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ABSTRACT 

A class of U(1) invariant theories in d-dimensions is introduced 

on a lattice. The members of this class are characterized by a simplex 

number 1 I SK d which defines the interaction. s = 1 is the x-y model, 

and s = 2 is compact photodynamics. A duality transformation is applied 

to show that the compact U(1) invakiant theory with simplex number s 

in d-dimensions is the same as another theory of the same type in 

d-dimensions but with simplex numbers Z = d - s and whose excitations 

are integer valued. This dual theory describes the topological excita- 

tions of the original theory. These excitations are of dimension “s - 1. 
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One of the most interesting consequences of a theory with a compact 

symmetry is the possibility of excitations resulting from the periodic 

nature of the symmetry group. Examples of these topological excitations 

are instantons in non-abelian gauge theories, vortices in the classical 

x-y model (thought to describe vortex formation in superfluids), and the 

spin alignment interface of, say, the three dimensional Ising model. The 

nature of these excitations, in particular their dimensionality, is thought 

to depend only on very general considerations, such as the space-time 

dimensionality of the theory and the nature of the symmetry group. For 

systems with a global symmetry, and a’local order parameter, Toulouse 

and Klgman .t : have presented homotopy arguments leading to an expres- 

sion for the dimensionality of these excitations. However, these general 

arguments do not provide us with a detailed description of the interactions 

of these excitations. Moreover, when the theory has more than just a 

global invariance these arguments in their simple form are nolonger valid. 

In this paper we examine a class of U(l) invariant theories in arbi- 

tary dimension, d. Each theory in d-dimensions is parameterized by an 

index, s, 1 s si d, which defines the nature of the interaction. 2 
As s 

increases the U(1) symmetry becomes increasingly local. These theories 

can be transformed by a duality transformation into an equivalent set of 

theories, also in d-dimensions, whose fields are integer valued. This 

dual formulation can be used to construct the partition functions (simplest 

at low temperatures) which describe the interactions of the topological 
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excitations of the original, U(1) invariant theories. The dimensionality, 

I, of the excitations (points, lines, sheets, etc. ) is given by I = d - s - 1. 

The theories can be defined on a hypercubical lattice of dimension d. 

(The connection with continuum theories is described below. ) A simplex 

of dimension s is an s-dimensional element of the lattice. A vertex of 

the lattice is a simplex of dimension zero, a link joining two vertices is 

a simplex of dimension one, an elementary face (defined by 4 vertices) 

is a simplex of dimensions two, and so on. The theory with simplex 

number s has a spin 

U . = Exp i 8 
al, l l - Q&J Ql, . ..&. s-l;! ’ 

(1) 

associated with each simpl~gx of dimension s-l. The cvils define the 

orientation of the simplex, and j refers to a position in the lattice 

(lattice site). We take the 8’s to be antisymmetric under the inter- 

change of any pair of its indices. The interaction is defined by coupling 

together the 2s simplices of dimension s-l which border a simplex of 

dimension s according to the interaction 

‘(&j) = Expl (d-&s-i)! ,$u.‘++~,& 

(2) 

where A 8 = 
V yl-ysml;j - 8 yl-ysyi - e . -. 

yl'. e ysml;J-” 
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E is the totally antisymmetric symbol in d-dimensions, and a sum 

over the p’s, y’s and v is implied. 

The partition function is then 

(3) 

The integration is over the set of 8’s, - T< 8 I IT, and the sum in the 

exponent runs over all the simplices of dimension s, defined by an 

ordered set cy 1 r.*.Cr~ 
S 

contained in the lattice of dimension d. using (2)s 

we see that the exponent in (3) is invariant under a uniform rotation of 

the set of angles which border on a given simplex of dimension s-2, so 

as s increases fewer and fewer angles are involved and the symmetry -. 

becomes increasingly local (~Cnrnore properly, increasingly directional). The 

case s=l, which corresponds to the x-ymodel involves a true global symmetry. 

Using (2) in (3)) we see that the terms in the exponent can be written - 

as cosines of angle differences. For each such term we introduce into 

(3) the representation 

ep cos w = g In (P) ema , (4) 

so that there is one index, n, for each s-dimensional simplex. After 

integrating over the set of angles, o, and dropping some overall constants, 

(3) can be vritten as 

A n ) l (5) 
v Yl . . . y,;j 
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The product over x is a product over all s-dimensional simplices and 

the product over y is a product over all s-l dimensional simplices. The 

kronecker b-functions arise as a result of the integrations over the O’s, 

and tie together the indices belonging to all the s-dimensional simplices 

which share a common (s-l)-dimensional border. 

