way of computing an electric
gauge loop of charge c/\ in the presence of an integer charged Higgs, if
the gauge group is U(1).

Now, following the approach of Ref., 1 we can determine the periodic

quadratic approximation to (2.6). In any dimension it is
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where TH = 2\6 o -0 <y, TH <o, aHtakes on all integer values and B
takes on values An, n an integer, and where certain restrictions apply to
the sums over aILJL and pr' 1 In particular, in two dimensions, we know
that the vorticity is p = eHvA“av + B}w so that restricting pr to values

of An does not change the allowed vortex configurations. (This, however,

is not true above two dimensions. See section III. ) Hence, to compute the
expectation value of a gauge loop of charge g = c/\in the periodic quadratic
approximation in any dimension we can use the Lagrangian

[

XKsay -0 +2m )
2, K B o

B (___1_____ + )2
4 p \(d-2) “ov, .o € Apea ZTr)\bp,v (2.7b)

d-2 * o %a-2f

c f
and calculate <e'\ o pLXm*‘>. This is the periodic quadratic approximation
to the calculation of <e' f OuI%ps using (2.6) with k = Fand B = B/\2.
Consider now (2, 6) and suppose we compute the discrete form of

Wilson's 1oop integral

ic§ o dx 1 [ k2 ES
= g pus = —[ 8 e Ll
Fq = e z ) 8 lJL<Sx
-

where the loop integral covers an area large with respect to the lattice
spacing squared. Here, qpis the "tangent vector' along the gauge loop.
We have absorbed the charge into its definition so its non-zero components
have magnitude c. Because the gauge 1061; is closed, we hav; quu =0,
Suppose B, ® < 1. We can then expand e"g] in powers of B and K.

If ¢ =n\ {for integer n), it is clear that as the gauge loop gets

very large the leading contribution to ]_"q will be a term of order
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(T<‘)P where P is the perimeter of the gauge loop. This indicates a relatively
weak long ranged force between the ”in’ceger charged quarks " represented
by the external sources in this computation., Their charge is completely
| screened by the Higgs particles in the vacuum with which they form neutral
bound states. This can be seen graphically by noting that the terms in
this high temperature expansion which give this leading contribution just
correspond to stringing factors of cos (AM;Q( - \O H) along the perimeter of
the gauge loop. Suppose now that ¢ <A, In this case it is easy to see
that the coefficient of (Tc')P is zero (being proportional to factors like

™
ere o M, n a non-zero integer.) Theleading term in the limit of
large gauge loops comes instead from terras proportional to B, and is of
order (E)CA, where A is the area enclosed by the gauge loop. In this case
the Higgs particle cannot completely screen the charge of the external
quark. To get a non-zero contribution to ]_"C we must fill up the interior
of the gauge loop withcA factors of cos va‘ This generates a linear
potential between the quarks and gives us the area law behavior,

Iy ™ e =§- # integer , (2.8)

(Note the dependence on the charge of the quark,c. )

It is now instructive to compute the same quantity in a manner which
displays explicitly the influence of the vortices. For that purpose it
is convenient to use (2.7)  As we mentioned before, this is a

good low temperature approximation to (2. 6) and in addition is
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expected to have features which correctly represent the qualitative
behavior of the theory..«If we computed T using:(2.6),5the results -
would agree with what follows at the quadratic level, ) Using (2.7b) we

have

P o !
Ty " 2 6 66 eXp[Z-i(Ax-e +2ma )?
e ZAZT* M 2 M K M
a“~B ~-®

—-g— (eMvAMf0v+2-rrB.) +1Ezgﬁeu;] (2.9)

where we have rescaled the gauge fiielid so that now the non-zero components
of q}JL have magnitude ¢/\, B tak;e»s"_on values which are

integer multiples of \ and aptakes on all integer values. Since (2.9)

is Gaussian, the integrals can easily be performed. It is simplest to

work in the gauge k = 0 and to shift GH - 6!IJL + ZwaH before integrating.

Then one obtains

{2 Bl

1 1 . . o I
=z z exp [ﬁz(lqug) ) ZﬁﬁevuAﬂp(J))vaig‘m~"(3ék;m2)
apL B

(iP,, (k) - 276 €, A H‘B(k))] exp [2(27riqv(j)a §) - 20 28B() )] (2. 10)

where the vorticity B(j) =B({)+ e A a (j)and D _is the two dimensional
> i BYORVE L MY

S

Green's function:
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D (' - k. 2) _ 6 AHAV . 2
lJ.vJ ;M = p‘v" 2 D(J"k;m)
m
- (-2 +m®)DG - km?) = & (2. 14)

ik’
This expression can be simplified by noting that the gradient terms do

not contribute. After some algebra and summation by parts, we find

LS 1wl
A2

1 ' _ "
I'=zex® [' 78 =94,0)au(k)DG - ks m )]

(2.12)

ML

exp [-ZD(j -k m2)32vzxﬁ'(j )plls) - Z'ﬁ.qv(j)(mzav(k) + EVHAHB(k))”.

}

vs)

?

e,
o
-

Since Aqu = 0, we may write a, as a curl

where Q is a scalar associated with sites of the dual lattice. It is equal
to ¢/\ for each plaquette enclosed by the gauge loop and zero elsewhere.
The last/term may equallyirellvbd written in terms of Q after summation

by parts (Stekes' Theorem),

a,(i k) = Qe A 2 fk) :

Thus (2,12) may also be written as a summation over the area enclosed

by the gauge loop
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1 o4 . .
T = > exp |- fz_ﬁzqv (J)qvﬂs}ﬂ(; - k; mz)]

(2.13)
z exp [-z D - k;mz){znzxp(j pl)- 2nitm’Qli)e A a (k)+A Q] B(k»}]
Y W R

To understand qualitatively the behavior of (2.43), consider m2

to be large, so D(j - k; mzb —-1-—2-6 et Then we can write
m< I
T = Zexp |- E‘Zq (j)%] i exp [-Z{ZTrzpwpu(j)z - 2mQG)e A a (i)} .
Z 2k Y £ \ ettt
2w Bt (2. 14)

