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ABSTRACT 

We discuss the construction of instanton solutions to gauge theory 

for gauge groups larger than SU(2) and show that this may be done either 

by embedding SU(2) in the larger group or by embedding the full O(4) 

group. In the latter case Field configurations corresponding to instantons 

of positive and negative winding numbers are obtained. 
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I. INTRODUCTION 

Instanton solutions in gauge groups larger than SU(2) may be obtained 

from those in SU(2)’ by considering all inequivalent embeddings of SU(2) 

G 
in the desired larger group. Since the solutions in SU(2) are obtained by 

mapping the space time algebra of O(4) onto the internal symmetry algebra 

of SU(2) the solutions obtained by the various embeddings are then those 

of mapping O(4) onto various SU(2) subalgebras of the larger algebra. 

In all of these cases the field tensors obtained are either self-dual or 

antiself-dual corresponding thus to field configurations with positive 

or negative winding number only; one does not obtain a mixture of these. 

The action integral is then given by the absolute value of the winding number 

multiplied by a constant. This procedure of embedding SU(2) into larger 

algebras is discussed thoroughly in Ref. 2 to which we refer. 

We wish to point out in this paper that a new class of solutions may 

be obtained in higher groups by mapping the space time O(4) algebra onto 

full O(4) = SU(2) x SU(2) subalgebras of the larger algebra. These solutions 

do not lead to self-dual (or antiself-dual) field strength tensors and hence 

can accommodate mixtures of positive and negative winding number field 

configurations. 

In section II we discuss a general form of the solution to the gauge 

field equations. The case of the gauge group SU(2) is then briefly discussed 

in section III. In section IV we discuss in general the case of gauge groups 
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larger than SU(2) and in section V we specialize, as an example, to the 

group SU(4). We then discuss the general case further in section VI 

and end with some general remarks in section VII. 

II. A GENERAL FORM OF THE SOLUTION 

Let G be the gauge group with generators represented by the matrices 

Xa> a =i . . . q such that 

rAa, A”] = i fabcAC c . 

Let Aua be the gauge field potentials and define the matrix 

A 
CL 

= A&A~ . 

The field strength tensor then reads 

I? = “,A - avA;i 
C 

A 
PV v P 

, A v] 

and the equation of motion becomes 

DF 1-0 
P P c”’ FPvJ 

(2. 1) 

(2.2) 

(2.3) 

(2.4) 

As an ansatz we consider the following general form for the solution to 

4 
Eq. (2.41 

(2.5) 
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Here 6 is a scalar function of x 
I-L’ 

and Q are a set of six matrices 
PV 

arranged in the form of a second rank antisymmetric tensor. This is 

possible if these six matrices satisfy the algebra of the group O(4), namely 

rl ’ ‘1,x- 1 [ 
= i b 

PV pqjh 
- 6 

pxqYK 
- 6 

YKQJIX 
+6 vXvpK . 1 

(2. 6) 

For in this case their algebra is not changed under space transformations 

over the indices in, v., 

Furthermore, if n 
PV 

satisfy the algebra of O(4) the equation of 

motion Eq. (2.4) is satisfied provided that: 

either a24 = 0 

or a24 = A $3 . 

For, using Eq. (2. 5) in Eq. (2. 3) and making use of Eq. (2. 6) we obtain 

F = r) aa In4 -n 
)Iv WC? Y a ",ana, In 4 

+ 6 
[ )lvqe 

-6 rj 
PP a” 

-6 
WV PP 

+6 
4 4 pv 

x (aaln 4) (apln 44 

and the equation of motion becomes after using Eq. (2.6) again: 

DF =-r) 
P IIV 

vQpaa(--$a2 m)] = 0 . 

(2.7a) 

(2. 7b) 

(2.8) 

(2.9) 

This is clearly satisfied if either Eq. (2. 7a) or (2. 7b) is satisfied. Thus, 
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the problem of finding a set of exact solutions to the field equations of a 

non-abelian gauge theory is reduced to constructing the matrices n 
:,ocu &u p ” 

satisfying Eq. (2.61 and solving Eqs. (7a) or (7b1. A generalAt Eq. (7a) is 
‘t 

N 2 

m=i+ 1 (2.10) 

i 

,x4Ri,2 > x tRi.-. 

where x, Ri are four vectors in Euclidean space; and pi are arbitrary 

parameters. A solution to Eq. (7b) is also known:3 

4 = hjj;ydF(i +y’(x -aj2)-’ 

where y and a are arbitrary parameters. 

