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ABSTRACT 

We study the phase transition in the nonlinear O(N) c model in 

2 + E dimensions. Our analysis is of the continuum theory and does not 

rely upon the artifice of a lattice. This phase transition occurs at a 

critical value of the coupling constant A 
C' 

which is an ultraviolet stable 

fixed point of the renormalization group. In the “low temperature” phase 

the O(N) symmetry is realized nonlinearly with N - 1 massless pions. By 

solving the theory in the large N limit, to leading order in i/N, we show 

that in the “high temperature” phase the pions gain mass and there appears 

a new particle, 0, which is a bound state of the TT’S and is degenerate with 

them. Furthermore, by a general steepest descent approximation to the 

generating functional and by explicit calculations it is shown that this 

upper phase is fully O(N) symmetric and can be described by a linear o 

model Lagrangian. The unitarity of the theory is demonstrated and analogies 

with quark confinement in quantum chromodynamics are discussed. We 

prove the renormalizability of the theory, taking special care to separate 

infrared and ultraviolet divergences. 

* a- Ooerated bv Universities Research Association Inc. under contract with the Enerav Research and Dawlonment &rtministr~ti~~ 
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INTRODUCTION 

In this paper we propose to study the phase transition in the 

nonlinear u-model in a 2fs dimensional continuum. While a system 

of this kind is unphysical, and is purely of academic interest, we are 

motivated in this study by the following considerations. 

There are some similarities between nonabelian gauge theories 

in 4 + E dimensions and the nonlinear o-model in 2 + E dimensions. 

They are both asymptotically free at E = 0. Their similarity transcends 

even this straightforward observation, when a nonabelian gauge theory 

is placed on a lattice. The lattice gauge theory as formulated by 

Wilsont and extensively studied by others 2 is invariant under 

ff [ SU(3)l n where n denotes lattice sites. The gauge linkage 

Up (n) = exp [ ig ak* A,(n)] in Wilson’s theory is a nonlinear realization 

of the group [ SU(3)ln@ [ SU(3)],+,~ . The nonlinear o model is a 

dynamical model in which the chiral symmetry SU(2) X SU(2) = O(4) 

is realized in a nonlinear manner in terms of the Goldstone fields 

(pions). We believe that this similarity, i. e. , nonlinear realization of 

the underlying symmetry, is at the heart of the isomorphism in the 

block spin recursion relations in the above two theories observed and 

exploited by Migdal and Polyakov. 
3 B&sin and Zinn-Justin4 have 

shown that the 2 +E dimensional nonlinear c- model undergoes a phase 

transition at a critical coupling constant. Above the critical point, the 
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Goldstone bosons acquire a mass, and from their work one presumes 

that the underlying symmetry is fully restored; the fields which were 

Goldstone bosons, together with some “bound state(s)” transform 

linearly under the group. This observation forms a part of the basis of 

the theory of color confinement by Bardeen and Pearson’ in quantum 

chromodynamics. 

The purpose of this paper is to investigate the dynamics of 

spontaneous mass generation and the formation of a new state (which 

we shall call a) above the critical point, and to explore the dynamics 

of particle interactions in the fully symmetric phase. Our work was 

stimulated by the work of B&sin and Zinn-Justin, 
4 

but, in contrast to 

these authors, we choose to study the problem in a 2 + E dimensional 

space-time continuum rather than relying upon a lattice. We shall 

concentrate on a class of models which has O(N) symmetry realized 

nonlinearly in terms of N-l Goldstone massless bosons. We find that 

in the limit of large N, the model is sufficiently tractable so that we 

can indeed ascertain the nature of the phase above the critical point. 
6 

As expected, the “high temperature” or strong coupling phase can be 

described by a linear u-model. Implications of our findings to a 

similar many body problem are not completely lost on us, but it is not 

within the scope of this paper to elaborate on these. We would rather 

regard the present study as a testing ground for tools to be used in the 
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quark confinement problem in quantum chromodynamics without the 

artifice of a lattice. Only time can tell whether what we learned in 

this study will prove useful in understanding the structure of hadrons, 

however. 

A brief survey of the nonlinear o-model is in order. We 

consider a N-component boson theory defined by the generating 

functional: 

ZL[L] = /nd&(x) expi/ddx ]~(8~)‘-$(~2-f~)+;. 51. (1.1) 

If f2 is positive and U-O), the long-wave behavior of the theory is 

described by 

=,[il = /~d~b)~ a(X-f~)expi/ddxl~(a~)2+J.xI . (1.2) 

We label the sources J and the fields x by an index i which runs from 

0 to N-l. We may set JO = 0, denote xi = ri, i = 1 to N-l, and perform 

functional integrations over x,(x) = u(x). We obtain ’ 

ZNL[‘l= /rr,drr(x)expi/ddxit(an)‘+r ‘*a’i xa ( +.J.v , _ y 
i 

(1.3) 
I -hoiT 

where A 0 = i/f:. There is an additional term in the exponent arising 

from the integrations over c(x). It is 
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-- ; ,Sd(0)/dd x In [I - k,&,] . (1.4) 

By the rule of the dimensional regularization bd(0) is equal to zero, 

and we need not worry about this term. [ Actually, the role of the terms 

in Eq. (1.4) is to cancel a symmetry breaking divergent terms elsewhere 

in the S-matrix proportional to ad(O) =/(dk/2n)d. But these terms are 

also zero by dimensional regularization. 9] The fields E represent 

degrees of freedom associated with Goldstone bosons in a spontaneously 

broken O(N) symmetry. The set (u = k&z c) transforms 

vectorially under O(N). The vacuum is invariant under the subgroup 

O(N-l), which leaves the vector (1.0,. . . ,O) invariant. We label the 

generators of the coset O(N)/O(N-I) by Toi= -Tie. We use the 

notation 6 iX = i[ Toi, X] . We then have 

yTj = bij 
J 

; - z2 
0 

= dij u ‘z2) , 

and 

6p(z2) = - Tri , 

(1.5) 

i.e., transformations by the coset O(N)/O(N-1) are represented non- 

linearly over the manifold z(x). 

10 
As explained elsewhere, the nonlinear transformation law 

under O(N) /O(N - 1) need not be restricted to the form (1. 5). More 

generally we can have 
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fJi $j = hij f (Q2) + $$ mj g ($2) , (1.6) 

provided that f(x) and g(x) satisfy 

fg-2ff’-2xgf’ = 1, (1.7) 

where f’ = df(x)/dx, which follows from the Jacobi identity over O(N). 