The h-function constraints will be automatically satisfied if we 

write the n’s in the form (6) 
n 

y1 ” “s’J = (d-j-,,! eyl.. . y v, bi. * . A A -T . * 
s: d-s-1 ,’ ‘1” * ‘d-s-&-f 

(Note that the n’s and the T’s can be taken to be antisyrnmetric under 

interchange of any pair of indices. This follows from (6) and the anti- 

symmetry of the 8’s. ) Inverting Eq. (4), we have an integral represen- 

tation for In(@), valid for integer n. Writing I,(p) = exp [an I,(p)] the 

integral representation can be used to expand the exponent in powers of n. 

Neglecting inessential overall constants, (5) can then be written in the form 

Z c Exp c 
CQ 

d, s = in> 
- P 

p21 (-1) CPU3 
1 

(d-s-l)! ‘yl-. . ys,v,A1.. . xdmsml 

AT 2P 
v A 1 . ..A 

-1 I 

. 
d-s-1:: 

(7) 

.,- 

The sum in the exponent runs over all the s-dimensional simplices, 

i. e. ordered sets of {y}, on the lattice and includes a normalization 

factor of I/S! . Comparison with expressions (2) and (3) shows that 

(7) has the structure of a partition function for a system in d-dimensions 

with simplex numbers 5 = d - s, but now the angles, T, have discrete 
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instead of compact support. In addition, a careful analysis of the steps 

leading to (7) reveals that the simplices of dimension g are actually 

simplices on the dual lattice which is obtained by translating the original 

lattice by half a lattice spacing in every direction. These simplices are 

in a one to one correspondence with the dimension s simplices of the 

original lattice. 

The Cp(p) in (7) can easily be deduced from the inverse of (4) and 

are essentially cumulants of integrals of powers of o with the weight 

.P cos 4J . For large p it is easy to estimate the Cp(p), and we find that 

C,(P) = l/P- Th is means that in the partition function we can expect sub- 

stantial contributions from-n’s that satisfy n2 ,< PO For large p 

C,(P) ; 1/p3, so even though (n 22 ) - p2, this term will be less impor- 

tant by one power of p than the quadratic term. Higher order terms 

will also be less important, and so.for large p it is a gpod .approximation 

to keep only the p=l term. We .shall do this in what follows, but it is 

important to note that none of our symmetry arguments depends on this 

truncation since all terms in (7) have the same form. 

Now, recall what the sum over {n) in (7) means. We are instructed 

to select a set of T’s which, through Eq. (6), define a set of n’s. We then 

calculate the contribution of that set of n’s to the partition function. 

Moving on to another set of T’s, we repeat the process. But the sum’in 

(7) [or (5)] is over different sets of n’s, and so we must be careful not 

to include two sets of T’s which give the some set of n’s. This is of 
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course the usual problem of gauge invariance in a functional integral and 

appears here because the theory defined by (7) has, for d-s> 1 a discrete 

local symmetry. In fact, the case d-s=2 corresponds exactly to the 

gauge symmetry of free photons except that the gauge fields, TX, are 

restricted to take on only integer values. 

We can rewrite (7) in a more illuminating form by using the 

identity 
iii! i2rkz 6(z-m) = 5 e , 

m=- 02 k=-a, 

where the h-functions here are Dirac 6-functions. Keeping only the 

p=l term in (7) and using (a), we have 

6n 
Y~-.Y,L~ 

- ; (EAT)‘. 

i2rK 
Yl’ - ’ Y, 

(EAT) 
Yl’ l l Y, I 

J 

(8) 

where we have suppressed the indices in EAT [see Eq. (6)], Here the 

sum over (K} is sum over a set of integers which are labelled by an 

unordered set of indices, {y)* To avoid overall infinite’,factors, the 

sum over the K’s can be restricted by a gauge condition so that sets of 

K’s which differ from each other only by a total derivative are not 

included in the sum. In addition, K’s whose labels differ from each 

other only by permutations are not independent, and can be taken to be 

antisymmetric under the interchange of any two indices. 