The first factor is simple,

exp [-f;?qvmz] < o [—%;?.<AMQG))Z] - o [ (9]

where P is the length of the perimeter of the gauge loop. Now, in the

1limit we are considering, there is no interaction between lattice sites, so

L zﬂ %exp [_ZﬁZ%Z : Zﬁqﬁﬂ (2.15)

' = exp [— q
2x %exp [—szﬁlpz]

where A is the area enclosed by the loop. Note, however, that if q is an
integer, then there is no area term so that In T" is proportional to the

perimeter,
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The area law for non-integer charges means that there is a long

range linear potential, (modulo logarithms)i.e., arbitrary charges are

not completely screened. In this sense, there is no Higgs phenomenon

for fractional charge. On the other hand, this is precisely due to the

vortices of the Higgs field, since, if we set av(j) = 0 in (2. 43), for example,
we would get a perimeter law for any qpL (for non-zere mZ). (Note,
though, thgt eliminating the av(j) is not the same as eliminating the com"pletev
Higgs field which occurs in the limit « - 0, p finite, Seevb‘élow. } If, however,
the external charge is an integer multiple of the Higgs charge, then we

find a perimeter law even in the presence of vortices.

This discussion closely parallels the calculation of Callan, Dashen,
and Gross“ for the continuum Abelian Higgs model, But these results
also agree with those of the high temperature expansion (cf. (2.8)).

Here then is a specific example of a case in which strong coupling
lattice confinement has the same physical origin as confinement by
instantons in the continuum. Both follow from the compact nature of the
symmetry.

Next, we would like to examine the behavior of I‘q in the limits
where « or B approach zero or infinity. Consider first the limit corresponding

to the x-y model, B — o, « finite. This limit is easily implemented in
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(2. 42) where we see that a8 § > o, I“q - 1 independent of x, We do not

even have any residual perimeter effects. This is understandable; as

B - o, the gauge fields are frozen and we can Write GH =AHA, Hence,
ai-iﬂxlf 0. (Note that there is no contradiction with the existence of

vortices in this limit; the physical (and gauge invariant) x-y spin angle

is X - A, not just A.) This naive: limitingihehavior of ‘Fq may ﬁgll.b-e modified

if we actually do a renormalization group analysis and if phases I
and/or IIT exist for finite B as in Fig. 4. The precise behavior of Fq
depends on the behavior of ﬁeff(L), the running coupling constant as
a function of distance, but ]."q is not expectedito fall as stfongl'y as e-P.
This qualitatively different behavior of I‘q can be used to distinguish
phases II and ITI from phase I; in particular it discriminates betweem
the two plasma phases, I and IL
The pure gauge theory limit, « — 0, B finite, is also simple to
analyze. The behavior of I‘q can be deduced from (2,9) (or from (2. 6))
with the result that T" ~ e_A for any q. Of course this confinement has

nothing to do with compactness of the gauge group or with vortices, I

is simply due to the fact that the Coulomb potential in one space dimension
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is linear. Finally, we can consider the two m —>o limits. For k- o,
B fixed, the leading behavior of I‘q is given by (2, 15), while for g - 0,
x fixed, T q +0 for non-integer q.
C. The Background Field

Experience with the Schwinger model12 and the continuum Abelian
Higgs model“ suggests.that, in two dimensions, there are different,
orthogonal universes corresponding to different constant background
fields. (These are referred to as different 6-vacuua. ) To realize this
possibility in our latticeformulation, we must depart from spherical
boundary conditions to allow for changes of phase as the lattice is tra~
versed. To this end, we suppose our lattice is a square plane and we
choose '"free" boundary conditions; that is, we will integrate independently
over all the variables, 6 W on the boundary of our lattice.

To induce a background field, we place an external current, J % around the
boundary of the lattice. Choose a closed current loop . of magnitude Yor The partition
function for this system can be derived by beginning with the usual Lagrangian (say,
(2.7)) and adding the term iZJu- eu. At this point it is clear that, just as in the
calculation of the Wilson gauge loop, ZO must be restricted to a value c¢/), with
c an integer, in order to retain consistently the U(1) character of the gauge group.

With this in mind, we may use (2.10) to Fourier expand Z and derive the partition

function in terms of the vortices. Choose the gauge X = 0. We then have

’ . 1, 2 o
Z = ? 8¢ 6260 ex [E-’-'-— g +i -6. +2
o P Zx T M'f—t( i ﬂau)
{2, B} 7" |
K

1. 2 :
=5z z tizle A 6 +2vB)+iz .
2B popd, 2T ) +1i OsuvAue\)] (2. 16)

where we have used Stokes theorem to re-express the last term
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After integrating over {eu} and {% u} we can write (2. 16) as

[>2)
Z = f dszeX“pl-_-E--—rf4 (e Az-3] )2--—1 2 4 f o
2k ITRZERY U g8 < ti2wzp’ - i2nz ] . (2.17
ZP} . 28 P )

(v

As in the calculation of the Wilson loop integral, the extra Ju term in (2.17) will give
rise to a vortex independent term, proportionalto the perimeter of the space, in the free
energy, which will cancel in the calculation of correlation functions. Aside from this term
we see that we have a constant background magnetic field Z 0 coupled to the vortices,
which corresponds to a 8 #0 vacuum. This derivation clearly shows that spherical boundary

conditions imply a 6 = 0 vacuum.
To help understand the effect of the background field on the physics
we can compute Fq with these boundary conditions. The calculation is

analogous to that leading to (2. 15), and we find (in phase I of Fig. 1)
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2 A

1 +2¢ 2" Poos 2z + Q)
T « . (2.18)

q y-“ﬂu-szﬁ

2
cos WZO

For values of Q such that cos ZTr(zO + Q)< cos 27z, Tq falls exponentially"
with increasing area and we have confinement. For values of @ such

that cos Zn(zo + Q) = cos ZTTZO, perimeter terms will dominate and we

have freedom. I Q is such that cos ZTr(zo + Q) > cos ZTrzO, I‘q grows
exponentially with A, the quarks are forced to the edge of space, and we
have exile. The situation is summarized in Fig. 2. Freedom is evidently

a rather special condition.