The correspondence between 2 and 5 is given by 

rri - ~if(o)[f2(~2) + $21 
-i/2 

, .Y (1.8) 

i. e., R and 0 are related by a nonlinear canonical transformation. - - 

A convenient form of the action is obtained by choosing 

f(42) = fir(l - $2/4 f$ and g ($2) q 2/f,,, a choice first made by Schwinger. 
11 

The generating functional of Green’s functions for this version of the 

nonlinear a-model is given by 

$,[~I = /nd$(x, expi/($(%$)2(i+$$2)-2+<. (1.9) 

Since the actions in Eqs. (1.3) and (1.9) are related by a nonlinear 

canonical transformation of fields, Eq. (I-S), the renormalized S-matrix 

is identical in the two versions of the theory. 
12 

The action of Eq. (1.9) 

is most convenient in evaluating the S-matrix of the theory in the large 

N limit, as we shall see. 
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Thoughout the paper, we shall make use of the dimensional 

regularization method of It Hooft and Veltman. 
9 

There is one incon- 

venient aspect of this method, and it may cause confusion in the results 

we shall obtain. To illustrate this, we evaluate the vacuum expectation 

value of 02, $ being a free hermitian scalar field of mass p2. We have 

d 1 

k2 - y2 + ie 

(1.10) 

= &$’ r(-;)e I(E,k2), 

where < > E denotes the vacuum expectation value evaluated in the 

dimensional regularization scheme, with d = 2 +E. Note that I is 

negative for E> 0. This has to do with the way the integral is regulated 

(or defined by analytic continuation in E), and this result is quite the 

opposite of our intuition based on the ultraviolet cutoff procedure. We 

do not know how to reconcile this to the presumably positive definite 

character of the underlying Hilbert space. We are however certain 

that the S-matrix evaluated with this method is sensible and will pro- 

ceed pragmatically. In a later section we shall have occasion to check 

the unitarity of the S-matrix specifically because of this peculiarity of 

the regularization method used. It is an opportune juncture to comment 

on the limiting properties of I(E, F’): 
2 

for E > 0, and p -0, we have 
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1ir.l 
I(e,p2) = 0, E>O. (1.11) 

2 
P -0 

On the other hand, we can write 

I(E,i12) = -& + [& + h(i) e’2r(-1,3 1 (1.12) 

where the first term on the right represent the ultraviolet divergence 

in the limit E +O f> and the second term on the right hand side is finite in 

the same limit as long as p2 # 0. On the other hand if the limit 

2 
p - 0 is taken before E -0 +, the second term becomes 1/2~1s, which 

represents the infrared divergence of the integral at E = 0. The result 

(1.11) may be regarded as due to the cancellation of the ultraviolet 

singularity [ -(2ae)-*] and the infrared one [ (Za.s)-*I. 

The rest of this paper is organized as follows. In Section II, 

we discuss the renormalization procedure of the theory given by Eq. (1.9). 

Up until now the renormalizability of the nonlinear CJ model in two 

dimensions was not a matter for concern. The model was used simply 

as a nonrenormalizable phenomenological lagrangian in four dimensions 

which, when used in tree approximation, reproduced the results of 

current algebra. This section is largely independent of the rest of the 

paper and may be omitted by the less dedicated reader. To make 
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absolutely certain that we are isolating ultraviolet divergences from 

infrared ones, at E = O+, we add a mass term to the action 

-‘-$.$/. (1.13) 

The mass term, of course, breaks the symmetry, and generates new 

counter terms in each order of perturbation theory. That this symmetry 

breaking term can be controlled, and can be eliminated after renormali- 

zation by letting p2 - 0 is shown by the use of the Ward-Takahashi 

identity. We find that wave function and coupling constant renormali- 

zation eliminate all ultraviolet divergences as E -O+. A novel feature 

in this theory is that the wave function renormalization is not just a 

scale transformation of the field, but entails a nonlinear canonical 

transformation of fields as well. This is perhaps not as strange as it 

might sound at first, when we realize that at d= 2 the scalar field 6 
n 

is dimensionless, and (6’) $ has the same dimension as 4. This fact 
I - 

however has no profound effects in our ensuing discussions in which we 

deal exclusively with the renormalized S-matrix. The general renor- 

malization procedure is illustrated in the one-loop approximation; the 

generating functional of irreducible vertices is evaluated in Appendix A. 

In Section III, we solve the model in the large N limit, i.e., to 

lowest order in X0 or equivalently, to lowest order in l/N, with hoN 

fixed. We show here that the normalization conditions of the two-point 

irreducible vertex function (i.e., inverse propagator) lead to an 
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eigenvalue equation for the mass of the o-field, which is similar to the .” 

gap equation in the BCS theory. We prove that for h< Xc where his the 

renormalized coupling constant, and Xc is the zero of the p-function, an 

ultraviolet fixed point of the renormalization group, the mass of the ,$ 

field is zero; for A > X 
C’ 

we must choose the branch of solutions which 

corresponds to a nonvanishing pion mass. 

Sections IV and V are devoted to showing that the high temperature 

phase corresponds to the restoration of the full O(N) symmetry, that the 

vacuum is invariant under O(N). This is done by demonstrating that there 

exists a bound state degenerate with the 6’s, and that the interactions 

among the 4’s and the bound state are O(N) symmetric. Specifically 

in Section IV we consider the process 6 4 + 6 4 and some correlation 

functions which exhibit a pole corresponding to the (5 particle. Special 

attention is given to the positive definite norm of this state which is 

somewhat obscured by the dimensional regularization procedure. In Section 

V we evaluate the amplitude for uo- o 4 to show that the O(N) symmetry is 

restored. On the basis of these calculations, we deduce a linear o-model 

Lagrangian which describes the dynamics of the high temperature phase 

in terms of an N-component field. Appendix B gives a somewhat more 

systematic derivation of this result. 

Section VI briefly describes some remaining problems in this model. 

Certain mathematical details are relegated to Appendix C. 
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II. RENORMALIZATION IN PERTURBATION THEORY 

We begin by deriving the Ward-Takahashi identity for Zs of Eq. (1.9) 

with the addition of mass term as in Eq. (1.13). By a change of integration 

variables, we define a new version of 2 S 

(Here we assume X0 > 0). We imagine changing variables of functional 

integrations as in Eq. (1.6): 

6.4. 
1 J 

- dij(i - +2”, + 2 4pj. ,se 

Under this transformation the exponent in Eq. (2.1) remains invariant 

except the mass term and the source term. Since the integral should 

remain invariant under any change of integration variables, we have 

jddx[j. 1 + 2~&l(ji-(+-5f)6~~ + 2(+ a(+-+-)]Z[jl = 0. (2. 2) 
1 -1 J 

where v = 2p2/Ao. ‘Upon defining 

xi(x) = 6 WI 6ji(x) (2.3) 

and the generating functional of proper vertices l?[xJ by 
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rr, I = WQI - /ddx$x) . Y.(x) ,I 

We can write Eq. (2. 2) in a more useful form: 

6l- 
ddx [(i - x2Pij + 2xixj1 - 6Xj 

= ddx f-$$(~)~& - #+$-) vxi] 1 x i 
.Y 

The function 

(2.4) 

ib2w[j] 
i6ji(xh6jj(x) 

= q$i(x)bj(x)).;j = J [X1 

is a two point function at the same point x, in the presence of external 

sources j, so as to ensure <mi(x)> E 
=xi(x), and l-is 

i= =I- - vx2. (2.6) 

We define 

and write the Ward-Takahashi identity as 

- x -2 -3?Mij + 2xixjl 2 
J 

ddx zx 
i 

= 0 

(2.7) 

C.8) 
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We shall now describe the renormalization procedure. The purpose 

here is to construct a finite I in terms of renormalized field and coupling 

constant in the limit k2 -0 (v-0). for E 2 0. We do not claim that terms 

which are explicitly proportional to v can be rendered finite thereby. The 

device of inserting the mass term in intermediate steps is to insure an 

unambiguous separation of ultraviolet and infrared divergences in the 

limit E - O+. The renormalization procedure described herein is intended 

to remove ultraviolet divergences from the theory. 