(9) _. 
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Finally, we want to rearrange the last term, K* EAT by collecting 

together coefficients of a given T. This is easily done and the last term 

becomes 

22 i2mK* (EAT) = Z -i2r e 
Yl’ l l YsJVJ x1. l ’ Ad s  1 

- - 

A K 
v yl...ys;j 

3 
T, 

’ l *  x  d-&J 

(10) 
1 

We can now trade in the sum over the set of integers {K} for a 

sum over a set of integers {J) defined through (10). Now the J’s are 

not all independent, but mu;t satisfy the representation implied by (10). 

It is easily seen that this means that 

A J xi Al...A .=O, d- s- i’J 

where Xi is any one of the set of indices {A}. The partition function 

can therefore be written 

bn 
y;j 

2 
‘y,v,AAvTA;j - ,2ri J 

X;j TA;j ’ , f 
(12) 

when y and A stand, respectively for the sets {y,* . o y,} and 

+-Ad s ,>, - - and the prime denotes a restriction to integers defined 

through (1 O), and therefore satisfying (ii). We can now perform the 

functional integral over the n 
y;j’ 

and we will end up with a partition 

function which has the form 
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‘d,s , = z;)s(/3) f Exp 
{Jl 

(13) 

where Z(O) is a factor independent of J. The precise form of the 

interaction D XJxI (j,j') depends on s and d, but we can read off several 

general features from (13). First, recall that the J’s are integers and 

satisfy (12). Therefore, unless ,? z d--s + 1, we cannot have isolated 

point excitations. In fact, it is easy to see from (11) that the 

dimensionality of allowed excitations is B -1. So, for instance, “s = 2 

allows lines which extend to infinity, or close on themselves (smoke 

rings), E = 3 allows infinite sheets or closed two dimensional manifolds, 

etc. These conclusions are consistent with the models which have been 

studied previously. In particular, it is known that the 2 and 3-dimen- 

sional x-y models have point and line singularities, respectively, I,3 

and that the compact abelian gauge theory has point singularities when 

d = 3 and line singularities when d = 4. 4 Of course, in the general case 

some of these configurations may be ruled out by energy considerations, 

but that depends more particularly on the form of D. 

Next, since (13) is a good approximation to Z at low temperatures, 

these topological excitations will in general be the relevant ones in this 

regime, aside from non-singular excitations such as spin waves (or 

their generalizations). The partition function of the spin-wave like 

excitations is the factor Z (0) in (13). Since one expects in general that 

a chemical potential term for the allowed excitations will appear in (13), 

the spin wave-like oscillations could well dominate at temperatures 
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below those necessary to excite the J’s. These excitations just repre- 

sent the effect of decompactifying the symmetry. This can be seen by 

noting that if all the J’s are zero, then all IX’s in (9) can be set equal 

to zero, and we would then have the theory which would have resulted 

had we kept only the quadratic forms in the 8’s, and let - ao<B cm. 

Another way to say this is that with all the J’s = 0, the TA1-s .would be 

allowed to vary continously from -co to w . - For example, if Z = 2 we 

would just have free photons. Whether in a given system there actually 

is a non-compact phase could depend on the details of D, but it is a 

scenario allowed by the form (13). 5 

There are two more comments to make about our result. 

First, the result (13) is properly gauge invariant. The reason -. 

is that although the specific form of D may depend on how we 

defined the functional integral in (12), the J’s are restricted to satisfy 

the correct condition to guarantee that any allowed configuration of J’s 

will give a gauge invariant contribution to Z. For instance, for “s = 2, 

the J’s satisfy A J = 0. 
PP 

Second, it is important to stress that even 

though we have formulated our approach on a lattice, there is well 

defined connection with continuum theories. One may worry that 

because there is no spatial continuity on a lattice, it is not possible to 

define topological singularities. Strictly speaking, this is true. How- 

ever, a careful study of the d = i x-y model (s = 1) reveals that the low 

temperature partition functions of the lattice and of an analogous con- 
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tinuum theory are identical, and that the integer valued excitations of 

the lattice become in a well-defined way the vortices of the continuum. 6 

More specific features of the theories described here will be 

discussed elsewhere, as will the extension of our method to non- 

abelian symmetries. 
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