III, THREE DIMENSIONS
In three (and greater) dimensions qualitatively new features appear
which are absent in two dimensions. We begin our discussion by considering
the theory with charge » = 1. (The theory with A > 1 is quite similar,
although there-is.one additional-complication. ~This willibe disecussed fully
below. )
Recall the dual form of (4.2) in three dimensions1 (we assume

spherical boundary conditions):

[«2]

_ , L 2_4
Z = Z f 6A)\ exp [Z 4K(€Gp)\ApA)\) ZBA +1ZTrJ A ]
it
2 . . 2
= ZOZ exp[Z-éer KJH(J)DH_V(J -k; m )Jv(k)] . (3.1)

{0
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Duwis the three dimensional lattice Green's function defined by

2 ApAf 2
DHV G -kimd) = [6MV - — ] DG -k m)
m .
with (3.2)
-a 2 +m®)DG - k; m?) = &,
3 ik

and m2 =k /B. This form was derived from (4. 2) by choosing the gauge
X =0. The J)\ are associated with the links of the dual lattice and
represent the vortex strings of our model. The sum runs over all
possible configurations of currents whose components are integer valued,

Some of these configurations have Q = A # 0, which may be interpreted

)\J)\
as a monopole density. 1 Point monopoles exist because the gauge
fields are compact. 1,13 Thus, the topological excitations in three
dimensions are closed vortex rings and vortex strings which end on
monopoles.
A, Description of the Phases in Terms of the Topological Excitations
Suppose that m2 is finite and let us examine the behavior of the

-m[j _k[ for

system as a function of «. Since D({j - k); mz)cc e
[j - k[ > 41, we may, for this discussion, approximate D by retaining

only its diagonal term., Let us suppose also that the température of the system
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is low enough that we may neglect values of |J y |> 2. In that case the sum over
{JA} in (3.1) may be thought of as a sum over closed vortex strings and open strings

ending on monopoles. (When there is a significant probability of strings overlapping

(i.e. Ju | > 2) a sum over all possible string configurations is not the same as the
sum over {J)\} .) Now, when m2 = », the partition function (3.1) is trivial and
there is clearly no phase transition. But when m2 is finite there are non-trivial
interactions (for example, from the A u.'J uterm) and hence the possibility of a

phase transition. To understand what to expect qualitatively, we note that we

may associate a pseudoenergy
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4'n'2KD(0, m2 L (3. 3a)

with a closed vortex loop 6f total length L, and
4n?«D(0; m®)[L + —zﬂ (3. 3b)’
m

with an open string of length L which ends on monopoles. We now ask
whether it is likely or unlikely to find a closed or an open string of a
given length in the system. The entropy for such an object is just the
logarithm of the number of different possible configurations. For an
open string one end of which is fixed at some point in the (dual) lattice,
this is just the number of non-repeating random walks of length L.

By non-repeating we mean that once a link has been traversed it must
not be stepped along again, Note that this is somewhat less restrictive
than a self-avoiding walk--we allow a site of the dual lattice which has
previously been stepped on to be stepped on again, but the traveller must
proceed in a hitherto unexplored direction. 14 For a closed loop of given
length, fixing some point of the circumference, the number 6f configurations
is equal to thenumber of non-repeating random walks which return to
this point. Unfortunately, very little seems to be known

about non-repeating walks. However, the very closely related problems
of self-avoiding and closed self-avoiding walks have been much studied.

Since for large L the leading behavior of non—re'peatingyand self-avoiding
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walks is likely to be similar, we will use results on the latter as a guide
in what follows.

The number of possible self-avoiding random walks of L steps,
is known to behave like p1L fi(L) where [fi(L)] L, 1as L~ 00.15
ey and f 1 both depend on dimension and lattice type. The number of
possible self-avoiding random walks of length L which return to the
origin has the behavior |J.2L fZ(L) where again {fZ(L)] L, 4;,a:§85L - o, 15

(‘:Dombié conjectures that f (L)(fZ(L)) is power behaved with a positive

1
(negative) exponent as L, > o, ) For a fixed number of dimensions and
lattice type it can be proved that By = Hoe 15 (For a three-dimensional
simple cubic lattice, My (= ”2) has been estimated to be 4, 6826, 15)

From these results it is quite likely that the leading behavior for the number
of non-repeating walks and closed non-repeating walks is the same:

eL In p+ @fn L) with p being close to the self-avoiding value. The In L
corrections should differ for open and closed walks.

We can now calculate the free energy for open and closed strings

of Tength L. Up to an overall factor, it is

ﬁ; = (411‘2KD(0; mz) - p)L + @Q@n L); closed loops (3. 4a)

F (4TI‘ZKD(0; m?) - p)L - 81%8D(0; m%) +@(ln L); open strings. (3.4b)

For klarge (low temperatures), 7 has its minimum at L. = 0. For

small enough x (high temperatures), the minimum of F occurs at L = o,
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The transition takes place suddenly at a temperature determined by

W= 41\'2KCD(O; m?2). This is a new phase transition at finite m” which does
not occur in two dimensions., Physically, the low temperature phase
described here consists of massive spin waves (Za in (3.1)), and,in
addition,small vortex rings and elementary dumbells, i.e., monopole-
anti-monopole pairs with one (or a few) vortex linkasjoining them.

