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ABSTRACT
Three-particie rapidity distributions have been studied for different
charged multiplicities in pp interactions at 200 GeV/c. Apprapriately de-
fined semi-inclusive three-particle correlations are found to be sufficiently
small, Teading us to conclude that the three-particle density can be expressed
in terms of one- and two-particle densities. For events with more than four
charged particles, a superposition approximation for the three-particle den-
sity holds surprisingly well. This approxtimation enables us to express all
higher order repidity distributions in terms of one- and two-particle dis-

tributions alone.
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1. Introduction

After the first observations at the CERN Intersecting Storage Rings
(ISR) of a strong, short range rapidity corretation among the products of
pp co]]isions], considerable effort, both experimental and theoretical, has
been devoted to this field. There now exists an abundant amount of Titera-
ture2 about two-particle correlations in a center-of-mass energy interval
¥s =5 to 60 GeV. A convenient, yet powerful framework, consistent with
existing data on inclusive and semi-inclusive two-particle correlaticns has
emerged according to which particles are assumed to be produced in uncorrela-
ted, independent low multiplicity cTusters3. Simple assumptions abgut the
manner in which these clusters decay, together with their mean charged multi-
plicity, are then sufficient to explain the correlations observed in multie
particle final states. 1t is clear that a study of three and higher order
distributions is the next natural step towards understanding the dynamics of
correlations, in general, and the role these clusters play in multiparticle
production, in particular. However, few experimental studies of three-
particle correlations have been made so far.4 In this report we present re-
sults on three-particle distributions using a samplie of 6,889 inelastic
events from Z00 GeV/c proton-proton interactions chtained in an exposure of

the 30-inch hydrogen bubble chamber-wide gap spark chamber hybrid system5 at

Fermilab, Further details’ about the datd used in thit study and roculte

on two-particle correlations have alreaty been published.7

2. Three-Particle Correlations and their

Approximate Representations

In the following we integrate over all transverse momenta and label

a particle's position in phase space by its rapidity alone. OQOne-, two- and
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. 7, {0,0,0)
Cn(O,U,U] is quite swall compared tu, for example, n(n=1}{n-2} * for all

n
charged myltiplicities studied. In fact, we have found Cn(1,2.3) to be guite
small over the entire rapigity range -3 y],yz,ya-f 3. This important ob-
servation is in complete agrcement with the results of Ref, 4.
The smaliness of the three particle correlation Cn implies that the
semi-inclusive three particle densities can be expressed in terms of the one-

and two-particle densities, Setting Cn(1,2,3) = 0 in equation {4) and

solving for 'h(]’2’3) gives:

a(1,2,3) - -‘i‘—l-j;!éﬂ-ﬁ o(1) 2,(2) 0 (3)

e

(n-1)(n-2) [0, (1) € (2,3) +

4

6y(3) € (1,27 . (6)

A detailed comparison of eguation {6} with our data for different charged
multipiicities, over the range -3 2 Yy:¥ 1Y 23, is deferred to the next
section,

In addition to equation (&), we have tried to find cther more general
ways of expressing pn{i,j,k) in terms of pn(i,j) and rh(k). it may be noted
that questicns of a similar nature have been well studied in the classical
theory of fluids.8 There one often ecploys a superposition approximation
for the higher order distribution functions of molecules in a fluid in order
to get a closed integral equation for ihe radial distribution function.
According to this approximation, the correlation between a group of h parti-
cles can be reduced to a superposition of the correlations botween smaller

constituent particle groups. At whal order such an approximation may be used
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3. Comparison of Approximations for
f‘n—(‘ '233} with Dats

In Figures 1{a-d) we show the three particle density function for
8-prongs, with Y fixed (within 0.5 ynits) at -3.0, -2.0, -1.0 and 0.0 res-
pectively, while Yo and yy are allowed to vary over the range -3 = ¥pi¥3 < 3.
The density pn(1,2,3) for positive values of ¥y can be obtained by symwetry.
This encompdsses about 95% of the total phase space available for the three-
particle semi-inclusive rapidity distribution considered here.