We turn now to the problem of constructing the matrices n in G. 
P” 

Let us recall that if we define: 

‘)12 
= J3 qO1 = Ki 

‘131 
= J2 no2 = K2 

n23 
= J1 ‘103 = K3 

then Eq. (2.6) becomes 

[Ji, Jj] = i cijk Jk 

[ Ji, K~] = i eijk Kk 

LKi’ S3 
= i c. J 

1Ik k 
- 

(2.11) 

(2.12) 
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Furthermore if we define 

Then 

S = $(J+K) ir .A L=$(J-K) . - *.%I 

[Si, Sj] = i Eijk s 

pi, Uj] = i hijk Uk 

[Si’ y] = 0 

showing the well-known fact that O(4) E SU(2)@ SU(2). 

III. THE CASE OF THE GROUP G = SU(2) 

The problem of constructing n 
P” 

when G = SU(2) is easily solved. 

In this case the generators of SU(2) may be identified either with the 

matrices S above and the B matrices set to zero, or are identified with 

the L>matrices and,LsSet to zero. In other words we may have either one 

of two possibilities: 

i ) Z$ = o/ 2 u = 0 

ii)>=,92 s =o 

where zare the three pauli matrices. 

The first choice implies the identification 

(2.13) 

(2.14) 

(3. la) 

(3. ib) 

. . 
J = K =92 (3. 2a) 
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whereas the second choice implies the identification 

J=- K=z/2 . 
d * 

These two mappings of O(4) onto SU(2) lead to the t’Hooft instanton 

solutions. 
4 

For if we denote byn and T7 
CL” II” 

the matrices of the mappings 

(3. 2a) and (3.2b) respectively then we have 

A =-n a lne 
P PVV 

x =-T a In f$ 
Ir PV” 

and if we write these in component form we have 

(3. 2b) 

(3.3a) 

(3. 3b) 

Aa = .qa a lno (3.4a) 
P I*v v 

-a A =-Fa a lnd, (3.4b) 
)I I1y y 

a -a 4 
where n , rl 

PY PV 
are the self (anti-self) adjoint tensors given by t’ Hooft 

and 6 is given by Eq. (2.10). 

Going back to the forms (3. 3a) and (3.3b) we find that because of 

Eqs. (3.2a, b) we have 

e 
pvA0fl oa 

- 6 
I cYpq VA 

4-6 
aAqpv 

Jr6 
(Yv "$1 

and 

E 7 pvxo Dry 
z-+6 ij 

[ up VA t6 ij ah pv i-6 CrY 7 XcI . 1 

- 

(3.5) 

(3.6) 
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These in turn lead to the fact that the field strength tensors F 
II” 

and F are antiself-dual and self-dual respectively for any 4 that solves 
PV 

Eq. (2.7a). For the solution of Eq. (2. 7b) the reverse is true. Thus in 

these cases the winding number is either a negative integer or a positive 

integer with the action integral given by a constant multiple of the absolute 

value of this number. In the case of Eq. (2. 7a) the solution (3.4a) has 

winding number -N and that of Eq. (3.4b) winding number +N (N being 

the number of distinct terms in the sum defining 4 ). 

IV. GAUGE GROUPS LARGER THAN SU(2) 

It must be clear from the above discussion that, in a gauge group G 

larger than SU(2), the construction of the matrices n 
PV 

may proceed by 

identifying either ,S-or IJ- with the matrices satisfying any of the SU(2) 

subalgebras of the larger algebra G and taking the others to be zero. 

Thus if Xi, i = 1, 2, 3, are three matrices among the generators of G 

which satisfy an SU(2) algebra we may take either of the following two 

possibilities: 

s’ = A u = 0 --A (4. la) 

u = A s-=0 . (4. Ib) IT.-- - 

The matrices n )Iv (FKy) thus obtained would lead to antiself (self) 

a 
dual field tensors as before. The set of fields A 

P 
have only three nonzero 

members for values of a corresponding to the three Xi matrices chosen. 
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The above procedure is precisely what is followed in obtaining 

instanton solutions via all inequivalent embeddings of SIT(Z) in G. The 

classification of all these possible solutions has been done in Ref. 2 to 

which we refer for more details. 