Larger topological structures:have:an exponetitigily sméllerpprobability
of existing, At some k = Ky the entropy term in (3,4) dominates, and

it suddenly becomes likely to have arbitrarily large vortex rings and

strings. Note that because of the result By = My the transition temperature

2
is the same for both open and closed strings. This transition is similar
to the vortex dissociation transition of the d = 2 x-y model. However, in two
dinrensiong/for large enough m2 (more precisely, in the region of phase I,
Fig. 1) only the analogue of the high temperature (spaghetti) phase exists.
The low temperature (alphabet soup) phase is absent. 17

In Fig. 3 we plot the expected phase structure for this model.
Phases I through VI are analogous to the phases with the same numbers
in Fig, 1 for the d = 2 case. The new phase described above is phase VII,
Notice that the relative numbers of small vortex loops to elementary

2 is increased for fixed k (see 3.3).

dumbells in this phase decreases as m
Phases II and III correspond to the high and low temperature phases of

the d = 3 x-y model, In phase IIl we expect to find massless spin waves

plus small vortex loops., Phase Ilis characterized by massless spin
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waves plus arbitrarily large vortex loops. Note that in the limit § ~
there are no monopoles. An estimate for the position of the critical line
AB may be obtained using a formula analogous to (3.4)., Theilong range
interactions between the vortex string bits in the x-y phase (i. e. the

fact that D(j -k 0) ~ -ﬁ—-i—-ﬂ ) contributes an additional power-behaved
term to the energy of a vortex loop of length L which is proportional to
Lrj But I is expected to be less than one, 18 and so,in the context of
our crude approximation, will not affect the value of Koo For this reason
B is a quadracritical point. ( As usual, this naive picture may be refined
by a more careful renormalization group analysis. It could happen, for
example, that B is actually split into two tricritical points with the left
terminus of the line BE displaced above the right terminus of AB, and
resting on the line BD,) As in two dimensions, the m2 =o phases IV
and V are trivial., Phase VI is again a pure compact gauge theory phase,

13,18,19,20 the

but in three dimensions it is not trivial. In this phase
topological excitations are free monopoles without strings., From (3.2),
we see that as x decreases for fixed B, strings cost less and less energy
to make relative to monopoles. Ultimately, in the limit that « =~ 0, the
vacuum becomes filled with strings and the only excitations we see are
the monopoles. Remember, though, thatds in twodimensions)this is a

gsingular limit of (3. 2) and requires an extra gauge choice in the integral

of (3.1).
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B. The Gauge Loop Integral

We now compute the behavior of fractional-and integer-charged
gauge loops in this model. The comments made in the last section about
the qualitative similarity of the periodic quadratic and full compact theories
apply here as well, Moreover, to compute fractionally charged gauge
loops, it is again important to work with the Higgs theory with \ > 1.
Letuse we first compute I"c using the three-dimensional version of
(2. 6)., For %, B small enough and R/ P sufficiently large, we will be in
phase I. Using a high temperature expansion as in section II, we will
have I‘% ~ e-A for ¢ < X\ and I‘)\ ~ e—P, where A is the minimum area
enclosed by the gauge loop, and P is its perimeter. Thus, as in two
dimensions, we have confinement for fractional charges (c/\)and freedom

for integer charges. In the limit ¥ = 0, we have the pure gauge theory

0 confinement for all

2

(phase VI), and, as discussed els.:evvhere:1

charges,
To understand these results in terms of the topological excitations,

and to compgite T, when ¥ and B are not very small, it is useful to use

the dual form of the partition function. We start with the periodic quadratic

form (2.7b), In three dimensions we have

r~7 |
3 Z [ K 2
r =% &x 60 e z - —~A -0 +2ma )
qQ £ f XL ERLE TN T 0
a pr —®

(3.5)

B
g‘(

2
- + '(
e“w\ekpczsp 6, Z'rerv) +if qpep]
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where a takes on integer values, BIW takes on values which are integer

M
multiples of A, and the ﬁangen’tveét@r,qH, iigidefinedeasiintheé two-dimensional
case. Its non-zero components have the value ¢ . It will simplify the

tensor algebra to define Bk by pr = epv)\B)\. The Gaussian integral

may be performed as before, leading to an expression analogous to (2,10):

%

Pt
S A slia G) - : ke m?
I1q T Z Z eXp[ZBE(lqv(J) ZTTBEV)LHA)\JN(J))DVW(J ks m™)
a ,B

I 14
(3. 6)

(iq v,(j) - 2mBe v'pcAchr(j )):] exp [2 (Z'rriqy(j )av(j) - 21T2[3J 1)(j )2)]

where we define the topological current J = B + € A a . The Green's
A ) ARV TRV

function DHV is defined by the obvious extension to three dimensions of

Eq. (2.11). Since the current J_m is not divergence free, the gradient

terms in DHV must be retained. Bearing this in mind, we arrive at an

expression similar to (2.412),

Z
I‘q = —% exp [- —2—15 D@ - k; mz)qv(j )qv(k)}
P~
2 o s 20
z | exp[-ZTrKEJJH(ga)DHV(J k; m )Jv(k)] (3.7)
{a)\_’Bv}

. ) 2 ] 2
exp [-Zqu,)\(J)(m ah(k) + E;%prvAva(k)) BG-kim )] .
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Before proceeding with the evaluation of (3. 7), it is appropriate
to mention the differences between the three-dimensional Higgs theory
with A = 1 and the theory with N > 4. The partition function is obtained
from the numerator (3.%) by setting all ay to zero. The resulting
expression has in addition to the factor ZO"‘ the usual (quadratic) factor
describing the interattions of the topological singularities. The only
difference is that since BHV is an integer multiple of A, Bp is \ times
the corresponding Bp in the A = 1 system. SinceA IJ.JIJ. =A |J.B|..l. it is
clear that the monopoles in the A > 4 theory have a charge \ relative
to the possible values of flux (all integers) contained in the full current.
Hence, the basic topological excitations in this case are closed vortex
rings of (any) integer vorticity and open vortex strings whose flux is an
integer multiple of N and which terminate on monopoles whose charge is
an integer multiple of )\[

Now, at the level of discussion associated with equations (3.4), we
might expect to have an extra phase when A > 4. The reasoning would
be that since a minimum flux of \ is required to produce an open, string

equation (3. 4b) becomes modified to read

T - 4x222D(0; m?) - uL - 87°228D(0; m?) +@lin L)

while (3. 4a) remains the same. Thus the transition fo large open strings
would seem to occur at a higher temperature than the transition to large

closed strings. One might therefore expect an intermediate phase, lying
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between regions I and VII in Fig. 3 which would have arbitrarily large
closed strings but smiall open strings. Such a phase would be distinguished
from phase I by the fact that the only important contributions to Z would
be those in which one had a local balance of monopole charge.