Figures 1{a-d) reveal: (i) In the region -2 -~ yi,j,k < 2, rg(1,2,3}
depends strongly on the pair rapidity differences Iyi~yj], while it is insen-
sitive to the sums |yi+yj|. 1t has maxima at the positions yi=yj, and de-
¢reases rapidly with increasing iyi'yjl; (i1) ©n the other hand, in the re-
gion fyy 5y
(at least in part) to energy-momentum conservation and diffraction effects.

> 2, po(1,2,3) displays a strong dependence on |y.ty.l, due
8 LN

It will be shown that these features can be understood in terms of relatively
better known two-particle correlation functions. Tn Figure 1 a set of straight
lines have been drawn between the data points representing each of the
approximations tof3(1,2,3). Equatien (6) is shown by dashed lines, and
equation (7] by solid 1ines. For convenience, equation {6} is shown only
when it differs noticeably from equation (7). We observe that botn approxi-
mations repfoducc p8(1,2,3) remarkably well., Only when the rapidities of
two or more particles are similar do we find scme hint of disagreement at a
few percent level. This observation is in accord with the idea that the
superposition approximation breaks down at small distances'8

Figures 2{a-d) show the three-particle density function for 4-, 6-,

10-, and 12-prong events respectively in arbitrarily selected regions of
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phase space. In all cases, but the 4-prongs, the agreement beiween the data
and their approximate represcntation is qood, apart from the mincr devialions
mentioned above. As is clear from Figure 2(a), both approximaticns fail com~
pletely in predicting the magnitude as well as the shape of [h(1,2,3) for
events with four charged particlesi;1the final state. This interesting ob-
servation implies the existence of genuine three-particle correlations in
these events, a conclusion not totally unexpected since diffractive excita-

tion is a dominant production mechanism at Tow multiplicities.

4. A Representation of the General h Particle
Semi-inciusive Distribution Funt¢tion

in the previous section we have verified the validity of the super-
position approximation. We now use it to construct a general h particle
semi-inclusive distribution function for an n particle final state. Let
Yya¥p ooe Y be the rapidities of these particles. We shall assume that the
total differential cross section has the fo]lowing representation:
dg Coon

. :
= fly,.y;) F(¥}, (8)
Wz - Wy egmr TR

where Y ~ gh/s.  This form may be considered as a generalization of the multi-
peripheral model (!PM) since in equation (8) the correlations between al)
pairs of particles have been considered, instead of just the ncarest neighbor
terms usually considered by MPM. In the following we will attempt to cal-
culate the basic two-particle function f(yl‘yz) introduced in equation (8)
using single-particle and two-particle semi-inclusive cross sections as

input and making use of the gbservation that the three-particic density

satisfies the superposition approximation.
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Using equation (B) we can easily derive the n-particle production cross

section, and single-and {wec-particle semi-inclusive distribution functiohs:
’

- .4 :
“n T RES W e Flygoyy)d FOV), (9)
d\In ]
LR A = R PR A AR (10)
do 1 ;
o oneg(12) = g T gy gty e dy O flgg) PO Q)
Letting f(yi,yj): e'x(yi’yj), and differentiating equation (11), we obtain

an (1.,2) XYy s¥s)

LA Ry 4e pn(],g)
My ¥y

axly, ,y3‘)

- r dy3 ay]

0 (1,2,3), (12)

where the three-particle density pn(l,2,3) is defingd in a manner similar tc
equations {10} and {11}. If we assume the superposition approximation,equation

(7)sfor the three-particle density, equation {i2) can be rearranacd to give

v AR
3y, oyl 2] o
_ n(n-2) ! dy. BX(YlsyJ) SREIND Pn(j.1} (13)
(-0 o (1) (2 T

. ax(yy.y5)
Equation (13) is a simple integral cquation for the function ——m7m8 —— °
Ay
1

After replacing the integral over ¥; by a sum over discrete values of y. on the
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right hand side, it is casily reduced tg an algebraic equation. Using data
[ ]
for single-particle and two-particle semi-inclusive densities, a solution for

U Y

=y is readily obtained. Remembering that x(y},yg) is necessarily a
1

symmetri¢ function of ¥ and Yg1 ONE tan determine it up to a constant if

2%
ay]

order semi-inclusive distribution function using equation (8).