It must be apparent from our presentation, however, that the above 

class of solutions in G is not the only one if the algebra of G contains an 

O(4) subalgebra. For one may construct a new set of n matrices in 
PV 

this case by identifying S and zwith this O(4) subalgebra. Thus if the six 

matrices u. I’ i q 1, 2, 3, and yi, i = 1, 2, 3, among the generators of G 

satisfy the algebra of O(4) f SU(2)@ SU(2): 

[ 1 u. 0. I, J = i fijk uk 

[ 1 m. c. 1’ .l = 0 
(4.2) 

then two identifications are possible: 

s=o k= y (4. 3a) 

s=y - - K= u (4. 3b) 

leading to a new set of n matrices and hence a new class of solutions. 
PV 

In these two cases we have 
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either J =z+y K = q-y - - (4.4a) 

or J = a+; ,,.s. .-.e - K = y,- L (4.4b) 

leading to field potentials A a with six nonzero members for values of a 
P 

corresponding to the six generators di and yi of G. In these cases since 

J and sax-e identified with different matrices the relationship of Eqs. (3. 5) 

and (3.6) are not satisfied and hence the field strength tensors are not 

necessarily antiself (or self) dual. 

These solutions may therefore correspond to a mixture of positive 

and negative winding number field configurations. 
+,s 

As an example of a group, aside from O(4), that contains an O(4) 

subgroup we take SU(4). Our discussion will then center on it as an example 

for the procedure outlined above. The group SU(3) does not contain an 

O(4) subgroup and hence the only solutions we know in it are those obtained 

by all inequivalent embeddings of SU(2) in SU(3) as discussed in Ref. 2. 
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V. TBE CASE G = SU(4) 

The generators of SU(4) may be represented by the fifteen 4 x 4 

matrices given in Appendix A. The matrices ci = 4 A., i = 1, 2, 3, generate 1 

an SU(2) subalgebra and commute with another SU(2) subalgebra generated 

by f Ai3, +Xi4 and I/& X15 - 1/2fl Aa which we denote by y i’ y2 and 

y3 respectively. Thus a construction of r) 
)Iv 

may proceed now by identifying 

either S or U-with either the o or y matrices above. Thus the two 
- -- 

possibilities 

J =z+y- K =z-y 

J&= a+y K = L- % 

(5. la) 

(5. ib) 

lead us to two different field configurations. These are: 

A.+ = 
1 * a0 In 4 CL- y ). -“-+I 

(5. 2) 

Ao* = r(ow-~)a jb 4 

where the + and - signs correspond to the two possibilities (5. la) and (5. lb) 

respectively. 

If we now take the simplest solution to Eq. (2.7a) namely 

$ f+ti R2 2 4-X 2 2 4-x 2 = 
R2 

; = x 
1 2 i-x 3 0 +o I (5.3) 

we find for the potentials of Eq. (5. 2): 
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A.+ = -‘P 
2 

1 R2(R2 + p2) C 6’ qk x.(~+Y)k~xo(u-y), 1 1 1 

Ao* = F WP2) 
X’(U-yl , 

R2[R2 + p2) - - - (5.4) 

Furthermore 

A+ = -2p2 
i R2fR2 + #I L W 3 k 

FE. X.” +Xui + cjkXjyk -x y. 
0 1 3 

= A.(O) .x,(y) 
I I (5.5) 

A+= 2P 
2 

0 (x - u-x. .,) = A (@+x (y) 
R2(R2 + @') - - - - 0 0 

where Ai (Ki”)) and AoCO) (~o’y)) are the field potentials one would 

obtain in an ordinary embedding of SU(2) in G. A to) is the one obtained 

-(VI. by the identification S-= gU,= 0 where as A 1s obtained by the identification 

S= 0 U = y. This A (u’) 
-- has winding number minus one and A -(‘) winding 

number plus one. Since, however, theLand y matrices commute this 

implies that the total winding number for A 
+ 

is zero. For then we have: 
1 

F +=F (0.) + F (Y) 
PV IIV PV 

where 

and 
xc 

where F pv =&(YpFcYp. 
Thus as expected 

E.:k (0) = _ F (4 
PV P 

$ (Y) = +F (Y) 
IJ” )Iv . 