That such a phase is not likely to exist may be understood by
remembering that all the flux from the monopole need not pass along
a single dual lattice link, At any temperature where large strings of
a single flux are likely, configurations such as those of Fig. 4 will allow
monopole-antimonopole pairs to become widely separated with good
probability. Such a configuration may be viewed as a superposition
of a single open string of flux M and )\"jl closed strings of flux one. This
configuration has a lower free energy (as well as a lower energy) than
would a single string of flux \ joining the same monopole-antimonopole
pair. While this argument seems quite convincing, only a renormalization .
group calculation can decide the issue definitively. One should therefore
bear in mind the possibility, however unlikely, of an intermediate phase

between I and VII of Fig. 3.
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Now let us return to a discussion of Eq. (3.7). Consider the term
in the exponent involving q_(j)a (k). Since, for finite m?, DG - k; m?)
is short-ranged, this term contributes to In I" a piece proportional to
the perimeter. Consequently, if we neglect topological excitations, we
find In T « length of loop for all values of q = c¢/n. To include the effects
of the topological excitations, it is useful to first use Stokest theorem
to rewrite the last term in the expression for I". To this end, we note

that, since/A =0, we may write q_as 2 curl

A

A T vava
where Qv is a vector associated with links of the dual lattice. Choose
a surface bounded by the gauge loop. Then we may think of Qv as a
vector normal to each elementary plaquette of this surface. Its value,
like the components of - is ¢/\. (To all other plaquettes, we may assign
Qv = 0)) In the last term of Eq., (3.7), we may sum:by: parts and make the

replacement
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q,l)a k) = R Ge, A a k)

— 2
g fG) e FBYk) - i B -
Qe SGAEB) = Q) )(a,(4, “”H,(k)) A"B, (k)

=2

As before, it is useful to consider the behavior of I‘q for m2 large.

Then (3. 7) may be written as

z ~
R 2 ) 2. .2 e (3)
{2 Bt

(a)_
where JH =€ pvavaN

Let us recall the interpretation of the topological excitations
represented by JH' The contribution due to EMLvApav describes closed
vortex loops carrying (arbitrary) integer flux. The contribution due to
B)\ may be thought of as links between vertices of the dual lattice where
there may or may not be located monopoles (depending on whether
A-B#0or A~ B = 0 at that vertex.) The flux associated with each
X,»L«; is an integral multiple of N\, Thus, the last term in (3, 8) measures
the net "'closed loop" flux which passes through a surface enclosed by
the gauge loop. Note that this quantity is invariant under a change in
the definition of the surface on which Q)\ + 0, (Notice also that
Q)\(j ) ;Bej;)) = Q)\(j )B)\(j ) is always an integer so, tinifact,mwe may write

QUN*G) = Q (W) in (3.8).)
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Now, although (3. 8) resembles the two-dimensional result (2, 14),
it is more difficult to estimate, particularly when B is not large. We
can, however, argue qualitatively as follows. Suppose we are in the
Higgs phase, phase VII of Fig., 3. In this phase, the flux loops are
small, To obtain a non-Zero {(and non~integral)r  contribution to

= Q)\(j )J)\(a)(j ), we need a flux loop which encircles the gauge loop like
the links of a chain. Since we have in this phase only small loops, they
will contribute to a perimeter effect in the limit of very large P.
Consequently, in phase VII, we always will get a perimeter law for In T,

Now suppose we are in phase I. Since vortex loops can
have arbitrary size, it will be highly probable to find vortex loops which
penetrate any element of the surface on which Q)\ # 0 but which still
encircle the perimeter of the gauge loop. This will clearly give rise to
an arealaw behavior for non-integer q. To see this heuristically, we
approximate phase I as a phase of essentially uncoupled vortex string
bits. (This is certainly not a very good approximation but has the |
essential feature we want. It is probably not difficult to produce a
better, but still tractable approximation.) If we ignore the terms which
contribute perimeter effects, then the evaluation of (3.8) leads to a
form like (2.45) and we have an area law for non-integer qH. When qHL
is an integer, the last term in (3. 8) has no effect, and the perimeter .
terms dominate in the exponent, Thus the different large distance

.belaviors of I‘q for non-integer q can be used to discriminate between
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phase VII and phase I. Notice that the monopoles played no
essential role in the preceding argument. (Patadoxieally, if is -
evidently the monopoles which cause tonfinement in the pure compact
‘gauge theory in three dimensions, 13 We comment on this below. )

We now wish to consider the m2 = 0 limits of (3.7). This will
put us in phases II 'or"'i"IT]’Z"(x-y model), or VI (pure gauge theory) depending
on how the limit is taken, Consider first the limit § - o x fixed (x-y

model limit), I is useful to rewrite the expression (3,7):

V/ ~
0 1 . . 2 2 .
L exp[-gg Zq (o k)D( - ki m )] E eX'pﬁ-ZTr Z|:KJM(:| )Jp(k)

, B
{ au Mv }
(3.9)
+ ﬁAHJ ﬁ‘x(j )AvJ v(k)] D(j - k; mz) - iZWZe' 'C‘Qv(jz)p(j‘;“ r ki mz);Af (ky o(nrl\:,«2 )i .