First we transform the field x by a nonlinear renormalization 

transformation: 

‘i = 5ixi’5_“,, (2.9) 

where 

x(g) = i + QA(~)($) + u2AC2)(& + . . . , (2.10) 

(Y being a fictitious loopwise expansion parameter. We expand I and &? 

similarly: 

r $1 = r,[ftl =~i7mr(m)EJ ; 
m=O 

zrx,g = xc%pfi! : 

qrx,cJ = ~amz’m)fx,‘l . 
Lyzi 

(2.1i) 

(2.12) 

Now we define 
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Xij Ix, $j = [ (1 - t2x - ZrXEik + 2 $%X1 -$ 
k 

(2. i3) 

= [ (1 - c2x - ZrX)bik + 2 Si$X’ x- - ’ [ 6 kj - X’ (X +-2X7 ‘$Sj 1 

where X’ (z ) = dX/ dz. Xij &,cl can be expanded in cr: 

Xij[X’ 51 = cc7 x..(mk 2, m 1~ 
m=O 

with 
x (0) 

ij 
= (1 - k2)b.. +2 SiEj I 

* 1J 

xijfi) = [-fA(i)(l +<)-$@1)]6ij 

+ $‘j; [A(‘) - A(*)‘(1 + c2)1 , 

etc. 

Lastly, we can write Eq. (2.8) in a renormalized form: 

bl- 
Xij h,$ 2 +2v &, L+(x) = 0 

J 

(2.14) 

(2. i4a) 

(2.14b) 

(2.15) 

where v = “X3/2. 
r 

Before giving an inductive description of renormalization, the 

following observation is crucial. We denote by [ol 
div 

the divergent 

part of the quantity @l defined for example as pole terms in E for finite 

P2. By power counting we observe that [ Zr Lx, $11 div is a local function 

of C2(x): 
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[z@)[x, iI] div = H(“)($(x)) . (2.16) 

By examination of Feynman diagrams, we find also 

lim (1 + z)-2 + 6 HyZ) = 0 (2.17) 

z *-I 

for positive 6, however small, for finite n. Should Eq. (2. 17) beinvalid, 

the theory is “anomalous, ” and it is not renormalizable in the sense 

described previously. 

Let us consider the implications of Eq. (2. 15) in each order in (Y. 

To zeroth order, we have 

s ddx Xij(‘)(x. 5) 6$ = 0 
J 

(2.18) 

where X.. (0). 
1J 

is explicitly shown in Eq. (2. 14aI. The physical solution is 

of course 

0 r (2.19 1 

To first order, we examine the divergent part of the equation. We have 

(2.20) 

ddx H(i)(~2(x))$(~), 
n 
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where Xij(i) div is, from Eqs. (2.14b) and (2.16), [ 1 
&‘)ldiv = [-+A(% +_g2)-H(1)(~2;16ij+5i53[A(1)-A(‘)’(it52)1 (2.21) 

The general structure of the divergent part of r (n) LS , by power comting, 

[r(n)]div = (n’(52Wj + citj f2 (n)($2;1 + g9$2) (2.22) 

For brevity, we shall drop the superscript (n), n = 1 being understood in 

this and the next paragraphs. When Eqs. (2. 21) and (2.22) are substituted 

in Eq. (2. ZO), there results a set of four differential equations, the first 

three of which are (see Appendix C) 

+ z)zfl(z)l = 2(1 + z)-~[-A + (1 + z)A’ - H - f(l + z)~AI! 

(2.22a) 

= (1 +zy2 2[(1 +z)A’ +H’l (2.23b) 

$’ (I ++[(I +z)~~~(z)] = 2 (1 +z)-iA” 

Combining Eqs. (2. 23b - c), we find that 

(2.23~) 

-&[(i -t z)-‘H’l = 0 (2.24) 
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This can be solved trivially. One constant of integration is determined 

from Eq. (2. 17): 

H(z) = a(l + 2)’ (2.25) 

where a is an e-dependent constant. Our next task is to see if it is possible 

to make f 2 = 0 by a judicious choice of A. From Eq. (2. 23b), we learn 

that we must have A = -a(l + z) + b, where b is at our disposal. We 

choose b = 0, i.e., 

A(z) = -Za(l + z) (2.26) 

With this choice, the right hand side of Eq. (2. 23a) vanishes; we have 

fi(Z) = 
xi 

(1 + z)2 
(2. 27 1 

where fl is e-dependent. Consider now F(O) + F(f). 

=(O) + [r(i)]div cag'ct + t2jm2 ' gE22, (2. 28) 

The infinity in fl is removed by a renormalization of X0: 

A = AZ(X) 
0 

(2.29) 

To order cy, we choose Z to be 

z-* = iV$f. (2.30) 
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We next examine g( c2). From Eq. (2. 20) we find that 

(1 +z)g’(z) = -v r H(z)(=) 

or 

g(z) = -v r(!&+-)+ +z)2 . 

Note that g is explicitly proportional to pr, or p2. 

It is of interest to verify the above result by an explicit calculation. 

F(O) + F(i) is computed in Appendix A. We find that the two agree completely, 

with the identification 

a = + (N - 311 (E, p2)’ -$ (N - 3)(2tre)+ 

f 
- = -(N - 2) I (E, p2) - 2 

(N - 2)(2rre)-’ 

The most important results so far, which can be deduced from Eqs. 

(2. 211, (2.25) and (2. 26) are that 

[ 
xij(i)[X'gdi" = 0 

and 

[.(l)]diV = &2) 

(2.311 

after the coupling constant renormalization (2. 29). This forms the basis 

of our induction, to be given presently, 
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We assume [Xij(m)]div = 0 for 1 S m 5 n - 1, and [I(m)ldiv = 0 

except for terms 0(fi2). We can then write Eq. (2. 15) in the n-loop 

approximation: 

jdx jXjlOi[~]div + kijin)ldiv F + y~N(“)(<~)c~ = o , 
(2.32) 

where 

[ 1 ,,,(n) div 
Ll 

= Ki(E2)kj +Sitj K2(C2) , (2.33) 

with 

K1(z) = - +(i + z)A(“)(z) - H(“)(z) + L(n)(~) , (2.33a) 

and 

K2(z ) = A(“)(z) - (1 + z) A(““(z) + M(n)(z) (2.33b) 

Here L(n’ (z ), tiP’(Z ) and iI+) {z ) are E -dependent local functions of 

z, expressible in terms of the previously determined A Cm) and H(m’, 

i S m I n - 1. In particular, since L (n) is a sum over products of A (mhs 

and H(k’1 s, 1 -< m, kl n - 1, and (1 + z) -1 + 6 .(rn) -0as z-+-ifor 

any positive 6, however small, as will become apparent in our inductive 

discussion, L(n) has the same behavior as H (n) in Eq. (2. i7), viz., 

(1 + zJ-2 + 6 (n) L (z)+O asz+-1 , (2.17 ” 

for 6 > 0. 
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Again we shall drop the superscript (n) for economy. The analogues 

of Eqs. (2. 23a - c) are [see Appendix Cl 

[ (1 + z)“f,(z)l = (1 W-‘[2(K2(z) - KJz)) - (i + z)K&z)] 

(2.34a) 

+ + Zf,(Z) = - (1 + zj2[ 2Ki’(z) + K2(z)] (2.34b) 

[ (1 + z)2f2(z)l = -2(1 + z,“; (2.34:) 

We shall use a tactic to handle this set of equations, which is somewhat 

different from the one used in the one-loop case. Since K2 involves A and 

not H, we may choose A so that 

K2(z) = 0 (2.35) 

which requires A to be of the form [ see Eq. (2. 33b)l 

A(z) = (1 +z M(y) + (Y 

I 

(2. 36) 

where cy is yet to be determined. It shows (1 + z)-* + ’ A(z) * 0 as 

z - -1 for 6 > 0 as assumed. Equation (2.34~) can now be solved: 

f2(Z) = p 
(1 + z)2 

(2.37 ) 
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where p is an arbitrary constant. Eq. (2. 34b) can now be written as 

P(1 +z) = 2-&K+ (2.38) 

This is an equation for H(z) through Eq. (2. 33a). We find for H(z) the 

following expression: 

M(y) + y 
I 

+ L(z), (2.39) 

where y is an e-dependent parameter, related to (Y and 13 above through 

P 
y =z+“- (2.40) 

Since L(z) satisfies Eq. (2. 17’), H(z) in Eq. (2. 39) satisfies Eq. (2. 17). 