F;Y” = - Fpy(u) ~~~ ;y) f F + . 
PV 

(5. 6) 

(5.7) 

(5. a) 
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The winding number is clearly however: 

q = 2 Tr F~~F~yd4x = 0 

since 

[ 

F (Q, F (Y) = 0 

P P 1 

(5.9) 

(5.10) 

Moreover, since 

Tr FpY(o), FTcIV (‘) 1 = 0 
i 

(5.11) 

which follows from the A matrices generating SU(4) we obtain for the action 

integral 

+F 
+4 8lT 

2 
s = 1 Tr 

4g2 
F dx = -x2 . 

I1v w*v g2 
(5.12) 

The potentials A 
P 

- have the same properties since the roles of the 5 

and y matrices are only interchanged. 

Thus in both cases we have a superposition of two instantons of winding 

number plus one and minus one. 

We note that had we made the identification S = c + y u=o 
-..a.--.% - - 

(or ,S- = 0, U, = c-+,x) which are possible we would have obtained a winding 

number minus two (two) instanton with the same action integral as above 

and whose field strength tensor is antiself (self) dual. This would then 
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be the sum of two winding number minus one (one) instantons (pointed 

out in Ref. 2) and would be another one of the possible embeddings of 

SU(2) in G. The embeddings of the full O(4) algebra of Eqs. (5. la), (5. Ib) 

lead then to a sum of instantons of positive and negative winding number. 

For the most general form of 6, namely 

N 2 

’ = ’ +iTl ,x:R,~ 

(5.13) 

the potentials A jo) and xll(‘) correspond to instantons with winding number 

-N and +N respectively. However A ’ has winding number zero and the 
P 

action integral for A 
+ 

is %rr21g2 . 2N. A - has the same properties 
P P 

although the roles of the zsnd y-matrices are interchanged. 
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VI. CASE OF LARGER GROUPS 

The same procedure as above clearly applies for any large group G 

containing an O(4) subgroup. In the general case the e-and y matrices 

may correspond to embeddings of SU(2) in G of unequal indices m and n. 

(For SU(4) above bothz and y correspond to embeddings of SU(2) of index one). 

In such a case and for the choice of 4(x) as in Eq. (2. 7a) the field potentials 

A (a) 
P 

and -,p(y’ which are obtained as in Eq. (5. 4) would carry winding 

numbers -mN and nN respectively. In this case the full field potentials 

A +=A t”’ +A (y’ and A - =;i t”’ +A (Y’ 
P P )I )I P P 

have winding number (n - m)N 

and (m - n)N respectively whereas their action integrals are the same and 

equal to 2n2/g2(m +n)N. Thus in general A 
+ 

and A - 
P )I 

will have opposite 

winding numbers whereas they have the same action integrals. 

Most inequivalent embeddings of O(4) into any larger group G 

may be inferred by considering all inequivalent embeddings of commuting 

SU(2) subgroups into G. The values of n and m above are then the indices 

of these SU(2) embeddings and one may use their (ordered) Dynkin characteristics 

to classify the various embeddings of O(4). Thus the pair (0, y) = (m, n) 

will denote an embedding of O(4) with winding number (n - m)N (where N 

is the number of distinct terms defining 6(x)) whereas (0, y) = (n, m) 

will have winding number (m - n)N. For both field configurations however 

the action integral is 8rr2/g2 (m + n)N. 

The general classification of all inequivalent embeddings of O(4) 

in larger groups is discussed in Ref. 6 to which we refer. We give in 

Table I the values of m and n for some groups, 
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VII. CONCLUSION 

It must be clear from the forms of A 
f 

P 
in Eq. (5.4) that the constituent 

fields AP(@ and xP(‘) need not have the same space time dependent functions 

4. For what is important here is that the 2 and y matrices commute. 

Thus we may write general solutions of the form 

A+ 
)I 

= Apta) (6,) + ym2, 

and 

A- = x (4 
P 

~ (4,) + A y 4,) 

where b1 and b2 may be different sums of the form of Eq. (2. 7a). In 

this case if cr, y correspond to embeddings of indices m and n respectively 

then the winding number for A 
+ 

is nN 
P 2 

- mNi and for A -, mN1 - nN2 
)I 

whereas their action integrals are the same and equal to &r2/g2(nN2 + mN1). 