The last term a(mz) in (3.9) disappears in any 1rn2 - 0 limit and may be

ignored. From this expression it is clear that when p - « we obtain a

1t

non-zero conftribution to I‘q (or Z) only if AB B & As J & 0,7This-is just the state-
ment that fﬁé?'?“af? no monopoles in the d=3 x-y model. Hence, the numerator
of (3.9) becomes indepéndent:of Qh and Pq ~ 1 for all q. As in two
dimensions, this is a reflection of the fact that when B - » the non-integer
part of F iis frozen so that 8 = A A,
pv b M
Next, consider the limit x - 0, B fixed, the pure gauge theory. In

this limit the expression (3.7) is not defined, since.the Higgs field
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disappears from the problem. We must go back to (3. 5) and make an
additional gauge choice to render I"q finite, This is easily done, and

we find:

Z
1o .
T, - qu-exp [- 2524, ()a,00DG - k; 0)] z

{m} (3. 10)
exp [-ZTI'ZD(:] - k; 0)(rBm(k)m() +iA - ;Q(j)m(k))]

where m(j) = é . ]%(j) = i& . {(j) is the monopole density. This expression
has been discussed by Polyakov. 13 According to his analysis. we have

in this limit T" ~ e-A for all finite B and for both integral and non-integral q.
This result is due to the m6n0‘péles, 7Which do exist in this limit, interacting

witha the scalaxf' 4 Q according fo the qX‘pression (3.410),

~

Note in particular that D{j - k; 0) is power-behaved, so that the effect of

monopoles through the whole space is important for the confinement,
Nowsas we remarked above, this limit is rather singular, since,

when « = 0, the Higgs term in the Lagrangian disappears, But it is

(a)

precisely this term which gives rise to J)\ and which is therefore

responsible for the confinement of fractional charge in phase I. Further-

A

more, in the pure gauge theory I‘q ~oe “evén for integer charge, a
result which i clearly associated with the complete disappearance of
the Higgs cou‘pling;' since for any nonvanishing k, no matter how small,‘

I‘q ~ (K)P, according to the high temperature expansion, Nevertheless;
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we can get some additional insight into the structure of the pure gauge
theory vacuum by the following heuristic reasoning: as k decreases
for fixed B, it becomes easier and easier to make both closed and open
vortex strings. This is because the oscillations of the Higgs field are
less damped. (See e.g. (3.9)). But the easier it becomes to produce
vortex strings,the faster I‘q will decrease, since there will be larger
and larger fluctuations in the amount of vortex penetration through the
gauge loop. In the limit x = 0,' we can therefore think of the vacuum
as a state which is filled with vortex strings which cost o energy to
produce, and which cause confinement so that I‘q ~ e_A, The short-
comings of this description are evident, and the reader is cautioned to

bear them in mind,
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IV. FOUR (AND GREATHER) DIMENSIONS
The phase diagram in four and more dimensions is quite similar to
Fig. 3, the diagram in three dimensions , but the topological excitations
which induce the phase transitions are somewhat different. In four
dimensions, the dual form of the partition function in the periodic quadratic
approximation was given in reference 1: Eq. 47. After performing the

Gaussian integration on:thistéxpression, onerobtains

2 2 2
7Z = Z z e 20 kld (G K)+—Q (1)Q (k):ID(' -k:m 9§ (4.1
. xp [ ool oK) + 5@ (112 DG )
{Bpo’ ap}
where Qp = Achoand D is the four -dimensional lattice Green's function.

As usual, Z.is the partition function for a massive spin wave. The

0

topological current density is

J _ =ce (B +Aa -Aa) . (4. 2)
po poNw MV VIRY VR

In the theory with a Higgs particle of charge A, Blwtakes oniinteger
multiple values of A\, while aHL takes on all integer values. (Blw and a}.L

are simply the generalization to fouridimensions of the quantities appearing
in Eq. (3.5).) Recall the in’cerpreta’cion1 of the topological excitations
described by J 00 as closed two-dimensional manifolds and open manifolds
bounded by monopole current loops of density Qp. These closed and open

surfaces are obvious generalizations of the closed and open strings existing

in three dimensions.
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For finite mz, we expect phases analogues to the phases VII
and I of Fig. 3. To see this, we need to argue that the number of closed
or open two-dimensim al surfaces of total area A has for large A the
leading behavior epA. Consider for instance open connected surfaces.
Draw a link from the center of a plaquette to one of its neighbors.
Continuingzin this way it is possible to associate a connected path with
the surface. Sometimes the pathiwill be a single linear chain and sometimes
it will have branches. Moreover;‘ it is clear that in general there will
bemany such paths associated with a given sufface. On the other hand, up
to overall orientations, there is only one two-dimensional surface
associated with each connected path, by the abowve construction. Now, the
number of configurations of a random walk of L steps with q branches is
of order eHL (modulo powers of L), Assuming that summing over the
number of branthes does not change this leading behavior (except, perhaps,
to change the value of p) we conclude that the number of configurations of
openairfaces with area A, N(A), does not grow faster than e"'A for large A
(modulo powers of A), To get a lower bound on N(A), we consider adding
a single plaquette to configurations whose area is A with A>> 4, Then

N(A +1)is
N(A +1) = N(A) +DP(A) (4.5)

where P(A) is the average perimeter for an open surface of total area A,

It is obvious that P(A) does not decrease as A increases, S0 that p(A)= c >1,
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Using this in (4. 5) we conclude that N(A) = eCA, Since N(A) is bounded

from above and below by an exponential (modulo powers) its leading behavior
is exponential. As in three dimensions,” restriction to closed or open
surfaces is not expected to significantly affect the leading behavior of N(A).
The arguments for phase transitions at finite m2 now follow those
of the last section, balancing entropy and energy and looking for a
minimum of the free energy as a function of A. In region VII we expect
to find only very small closed or open surfaces, in addition to massive
spin waves. Phase I will contain arbitrarily large closed and open surfaces
plus the ubiquitous spin waves. From arguments analogous to those of
Section III, we do not expect any intermediate between I and VII. The
other phases also have properties which are direct generalizations from
three dinensions. Moreover, it is clear that this pattern of generalization
continues for d > 4,
We can now study ’the behavior of the gauge loop integral, I‘q. First
we note that for finite m2 and « very small, I‘q ~ e-A for non-integer g
and ]_“q ~ e_“’Pfor integerdg@ly just as in three dimensions. As before, this
result follows from a high temperature expansion using the four dimensional
version of (4.1). Next, we express I‘q in terms of the topological excitations.
We start with the periodic Gaussian approximation