We can choose (Y such that 

m=y I (2.41) 

in which case p = 0, and we have from Eq. (2.37), 

f2(Z) = 0 (2. 37’ ) 

Combining Eqs. (2.36) and (2. 39) in Eq. (2. 33a), keeping in mind Eq. (2.4l), 

we find 

Ki(z) = 0 

and, together with Eqs. (2.35) and (2.33), we see that 

(2.42) 
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div = 0. (2.43) 

Further the solution of Eq. (2. 34a) is 

fl(n)(z) = 2f(“’ 

(1 +z) 
2 

where f(n) is an e-dependent number. As in the one-loop case [see 

Eqs. (2. 28 - 2. 30)1 this divergence can be eliminated by a suitable choice 

of the n-th term in 2 -1 
: 

(2.44) 

m=l 

We have thus proved that the wave function redefinition and the coupling 

constant renormalization make r (n) finite for terms not explicitly pro- 

portional to ur. This closes our induction loop. The form of g (“)(z) 

can be worked out and expressed in terms of N (n) (z); the result is not 

particularly illuminating, except that g (n) is of order v 
r’ 
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III. THE EXISTENCE AND NATURE OF THE PHASE TRANSITION 

In this section we will show that the nonlinear o model exhibits a 

second order 
13 

phase transition at a certain critical value of the (renormalized) 

coupling constant A. The order parameter is < $2 > , or equivalently 
N E 

m+2: these are both zero below the critical point and increase continuously 

to nonzero values above this point. This is obviously a nonperturbative 

phenomenon, which is found only when the renormalized theory is summed 

to all orders in (AN). Recall, however, that we work to lowest order in 

A, or equivalently, in (1/N). 

In the large N limit the Lagrangian of Eq. (1. 9) can be written 

~= $(:(woE + <cf~f~?>~) 
((i +k kjo2 >< + z&q> 2 

(3.1’ 

Here 4. and X0 are the unrenormalized field and coupling constant. For 

brevity of notation we use <O 1 jo2 1 O> E Gjo2> and similarly for 

other vacuum expectation values. Theeexpression ior fin Eq. (3. 1) is, 

like any nonpolynomical Lagrangian, to be understood as its power series 

expansion. Eq. (3.1) is derived by noting that in the large N limit the 

leading terms in the Wick expansion of a product of fields of the form 

are w.ato(b. +)(b- 6)...(b- 4) -; ,;r .;‘: ;-: 

These dominate over other possible contractions, such as 
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(a$-&‘(?. .“,,(“* $...(hh* 4’ 
-: ,. 

I “: 

by powers of N. Furthermore, for the reason just cited, (: $I~:)~ = :( b2p: 
.” 

for large N. 

We first calculate the propagator, given by 

A,tj = rij(‘) = 62 I- 
6 bi 6 4j 

$=O 
(3.2) 

where the latter equality is a result of the large N limit, as discussed 

above. We have 

AF-l: (k’) = AF -*(k2)6,, 
‘.l 

(3.3) 

with 

This equation already contains a summation of an infinite number of the 

leading graphs which contribute to the propagator. These graphs are 

shown in Fig. 3.1; they consist first of the bare propagator, then the set 

of (daisy) graphs with n loops attached at the same point, next the set 

with one loop attached to the original line and an n-daisy loop complex 
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connected to the first loop, and so forth. Alternatively one could have 

started with the Lagrangian in the form of Eq. (1.9 ), where o2 is not 

normal ordered, and calculated the graphs of Fig. 3. 1; one would thereby 

have obtained the same result. 

The simplicity of the set of dominant graphs in the large N limit and 

the resulting ability to sum those contributing to A 
-1 
F ij 

at the Lagrangian 

level are the reasons for our use of the particular form of the nonlinear 

o model Lagrangian given in Eq. (1.9 ). If, instead, we had used the 

standard form of Eq. (1.3) the large N approximation would have required 

summing over considerably more complicated sets of diagrams. To 

illustrate this point we show in Fig. 3.2 the three infinite sets of graphs 

which would contribute to A 
-1 
F ij 

for large N with the Lagrangian (1.3). 

The set in Fig. 3. 2a consists of diagrams topologically identical to those of 

Fig. 3. 1 but of course with different vertices. The additional complexity 

comes with the sets in Figs. (3. Zb, c), especially the latter since it introduces 

a momentum dependent correction to the propagator. (The heavy dots 

in Figs. 3. 2b and 3. 2c represent the full four and six point vertices 

including daisy corrections. ) The explanation for this difference in what 

constitute the leading large N graphs is as follows. With the vertices 

resulting from the Lagrangian of Eq. (1.9) the graphs of Fig. 3.2 (aside 

from the bare propagator) are of order tXON)m, m = 1, 2. . . . , whereas 

the analogues of those shown in Figs. 3.2b and 3.2~ are of order XO(X~N)~ = 

; (XONJm + ‘3 m=l, 2, ,.., and hence are negligible in comparison. 
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However, with the standard Lagrangian (1. 3) the leading N part of the set 

of diagrams in Fig. 3.2a vanishes, so that all three sets in Fig. 3. 2 are 

of the same order, XO(AON) 
m 

. 

Returning to the theory based on the Lagrangian of Eqs. (1.9), 

(3. 1), we define a renormalized field 4 by 

Requiring that the renormalized propagator satisfy 

= 
Bk2 

1 
k2= m 

we find 

z; = 2 

C 
i+ &x0 <$ ’ L 1 ‘- E 

(3.5’ 

(3.6) 

(3.7) 

It should be emphasized that this renormalization is a trivial finite resealing 

in contrast with the case dealt with in section II, where wavefunction 

renormalization introduces higher powers of the field. Moreover, since 

the quantity (1 + 
X0 

-s’J!02 > E ) is independent of k 2 we could just as well 

have used k2 = 0 or some other value in the renormalization point in Eq. 

(3.6) and we would have derived the same result for ZF 

The Lagrangian expressed in terms of the resealed fields is 
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and the full renormalized propagator is, to order i 
N’ 

zFLk2)ij = 
di. 

k2 - rn4’ 

x0 1 m02 = FZ~‘<(~@~>~ 

2 
Em 

where 

P= $[:(8$,Z + <(alJ2>] 
(3.8) 

(3.9) 

(3.10) 

is the renormalized mass (as defined by xi*(k’ 2 = m ) = 0, and still 

expressed in terms of the bare coupling constant). 

Using this propagator we find 

i = (N - 1) 
r (-e/2)(m2) 

E/Z 

k2 - m2 (4*) 
1 + El2 (3.1: 

and 

< (8 N2> 
- E 

= m2< h2 > 
E 

(3.12) 

From Eqs. (3. 101, (3. ii), and (3.12). we derive the important equation 

<(a$)2 >< 
[ 

i xO 
- F z ,+ q2 > 1 = 0 P . e (3.13) 

This equation signals the existence of two separate phases, corresponding 

to its two possible solutions: 
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(1) 

which implies 

and 

(2) 

<wJ2> E = 0 

2 
m = 0, 

<$2> 
- E 

= 0, 

Z$ = 1. 

q2 > 
- E =* 

1 
=G ’ 

(Z$ = 4). which implies that (with (N - 1) z N) 

1 = XoN I (E, m’), i.e. 