(y},yz) is known. Knowing x(yl’y?) then enables us to write a general hth

In Figures 3(a-d), we present the results for the funciion x(¥7:55)
obtained using single- and two-pariicie density functions for 6-, 8-, 10-, and
12-prong events respectively. The solid curves in the figures represent the
function xly],yz) averaged over the four multiplicities considered here. The
normalization for x(yl,yz) has been fixed by requiring x{0.0)=C. It is clear
from these figures that values for the function x(y],yz) obtained fromw dif-
ferent multiplicities are consistent with each other within the statistical
uncertainties involved in the data and in the approximation employed to solve
equation (13). A noticeable and interesting feature of X(y}’yz) is that it
possesses 2 vather broad minimum for 1™ in the range -2 < Yiv ¥ < 2.

This is clearly a refiection of the short range order exhibited by two-parti-
cle correlation {unctions,

We have verified that the function x(y],yz) obtained as above,
together with equation {8) reproduces correctly the gre-, two- and three-
particle semi-inclusive densities to a fair degree of accuracy. As an example,
we show in Figure 4, pg(yl), ;B(y],y2=0) and pB(y],y2=0, y3=0) calculated
according to equation (8) using the n-averaged x(y,.y,). Agreement between
the calculations {solid curve) and the data (closed triangles) is satisfactory.
This completes the construction of a general hth order semi-inclusive distri-

butien function for an n particle final state with the knowiedge of one- and
two-particle spectra only, '



5. Concluzions
In conclusion, we have found that for n > 4, the three-particle
density function can be given simply in terms of the one- and two-particle
densities, We have described and tested the validity of two independent
approximations for pn(1,2,3). These reproduce the data fairly well over all
phase space, with small deviations occurring when the vapidities of two or
more particles are similar. Using one of these approximations, we have con-
structed and solved an exdample to predict all higher order distribution func-
tions in terws of a basic two-particle function, x{y},yz), The functions
obtained fron different multiplicity déta are consistent with eath other within
the statistical uncertainties of the data and the method enployed to solve the
integro-differential equation. We have verified that this function, x(y],yz),
together with equation {8) reproduces correctly the ane-, two- and three-
particle semi-inclusive densities.
We thank the staff at Fermilab and,in partictlar, the 32-inch bubble
chamber crew for their help with the data co]]ectfcn phase of this work.
One cf us (M, Pratap} would Tike to thank Dr. T. Rijken for many fruitful

discussions.
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Table 1. The semi-inclusive three-particle correlation Cn for
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Yp =Yy % Yq = 0 {within £0.5 units) for different charged
multiplicities n,

-::-F:

10
12

No, of o (0)/n pn(D’Q)

Events Used “n{n-1)
1880 0.117+.003 0.0188+.0010
1944 0.181+.004  0.0384%.0008
1454 0.216:.004  0.0494+,0008
1024 0.233:.005  0.0553+,0008
587 0.280+.006

0.0816=.0010

7 (0,0,0)

MG AR
0.0032:.0003  ~0.0002¢.0005
0.00954.0002  0.0005:.0006
0.0114+.0002  -0.0003+.0007
0.0142¢.0002  -0.0006%.0010
10.0245:.0003  -0.0000.3014
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FIGURE CAPTIONS

The three-particle rapidity density function for 8-prong events,
with ¥ fixed (within £0.5 units) at (a) -3.0, (b) -2.0,
(c) -1.0, and (d) 0.0. The dashed (solid) curves represent the

approximation of Equation (6) (Equation {7)).

The three-particle density function for (a) 4-, (b) 6-, {c) 10-
and (d} 12-prong events. 1In each case ¥y is fized within 0.5
units of 0.0, The dashed (solid) curves represent the approxima-

tion of Equation (6) (tquation (7)}).

The two-particle function x(yl,yzl obtained using single- and
two-particle density -functions for (a) 6-, (b} 8-, (c) 10-,
and (d) 12-prong events, The curve represents the x function

based on the average of 6-12 prong events.

One-, two-, and three-particle density functicns for 8-prong
events. The calculated values are shewn by solid Tines and data
by closed triangles. For the data, Yy = 0.0 + 0.5 for (&) and
Yo =¥y °© 0.0 » 0.5 for (c). Errors on the data points are less

than the size of the triangles.
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