L~ .
1 2
T =—-z 6 6 6 ex [Z—f-A, -9 +2ma
T % fx pOPLETZ B T IR )
. a B )
B Bt
—%(%e € A 8 +2nB )2+i2q9
\ pvB, B, B,Bp0 p o pv B
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where pr = —Bw; an integral multiple of X , and qu, as before, is a
"tangent vector ' of magnitude e¢/\. Proceeding with the integration in a
manner analogous to the discussions in two and three dimensions, we

find (cf, 3.7)

Z

T =

0 [ A e 2
q --Z—- exp [" ==ZD@H -k;m )qV(J)qv(k)]

2p

2,5,

—~

2 .2 2 - .
Z exp [~ﬁ::*n- ZJHV(J) +2m BZD(G - k; m )A )\J)\V(J )AMJHV(k)] (4.7)
v—pr

exp [-Zwiqu(j)(mzav(k) +A B IDG - K mz)]

where J v = BMV + Apav - Ava . As before, for finite mz, the leading piece of the

first exponent (invokving éi;(k')q v(] )) is proportional to the length of the gauge loop.

The last exponent may be written as an integral over the area enclosed

by the loop., Define an antisymmetric tenso b = A .
7 P e : Qo 79 Supor on—r

Then in the last term in (4. 7) we may sum by parts and make the replace-

ment

o 2 . : 2
q,()m" &) +AB () = Q, (e, A ma)raB (k) .

As in the discussion of the three dimensional case, it is useful to consider

the large mz limit where we find,‘
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Z
- e[ A mq 60 ]
r = Zexp[ 5% qu(J)

q

< -2 2

z exp [_gﬁ 5 ,,0) Jexp [ZﬁiEQO_T ()€ 5 2,2, )]
{2y Byl

Now the last exponent represents the net intersection of closed topological surfaces
with the gauge loop. Analogous to the three dimensional case, these

surfaces contribiite at most a perimeter effect except in those phases

where surfaces of arbitrarily large extent are likely, Thus, in phase VII

(the Higgs phase where topological excitations are small), we expect

r ~e P, However, in phase I'where we have a plasma of large closed (and

q
_A -
ependd) surfaces, I‘q e e for non-integer g and I‘q < e P for integer q.
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V. DBISCUSSION

It is perhaps worthwhile to summarize our picture of the different
possible phases in three dimensions ( Fig. 3). The limiting cases IV,

V, and VI correspond, respec’civel'y; to theories of non-interacting vortex
loops and vortices terminating on monopoles; of infinitely massive,
non-interacting spin waves,' and of the pure (compact) gauge theory.

Phases II and III are analogous to the phases of the xy model. 3 Wilson's
loop integral is one in both cases. (But recall the two paragraphs preceding
section I1.C,) In phase III, topological excitations are suppressed;

there are only small vortex loops. There is long range order of the

Higgs fields analogous to a ferromagneticz In phase II, there is an explosion
of large vortex loops which leads to a breakdown of long range order,

with the appearé.nce of a finite correlatien length (mass gap).

Phase VII is another low ’cemberature phase in which topological
excitations are relatively unimportant for the large distance structure.
This phase corresponds in the confinuum limit to the so-called Higgs phase
and appears to be a theory of a free, massive vector boson with only
small topological loops and dumbbells. The Wilson loop integral obeys
a perimeter law, i.e., it is proportional to the length of the loop, so there
is screening of arbitrary charge, At higher temperatures, there is a
transition fo phase I in which one finds a plasma of arbitrarily large
vortex rings and monopoles with strings which cause a kind of disordering
(see below). In this respect it is similar to phase II, but now the Wilson

loop integral is proportional to the area enclosed by the loop for the
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fractionally charged case. For integer charges, it again is proportional

to the perimeter, so there is no Higgs mechanism but there is "quark
trép:ping”, i.e. confinement of the elementary, f,,factional charges of the
theory. Our arguments indicate that, even in the fheory in which the

Higgs charge is not equal to the elementary unit charge (A > 1) the
dissociation of monopole-antimonopole pairs occurs at the same temperature
at which very large vortex lopps become likely. Hence we do not

expect any phase intermediate between I and VII. In higher dimensions,

the situation is expected to beranalogous to the three dimensional case,

and we have discussed the picture in four diménsions in some detail.

The Abelian Higgs model i8 the Ginzbdrg-Landau theory of super-
conductivity in which the Higgs field, ¢, is the electron pairing field. 21
Segments of the vortex rings of our model can be thought of as ipemétr':ations
of magnetic flux in a superconductor. It is worthwhile to relate our
results in three dimensions to some of the known properties of super-
conductors. In particular, we would like to know whether our model
exhibits properties of a Type I or a Type II superconduetor.

Recall that in a Type I superconductor, the pairing field coherence
length, £ , is significantly larger than the magnetic field penetration
depth, 6. This has the consequence that when magnetic flux penetrates
the medium it prefers to do so in an extended, continuous region. Since
<¢> = 0 at the center of a vortex, the entire extended region becomes

normal (disordered), and we have a complete breakdown of the Meissner
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effect. I a Type II superconductor, on the other hand, & is significantly
larger than £. As a result, there is a phase of the system as a function
of applied magnetic field which exhibits only a partial breakdown of the
Meissner effect. For a range of magnetic fields HC1 <H< ch, flux
penetration occurs in relatively thin well-defined tubes separated by
regions of superconductors in which <¢ > ¢ 0. Only for H > H_, is
there complete disordering with <¢ > = 0 everywhere.