2 

2 
m = 

(4,)1 +c/2 E 

AoNr (-c/2) 1 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3. 19 1 

(3.20) 

We shall next show that one must pick solution (1) if A < AC and 

solution (2) if A > A 
C’ 

where A is the renormalized running coupling constant 
14 

and 

A = 2 (4.J + E’2 1 
C N ru - E/~)B(E/Z, E/2) 

(3.21) 

_zE 
N for E << 1 
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is the critical value of the coupling constant. Here B(x, y) = 

r(xmyVm + ~1. The critical coupling constant AC here is an 

ultraviolet stable fixed point of the renormalization group. The relation 

between A and X0 is determined by the definition 

A0 = AZAM-c (3.22) 

which renders A dimensionless by introducing an arbitrary scaling mass 

M, and the condition (for A < AC) 

r (41 
S (X0; s = -M2, pi2 = 0) = z4frEf4)(X; s = -M’;’ P.~ 

1 
= 0) 

In Eq. (3.23). rs is defined by 

rc4’. . 
ilk1 = rS’4’6ij6ke + rt (4)6ik6jl + r, (416i16jk 

(3.23) 

(3.24) 

Explicitly, for AC Ac,[rd4) = x(pi’p2 + p3’p4). where the O(N) indices 
r 

and momenta are defined as in Fig. 4. 2, The condition (3. 23) also applies, 

with appropriate changes (s -t , s + u) to r (41 
t and I’u(4). From the 

renormalization of the four-point proper vertex in the phase where m2 =o 

and <b2> = 0 we find 
- E 

-1 
zA 

= 1 -.$ 
( > C 

(3.251 

It should be remarked that the renormalization point chosen in Eq. 

(3. 23) is somewhat arbitrary. Indeed in principle the on-shell point 

chosen could produce infrared singularities since it is an exceptional 
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point in momentum space. However these do not appear in leading order 

in (i/N). As will be evident from the calculation in section IV, ZA 

represents an ultraviolet divergence. This is in contrast to 2 
+ 

which 

arises from the infinite daisy sum of Fig. 3. 1. The value of a daisy loop 

integral changes from zero in the phase where m 
2 

= 0, to a nonzero 

constant (0 r( -E/ 2)) in the phase where m2 # 0. The fact that it is 

zero in the m 
‘ 

= 0 phase really is the consequence of the exact cancellation 

of infrared and ultraviolet divergences. When m2 # 0, only the ultraviolet 

piece remains. It is for this reason that Z ’ 
4 

changes discontinuously from 

$ 
% 

zitozd I 2 between the two phases. Stated differently, in this phase 

transition the short distance (ultraviolet) properties of the theory are continuous 

across the critical point, whereas the long distance (infrared) properties are 

drastically different. Accordingly, a function such as ZA which depends only on th 

ultraviolet divergences of the theory can be expected to be continuous 

across the critical point, but a function such as Z$ in which both ultraviolet 

and infrared properties enter, will in general be discontinuous across the 

transition. From Eq. (3.25) we then have that A0 > 0 in phase 1 and 

A0 < 0 in phase 2. It follows that for A < A, we must choose phase 1 as 

the solution to Eq. (3.13) since the expression for the mass in phase 2, 

Eq. (3. 20) would be self-contradictory. For A > Xc it might appear that one 

could choose either phase. However, solution 1 leads to the appearance 

of a tachyon in the 4 4 - 4 o scattering amplitude (see section IV) and 

must therefore be rejected in favor of solution 2. We shall accordingly 
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call solution 1 the weak coupling or lower phase and solution 2 the strong 

coupling or upper phase. 

The order parameter in this phase transition is <42> or equivalently 

‘ 
m . Using Eqs. (3.20) and (3. 25) we find the mass in the strong coupling 

phase to be 2 
2 

m = M2 
I 

E 

ase -0 
+ 

(3.26) 

For E # 0, m2 has branch point singularities at A = Xc and A = 0 (unless 

t happens to be an integer ). As claimed, the phase transition is second 

order since m2 is continuous at A = A 
C’ 

Indeed 

d”m2= dnm2 
lim lim - = 0 

n n 
A-Ac-eO- dA A-A,‘“+ dA 

(3.27 1 

for n < z 
E . 

The behavior of m2 in a function of Xand E is shown in 

Fig. 3.3. Taking the limit E * 0 and using Eq. (3.21) for A, we find 

(see Fig. 3.4) 

4n 

lim m2 = M2e 
-xE 

E -0 
(3.28) 

This expression, with its essential singularity at zero coupling constant, 

is typical of phenomena in which an energy or mass gap is generated 

nonperturbatively. Note that Aappears not alone but in the combination 
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AN, a reflection of the fact that the variable in which we have summed the 

renormalized perturbation theory to all orders is AN. From the E # 0 

form, Eq. (3. 261, one reads off the critical exponent for m2 as 15 

Since m2 is a physical parameter it must of course be independent 

of the dimensional scaling mass, introduced in renormalization, i. e. 

d 
MEm = 

a 
+ p(A)rA m = 0 > (3.30) 

where 
a 

P(A) = M a~ Ah,, M) (3.31) 

14 
Calculating PI we find 

P(A) = eh i -+ [ 1 C 

(3.32) 

=A[< - 21 for E *O 

The behavior of p(A) is shown in Fig. 3. 5. For A < Xc p(X) > 0; in this 

phase, the infrared structure of the theory is determined by the origin. 

As the scaling mass M is increased the coupling constant is driven to the 

critical value A 
C’ 

where p has an ultraviolet stable zero. For A > AC but 

A-A 

i 1 
2 c< 1, according to the argument given before, A Z A and hence also 

C 

p(A) have the same form as they do in the weak coupling phase. The fact 



-33- FERMILAB-Pub-761 33-THY 

that Z ~ changes at the phase transition does not affect p(X) (or the renormalized 

S-matrix ). Using Eq. (3.32) one easily verifies that m is indeed independent 

of M. 

In addition to m2, as was remarked before, an equivalent order 

parameter is i$02>E The significance of this order 

parameter is clear from the role which it plays in the transformation 

formula for do. ,- The O(N) symmetry is spontaneously broken if and only 

if <r-T 01 ’ (‘O)jl’f # 0. In the large N limit the <($Oo)i (b,,Jj>e term is 

negligible compared with the first, <(I -2 $02)>e bij. Thus the latter 

quantity plays the same role for our choice of nonlinear Lagrangian, Eq. 

(1.91, as <cro> em w does for the standard form, Eq. (1.3 1. 

In the lower phase, where <Oo2>< = 0 the O(N) symmetry is spontaneously 

broken, whereas in the upper phase, where <bo2>< = -% , i.e. 

<$$2, 
E 

+ : 
0 

-ME ii -+ , <[ Toi, ($ ,.I> 
+I 

A ) 
1 OJ 

= 0 and this symmetry 

is restored. This restoration will be further demonstrated in later sections. 