Thus in a gauge group G that contains an O(4) subgroup our construction 

allows for any arbitrary mixture of instantons with positive and negative 

winding number ~ The action integral is always 8rr2/g2 times the total 

number of such instantons whereas the total winding number is the algebraic 

sum of the winding number of these instantons. 

These solutions correspond to local minima of the action and have 

vanishing Euclidean energy momentum tensor just like the usual solutions 

obtained by embeddings ;of SU(2 ). FOS consider a field of the form 
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A+ = &y (4 1) +~p(%b2~ . 
P 

Since d and $ commute we have 

F + = Fpv(%,) + +j2) . 
CLV 

Furthermore by virtue of Eq. (5. li) we have 

s+ = + 
g 

FpV(u)(~JF~V(u)(4i) +~~~Y’(m,,~~~‘Y’(d2)jd4x . 

Now it is well-known that by using the il nequality 

/ 
(FllV* *FPV)d4x 2 0 

we can show that 

and that 

i 
jj7 (Y) 

pv ($2jF pv(u’(42) 2 $ InI N2 
g 

where if b1 and $2 are of the form of Eq. (5.13) with N1 and N2 terms 

respectively, the bound is saturated. Thus it is clear that in general 

S+z $(frnlNi + InlN2) 
g 

- 
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and our solutions saturate the bound. Hence a solution characterized by 

the numbers m, n, Nf and N2 which would have winding number 7 = nN2 - mN* 

is topologically inequivalent to another solution with the same net winding - 

number 0 but different indices n and m as they are both local minima 

around two different values of the total action. For example the field 

configuration of one instanton and one anti instanton gives a local minimum 

of the action at value 2 * 8n2/g2 although its net winding number is zero. - 

In fact one can see easily that for any value of the action 8rr2/g2 * K there 

are K + 1 topologically inequivalent local minima corresponding to all 

possible O(4) embeddings that we exhibit. 

Furthermore it is useful to point out that the euclidean energy momentum 

:; 
tensor Q = $ Tr (F - +Fpa)(F + F,“) 1 a so vanishes for our solutions 

PV w (YY 

by virtue of Eq. (5.11) and that this fact as well as the value of the action 

integral are independent of the positions of the poles in the functions 4, 

and o2 of Eq. (5.13). 
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APPENDIX 

The matrix representation for the generators of SU(4) are taken in 

the text as: 

h4= (,!;i) x5 = (=,iA8=$,-,,) 

X6 = ([i:,) x7 = (f;pi5=&(;;;-i) 
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+ Footnote : 

In general O(4) has two topological invariants, namely 

qi = d4x Fy6 FY6 
P” 4 EpruP 

and 

q2= d4x E FY6 Fe 
)IvapEy6u5 )I” @3 . 

However, q 2 is not an invariant of a larger group in which O(4) is embedded 

and hence may not be used to classify pseudoparticle solutions in these 

larger groups. 
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SO/M6 
TABLE I./\Embedding of O(4) into Some 

Groups G. [m, n are indices for the 
possible embeddings of two commuting SU(2) groups] 

m n 

1 1 

1 1 

1 4 

4 i 

1 

1 

4 

4 

10 

1 

1 three ways 

4 

1 

4 

1 

10 

1 

4 

1 

4 

2 

4 

10 

1 

1 three ways 

1 

4 

2 

4 

4 

1 

10 



SU(7) cont’d 

SUG3 1 

10 

4 

20 

1 

1 

2 

4 

4 

8 

1 

1 

10 

10 

2 

4 

10 
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4 

10 

1 

20 

1 six ways 

2 

3 

4 

4 

2 

4 

1 

8 

10 

1 

2 

10 

10 

4 

- 



SU(8) cont’d 

E(7 1 

10 

20 

1 

20 

4 

35 

1 
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1 

4 

1 

and many others 

10 

1 

20 

4 

20 

1 

35 

1 many ways 

1 

4 