To decide whether our theory represents a Type I or Type
II superconductor one might try taking the naive continuum limit of our
theory and identify parameters with the parameters of the Ginzburg-
Landau theory. However, this procedure will not result in a correct
identification of the physics. In defining our lattice theory, we have
formally frozen the radial degree of freedom of the Higgs field on each
lattice site. Hence, in the ':'cléssical” naive continuum limit, the
coherence length, £ , is infinite since ¢ is never zero. But there
is a dynamically generated radial degree of freedom (i.e. <¢(i) oG)> £ 1)
and thus, in general, a finite £ which, like the penetration depth, is
temperature dei)endent. It is these dynamically meaningful quantities
which will determine whether we have a Type I or Type ‘II system,

It is possible to determine £ and & as a function of the bare

parameters of our theory, P and k, by doing a renormalization group
calculation. In the absence of such calculations we can turn to the

arguments we have presented as a guide to the physics. Let us fix m2
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The paragraph beginning in the middle of page 49 should be replaced by the
following:

Now, in passing from region III to region I we encounter a complete
breakdown of the Meissner effect. The phase transition from III to II is, as we have
discussed, a topological transition, but it is also the usual Wilson-Fisher phase
transition, and thus in phase II we have a complete disordering of the system:
<¢> = 0 everywhere. This is clearly the kind of‘ behavior expected in a Type I
superconductor. Note that in these phases the vortices can have a long-range
disordering effect since they are the sources of a massless field (see, for example,
the B+ « limit of (3.1)). In contrast, the transition from phase VII to I does not
seem to signal a complete breakdown of the Meissner effect. The dynamics of
phase I is not the dynamics of normal scalar QED (for example, there is still a
massive vector field) and so it is not totally disordered. Flux penetration does
occur, but the flux will penetrate in thin tubes separated by regions where <¢> £ 0.
This is exactly what we expect in the mixed phase of a Type II superconductor.
Naively, one expects that complete disordering of the Type II system will appear in
our model only at infinite "bare" temperatures--somewhere in the elusive upper
right-hand corner of Fig. 3. To see this phase emerge clearly evidently requires a

renormalization group analysis.



~49- FERMILAB-Pub-77/105-THY
and vary k. Focus on walues of x near the separatices AB and BE.
Furthermore, let us discuss some large but finite region of the material.
For values of « which puf us in regions I or II we imagine restricting
ourselves to configurations of vortex strings (we may ignore the U(1)

" monopoles for this discussion) such that there is some fixed (albeit
almost arbitrary) net magnetic flux passing through the region under
consideration. 22 With these const:jaints, varying x so that we pass from
region III to Il or VII to I is similar to varying the external magnetic
field on a su'perconduc’cdr from a value which allows no flux penetration
to a value which does allow flux to peneirate.

Now, in passing from region III to region Il we encounter a complete
breakdown of the Meissner effect. The phase transition from III to II is,
as we have discussed, a topological transition, but it is also the usual
Wilson-Fisher phase transition, and thus in phase II we have a complete
disordering of the system: <¢> =0 everywhere. This is clearly the
kind of behavior expected in a Type I superconductor. Note that in these
phases there is a long range attractive interaction between vortex
strings with flux in the same direction and so it is easy to see why flux
penetration prefers to occur in a finite extended region. In contrast, the
transition from phase VII to I does not seem to signal a complete breakdown
of the Meissner effect. The dynamics of phase I is not the dynamics of
normal scalar QED (for example, there is still a massive vector field)
-and so it is not totally disordered. Flux penetration does occur, but

there is no tendency for the flux lines to congregate (the force between
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them is exponentiaﬂ,y damped) and so the flux will penetrate in more or

less randomly distributed thin tubes separated by regions where <¢> # 0.
This is exactly what we expect in the mixed phase of a Type II superconductor.
Naively, one expects that complete disordering of the Type II system

will appear in our model only at infinite temperatures--somewhere in

the elusive upper right-hand corner of Fig. 3. To see this phase emerge
clearly evidently requires a renormalization group analysis.

Finally, it is amusing to note that our analysis suggests that the
differenee in critical behavior between type I and type II superconductors
is just the difference between a system whose long range behavior is
described by a globally invariant theory (x-y model) and one described
by a locally invariant theory (Abelian Higgs model).

We turn now to a brief remark about the continuum limit of our
theory. Unfortunaf:ely‘éz it is difficult to be very precise about the
correspondence of our theories with the continuum theories in the absence
of renormalization group analyses. But we have seen that in two dimensions
our lattice discussion is quite similar to that of Callan %“ ?or the
continuum theory. Moreover, as explained in the fext, it is quite plausible
that at least some of the tppological excitations we have found exist in
the continuum limit of at least some of the phases which our theories
manifest. If these excitations do persist in the continuum, they have very
interesting consequences for field theories. For example, our analysis
suggests that the continuum compact Abelian Higgs model in four
dimensions may have soliton solutions of two types: 1) monopole-

antimonopole pairs connected by flux tubes; and 2) vortex rings,
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Moreover, in our theory it is clear that the two types of solutions are
related--whenever one has solutions of the first type, solutions of the
second type also exist. Nambu23 has recently shown that there are
solutions of the Weinberg-Salam SU(2) X U(4) gauge theory which repre-
sent monopole-antimonopole pairs connected by a flux tube, A completely
unjustified analogical leap implies that closed vortex rings may also
appear in the Weinberg-Salam model. This is discussed elsewhere.
Other problems deserving further consideration include a quantitative
derivation of the area law in phase I of the three dimensional theory,
and a more precise exposition of the relationship outlined in Ref, 1
between Higgs theories and models of spin-glasses, Of course, a

renormalization group analysis of the various phases of our theory would

be most interesting.
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FIGURE CAPTIONS

Fig, 1: Phase diagram for two dimensions (see Sec, II
for discussion),

Fig. 2: Behavior of Wilson's correlation function in two
dimensions in tkhe presence of a background field
(see Eqg. 2.18).

Fig. 3: Phase diagram for three and higher dimensions,
(See Secs. III and IV for discussion, )

Fig. 4{ Typical favored configuration of vortex lines between
widely separated monopoles of charge \ (in this

case A\ = 7)in phase I in three dimensions,
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