As E -O.+ it is evident from Eq. (3.32) that the theory is asymptotically 

free. Moreover, Coleman’s theorem forbids spontaneous symmetry 

breakdown via the Goldstone mechanism in two dimensions. 16 Accordingly, 

the weak coupling phase, in which the O(N) symmetry is spontaneously 

broken down to O(N - 1) with the occurrence of N - 1 massless Goldstone 

particles (the rri or $) is forbidden at e = 0, and the theory can exist only 

in the strong coupling phase. This phase can be regarded as the analogue 

of the confinement phase in quantum chromodynamics, and the implications 

C-7 CJrnin ri re d + c dimencinnE 37.0 c~rrrrrPcti.rn 
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IV. THE ELEMENTARY PARTICLE u AND 
THE 4 $ - 6 6 SCATTERING AMPLITUDE 

4. 1 Appearance of the c Particle 

In order to determine what are the proper collective modes of this 

theory in the strong coupling phase we shall examine the connected one- 

particle irreducible amputated four-point function, i. e. the four-point 

proper vertex (4) r. 
Ilk1 ’ 

Henceforth we shall deal with fSi4), the 6,. d 
1~ kP 

part of the full four-point vertex as defined in Eq. (3. 24). With obvious 

changes our results also determine r (4) 
t 

and ruc4). We shall prove that 

in the strong coupling phase there appears a new particle, for which the 

field operator is u= :$!. In this section and the next we shall further 

show that in the strong coupling phase the full O(N) symmetry is restored 

and is realized linearly. 

We define the following functions which contribute to Ts (4 1 : 

iT = ddx e 
ik . x 

11 <T(&x)&O))>~ (4. 1) .v . . . 

lT12 = i ddx e 
ik * x 

<T(62(x)(0$(o))2)>E (4.2) 
,” .” 

iT = 
i 

d 
d xe 

ik * x 
21 <T(@ $))2$2+E 

iT22 = ddx e ik* x 
<T((a~xi)2(a?~o))2)>e (4.4) 

The graphs which give the leading contribution in the large N limit to the 

Tij functions are strings of bubbles, as shown in Fig. 4.1. It is useful 

to introduce a symbolic graphical notation, first for the parts of the bare 
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four-point vertex, as depicted in Fig. 4. 2. In this notation the dot indicates 

that the derivatives in (89’ act on the adjacent legs and the graph with 

2. no dots corresponds to the term 3m m the vertex. As was true of r 12), 

each four-point vertex is dressed by an infinite sum of daisy loops, the 

contributions of which have already been summed exactly in the Lagrangian 

(3. 1). 

In the infinite bubble sum it is useful to arrange the terms according 

to how the derivatives in the four-point vertex act. Fig. 4.3 shows this 

for an individual bubble. Analytically the Zij are defined as 

zi,(k2) = -2 i N 
/ 

.d 
% i i 

(4.51 
(2TT) (q2 - m2) (q - k12 - m2 

zi2 (k2) = c 2&k2) 

d 
= dq q*(q-k) i i 

(2dd q2 - m2 (q-k12-m2 
(4. 61 

Z,,(k’) = -2 i N 

I 
* (Wd,2q2:m2 ,q-k;2-m2 

(4.7) 

Evaluating the integrals, one finds 

Ei,(k”) = -2 NJ ( E. k2, m2) 

zi2(k2) = C 2i(k2) = N(k2 - 2m2)J(e. k2, m2) 

(4.8) 

(4.9) 

+2NI(e, m2) 
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x22(kZ) = - + (k2 - 2m2)NJ(e, k’,~ m2) 

- (k2 

(4.10) 

- 4rn2)I(E, m2) 

where 

J(E, k2, m’) = ’ 
(41r)i+c’2 

n1- E/z)(4m;m k2 ) i - E’2 

(4. ii) 

13 k2 
- c12; 2’;; 

k2 - 4m2 

and F (a, b; c; z) is the hypergeometric function. 2 i For reference, as 

F -0. 

J(“,k21m2) = * In I (4.12) 

for (1 - 4m2/k2) > 0, and 

J(O, k2,m2) = rh tan-’ 

for (i - 4m2/k2) -C 0. 

Next, we write a matrix equation for the full Tij functions in terms 

of the four basic bubble graphs Z and a matrix G which expresses how 
Ll 

the Zij are attached to the Tij: 
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where 

xO 
Tij = X ,. +-i- S 

13 - lkGkP TPj 
(4.14) 

G+-2 1, (4.15) 

Fig. 4.4 illustrates the ij = 11 and ij = 12 components of Eq. (4.14). 

The solution of Eq. (4. 14) is 

T q 

X0 
i--t CG 

Specifically, 

T 
4 1 

iI=Gk2 2 -m 

4 m2 
Ti2 = T2i = - A0 k2 - m2 

(4.16 1 

(4.17) 

(4. ia) 

4 
4 

T 
m 2 

22 = q -k2 _ m2 Ao2NJ(c, k2m2) 
(4.19 1 

The diagonal Tij’s can be considered not as pieces of the four-point 

vertex, but as propagators for the operators i2 and (a&~)~. Viewing them 

in this way one sees a remarkable feature of Eq. (4.17) which is one of 

the main results of this paper: the o2 propagator consists only of a simple 

pole. That is, (to leading order in i/N) o2 is the field operator for an 

elementary particle, and creates only a single particle state when acting 
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on the vacuum. Thus in the strong coupling phase there appears a new 

particle, to be called q which is a bound state of the 6’s but nevertheless 

is elementary in the sense specified above. Furthermore, the o is degenerate 

in mass with the N - 1 oi ‘s, a consequence of the fact that the full O(N) 

symmetry is restored in the strong coupling phase. In Appendix B we 

present another formulation of the physics in the upper phase, in which 

the restored O(N) symmetry is manifest. We note in passing that T 
22 

has a momentum space structure more typical of a usual operator product, 

viz. a pole, a polynomial term, and a function (J( E, k2, m2)) having a 

cut beginning at k2 = 4m2. 

The inconvenient characteristic of dimensional regularization mentioned 

in the Introduction, that the positivity of operator products is not preserved, 

shows up in Eq. (4.17); the residue of the pole is 4X,, 
-1 

, which is negative 

for A> A,. That this negative residue is a direct consequence of the fact 

that <b2> 
- E 

< 0 in the dimensional regularization scheme is proved by 

using Eq. (3.19) to write Eqs. (4.1) and (4.17) as 

T 
11 

ddx eik ’ X<T( ~$~(x)e’(O))> = 4 Q2> 
w G” E k2 _ m2 - ’ 

Hence, if one uses dimensional regularization it would be wrong to consider 

u to be a ghost just because the residue of the pole in its propagator is 

negative. In order to test the unitarity of the theory one must actually 

examine the S-matrix elements. The essential observation is that 
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: and that either factor 2 X0-- may be eliminated 

by an external line wave function renormalization, or it may be absorbed 

in a proper vertex. Because of the fact that the upper phase is fully 

O(N) symmetric (as is established in Appendix B), proper vertices are 

always connected to an even number of o lines. Hence, any proper vertex 
1 

absorbs an even number of A -’ 0 factors and so does not acquire a factor i. 

This argument, together with our results for the 4 4 - $6, uo- d, 4, and 

~$4 - o 4 $ scattering amplitudes, shows unequivocally that o is a physical 

particle, and the S-matrix is unitary. 

4. 2 The 4 4 - $J 4 Scattering Amplitude 

Let us next use the Tij functions to calculate the four-point proper 

vertex and corresponding o C$ - $ $I scattering amplitude in the upper phase 

(specifically, the s-channel part, from which the t and u channel parts 

can be obtained by crossing). The sets of graphs which give the leading 

contribution to JY (4) 
S in the large N limit are shown in Fig. 4. 5. 

r (4) = 
S + x0 (2PiP2 + 2p;p, + 3m2) 

- Ao2 (pip2 + t m2)T41(pip4 i $m2) 

+ Xo2(P;P2 + $m’)T 
12 + Xo2Tzl(~j~, + $m”) 

- x0 
2 

T22 (4.24) 
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Substituting our results for the Tij and using s = (p, + P,)~ = (P, + P412 

we get 

r (4) 2 2 1 2 
-p 

2 
S i 2 s-m 3 -p 4 

+X0 s+3m2- 
c ( 4.25) 

and similarly, via crossing, for Ft (4) and Fu(4). The physical $ o - o o 

scattering amplitude, A (s) 
4$ -66 

related to the full amplitude (A 
b ti -c o &jk P 

by the analogue of Eq. (3.24). is then 

A(s) 2 
46-M = - NJ(e, s, m2) 

(4.26) 

Several features of the amplitude A 
4m - 64 

are important to notice. 

First, although the offshell proper vertex contains poles at s = m2, t = m2, 

and u = m ‘, there are no such poles in the onshell amplitude. These poles 

represent o exchange in the s, t, and u channels resulting from a (T+#I 

coupling. It is thus clear why they cannot appear in the onshell amplitude 

since the restoration of the full O(N) symmetry in the strong coupling 

phase forbids there from being a o $4 vertex. Another interesting feature 

is that although the offshell amplitude explicitly depends on X0 the onshell 

amplitude does not. The latter does depend implicitly on X o 

though the mass m appearing in the bubble integral J( e, s, m2). Furthermore, 

the @$I b ~$6 amplitude is real for S < 4m2, and has a branch cut starting 
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at s = 4m2. Evaluation of the discontinuity across the cut shows that, to 

leading order in 1/N, this amplitude satisfies unitarity. 

It is of interest to compare the $4 + $4 scattering amplitude calculated 

in the strong coupling phase with that calculated in the weak coupling 

phase, as A -A c’ For this purpose we start again with the Lagrangian of 

Eq. (3.8), with .b2> =i. 
-. E 

=Oand z 
4 

This yields a bare four-point 

A0 
vertex equal to that in the strung coupling phase but with A0 -T , m - 0. 

The basic four bubble graph integrals are given by Eqs. (4.8 ) - (4.10) 

with m 
2 

= 0: 

z1i = - 2 NJ(e, s, 0) (4.27) 

=12 = z2i 
= sNJ(e, s, 0) (4. 28 ) 

2 

=22 = 
-%NJ(E, S, 0) (4. 29 ) 

Explicitly, 

J(E, s, 0) = 
4 

(4,r)i + E/2 = (i 
- ~12) WE/~, ~/2)(-s)-* + E’2 (4.30) 

The Cij matrix is conveniently written as 

1 S -- 
z - 

f ) S -- 
2 

(-;)2 zii 

(4.31) 
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Solving Eq. (4. 14) (with X0/ 2 - X0/4) for the Tij, tie find 

T 
11 (4.33) 

The calculation of l-14’ 
ijkl 

proceeds as before and yields for the s-channel 

part the result 

I. (4) =10 2s 2 - 
S 2 z P. 1 

(4.34) 

2 2 Pi +p2 - 2~)T~~(p~~ f p42 - 2s) 

and, for the onshell vertex, 

A s 
1- 

0 
S 

(4)(p 2 
i 

=O) = 

I 
APs 

-- 2 J(E, s, 0) 

Renormalizing this four-point proper vertex at s = -M2 according to 

the condition (3. 22) and the definition (3. 21) we find the expression for 

ZA given in Eq. (3. 25 1. The physical onshell amplitude is then 
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A(s 1 
-E 

XM s @e$($= 

[ 
I+++ -s 

El2 

C C ( Ill M2 

(4.36) 

For A - AC h O-, 

-A (-s)’ - ‘I2 
c 

Now as A - AC - O+ the $6 - $$ scattering amplitude in the strong coupling 

phase is 

lim A(s) 

A-AC --0+ $$- 44 = - NJ( E", s, 0) 

Using Eqs. (3.20) and (4.30) one observes that this is equal to the amplitude 

in the weak coupling phase in the same limit. Thus the $4 -c $4 scattering 

amplitude is continuous across the phase transition. 

Now we are in a position to prove the claim made in section III, that 

for A> AC the theory exists only in phase 2. This is clear since if one 

took Eq. (4.351, which was calculated assuming m2 = 0, and let A - Xc 

be greater than zero there would appear a tachyon pole at 

Hence, as claimed, for A> AC, the theory chooses phase 2, the strong 

coupling phase. 



-44- FERMILAB -Pub-76/33-TRY 

Next, we shall comment on the “progenitor’ of the c particle in the 

lower phase, A < A,. The denominator of the right hand side of Eq. (4. 36) 

is a real analytic function in the cut s-plane, 0 < arg(s) < 2rr. It is a 

multisheeted analytic function with an infinite number of zeros at 

s =M 2 eirr(2/ l + I)(1 + 2k) 

where k runs through the integers from -a to +m. Note that none of 

these zeros lie on the physical sheet. Now as A +A, from below there is 

a confluence of zeros as they approach the origin, which is identified on 

all the Riemann sheets. As A increases beyond A, the branch point recedes 

from s = 0 to s = 4m2, and the pole of lY (4) moves to s = m2, but its 

residue vanishes onshell. 
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V. THE ou- @AMPLITUDE 

It is well to recall the form of the Lagrangian after the finite wave 

function renormalization [see Eq. (3. a )I: 

Y= gy2: i+; Ecj ) + g ( 
2\-2 

0 ( 
AO 

l+z:tJ: ) -2 
> 

-2 
(5.1) 

and the facts that 

T = 11 ik’X<T(i2(x)~2(0))> 
E 

= $- ’ 
0 k2 - m2 

, 

T 
12 

m2 <T($2(x)[%#jO)fi>, = 4 
‘0 k2-m2 

= T 
21 ’ 

T 
22 

= -i/ddx eik’X<T((B~(x))2(8~O))2~>, = e k2mly* 2, 

+ terms not singular as k 2 
* m2. 

Thus, to deduce vertices involving o’s on shell, we can read them off from 

Eq. (5.1) by the mnemonic rules: 

(5.3) 

:(a$2: --g u . 
0 
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For example, the vertex to be used for the transition: physical o of 44 

is 

AO 
- T :(~3$~::?~: +t Aom2(:t2:)2 

-8 ~A,[$t-n”:$~ - $ :(ai)2:] 

(5.4) 

and the vertex involving two physical 0’s and any number of 4’s is given by 

x0" :(a?~~: (i ++ A0 :f:.) 
-4 

(5.5) 

+iAom 2 (1 +$ Ao:$)-4 

There are three classes of diagrams contributing to the on-shell 

process o(p,) + o(p2) + ,$(ql) + $4,). as shown in Fig. 5.1 in the large 

N limit. Let us describe the computation of the diagrams of class A. 

The first one (with a common factor Cjij removed) yields the result 

(idEj2 Ao2[~m2+q1.(p4-qi)] (p -q ~2-m2[$m2+~2e(~2-q2)] 

1 1 

= -i Ao(t - m’). (5.6) 
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The sum of the two diagrams of class A is 

iA 
cm+ $I$ = i b(s - 2m2) (5.7) 

The diagrams of classes B and C can be similarly computed from the 

interactions in Eq. (5. 5). We find 

iA 1 
uu- $4 

= i6- 
NJ@ 1 (5.8) 

iA 1 
cm+ I#$4 = -i 8 NJ(s) - - ihOts - 2m2), (5.9) 

so that the full CTU- $4amplitude in the large N limit is 

A 
2 = -- 

CJU’ 44 NJ(s) (5.10) 

and we see that 

A uu- ,&) = A;“,)+ ,#) (5. iI) 

In order to show that the u-particle is a physical particle of positive 

norm let us consider the process a@$ * ~44. Let s be the square of the 

total c. m. energy. The terms that contain a pole at s = m2 are of the 

form[see Fig. 5.21 



+ ir,(+J - $4) iTZl(s )ir,(M- Ml 

+ir,(obe - $61 iTL2(s )ir,(M - W#+ 

+ir,(o&$- $4) iT22is)ir2($$+ oW (5.12) 

2 
Ass-m, Eq. (5.12) reduces to 
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ir,(a$$- $6) iTii(s)i r,($4-+ ~$4) 

i I 
id- 

4 + r2dEm2) s -im2iK Ii +fi m2r2) 
1 %I 

(5.13) 

But according to the rules of Eq. (5.3), (2/~~)l?, + m2(2/$o)r2 is 

just A( ~$4 + a). Thus the pole term in the process ~$4 -c ~$4 is 

iA(u&$ * u) i 2 iA(ud ~$6) 
s-m 

which shows unequivocally that the u-pole has a factorized residue with the 

correct sign for a physical particle of positive norm. 

Finally, we remark that the results for A 
44- 44 

.Eq. (4.26 1 and 

A 
uu- 44 

,Eq. (5. 10) may be derived in the large N limit from an effective 

Lagrangian: 

s?= +: (arj,2+(az,2: - + 

--&a:(I12+X2)2: n 

(5.12) 
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where 

a-’ = J( E, p2 = 0, m2) 

and the fields n and Z are nonlinear canonical transforms of q4 and 0, where 

(5.13) 

which transform as 

y-lj = bijT $2 = -l-I. 
1 (5.14) 

The effective Lagrangian (5. 12) is to be supplemented by the subtraction 

convention: 

/ 
ddx elm’ x 

<‘I’ [@2W + ~2k))(,,2(Ol + C2(0))] ‘E 

(5.15) 
Z - -i N[J(e , pz, m2) - J(E, 0, m2)] 

As an illustration, we compute the on-shell $4 - 4$ amplitude using the 

effective Lagrangian (5.12) and the subtraction convention (5.15). we 

have, in the large N limit: 
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iA&b -M 
(s) = -i $k ii + $C-aIn [J(E, p2, m2) - J(E, 0, rn2)ln 1 

n -1 

2 = -i - a 
N i +a[J(e, p2, m2) - J(E, 0, m2)] 

or 

A$4 +ds) = - NJ(E “, m5 . , > 

The fact that Eqs. (5.12) and (5.15) describe the dynamics in the 

upper phase completely will be demonstrated in Appendix B. 

Note that we start with a Lagrangian, Eq. (3. i), depending on one 

parameter, ho. In the massless theory of the lower phase the coupling 

constant renormalization introduces an arbitrary mass scale M. However 

the renormalized theory still depends on a single parameter; if M changes 

so does the renormalized coupling constant A, as controlled by the p 

function. We have succeeded in constructing an effective Lagrangian for 

the symmetric phase which depends on only a single, (renormalization 

group invariant 1 parameter, m. Thus the fact that in this Lagrangian the 

mass and (quartic) coupling constant are not independent parameters as 

they would be for a general linear u model should come as no surprise; 

it had to be the case. 

The normal-ordered Lagrangian (5. 12) without the subtraction 

prescription (5.15) is superrenormalizable. However the subtraction 
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rule changes the theory to be just renormalizable. This is clear if one 

makes use of the connection between the renormalizability and the high 

energy behavior of a theory. Without the subtraction rule A 
&a- ds’ - 

const = -2a/N as s -m, whereas when the rule is imposed, this amplitude 

grows at high energies (consistently with unitarity). 

In order to compare the short and long distance behavior of the 

upper phase it is useful to introduce a new effective coupling constanty, 

which measures the strength of the four-point proper vertex at the distance 

scale M. In analogy to the renormalization of I? (4) in the lower phase, 

we require 

r (4) 
6 

(s = -M2, pi2 zm2) =-j;m2- E (5. i6) 

Using Eqs. (4. 26) and (5.16) to compute the Callan-Symanzik function, 

call it p(x). we find 

-- ax PO.) = M a~ 
(5.17 1 

= i4E - 2)+ 
X2N 

(4n)1 + E/2 lY2 
a(i - a) 

1 
2-e/2 

+ a(1 -cY) 

The fact that c is a nontrivial function of 7 serves as another proof that 

the subtraction rule modifies the theory from being superrenormalizable 

to simply renormalizable. From Eq. (5.17) one can verify that p has an 
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ultraviolet stable zero at x = Xc and furthermore that 

lim 5’ (X, = lim P’(X) = - E 
A- A, - o+ A-A -0 

c - 

These properties are in accord with the general argument presented in 

section III based on the continuity of the short distance behavior across 

2 
the phase transition. Finally, by expressing m in terms of A via Eqs. 

(5.16) and (4.26) one finds that for large 1 

P(X)-%xIE - 2) . 

That is, as M + 0, the effective coupling strength% increases at a linearly 

increasing rate. 
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VI. CONCLUDING COMMENTS 

Finally, we would like to discuss two areas for further study. The 

large N approximation which we use is a very powerful method that makes 

it possible to sum perturbation theory to all orders in AN and thereby 

derive nonperturbative results, such as the existence of the phase transition. 

It would be interesting to go further and examine the higher order corrections 

to our results. Already in leading order in N the theory satisfies unitarity 

(in particular in the strong coupling phase, where this was nontrivial and 

required proof) and the full O( N) symmetry is restored and realized 

linearly in the strong coupling phase. Higher order corrections will 

presumably maintain these general properties. However these corrections 

will presumably include derivative interaction terms of the form 

s (2 * 8~ )‘f(x ‘) + G (aX )‘g(x ‘1. It would be interesting to calculate 
N 

- e 
N - d 

these terms. 

Another problem which deserves further analysis is the property of 

dimensional regularization whereby the positivity of operator products 

and associated integrals is not preserved. It is easy to see why this happens. 

The essence of dimensional regularization is that a divergent integral 

is defined by analytically continuing (in d) the function to which it is equal 

where it is well defined. For example the integral of Eq. (1. 10) is convergent 

for 0 < d i 2 (and m‘ # 0) and here it is positive, as it must be. For 

d >_ 2 it is formally defined by the continuation of the right hand side in d. 
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There is no reason why this analytic continuation must be positive and indeed 

it is not. In contrast, if one cuts off the (Euclidean) momentum integration 

at k2 = A2 the result is (for E > 0) 

E 

<b2> = (m2) 2 
A (4,)’ + “’ 

h Rz + + In2 L2 
m2 m 

Again, this is positive as it must be since for finite A2 the integral is 

perfectly well defined. Thus, although there is no mystery mathematically 

about this aspect of dimensional regulation it is inconvenient in practice. 

What would be desirable would be a method of regularization which is . 

Lorentz invariant, respects the Ward-Takahashi identities, etc., but 

retains the naive sign of the operator products. 
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APPENDIX A 

We shall evaluate the tree- and one-loop-contributions to the generating 

functional to proper vertices I. We shall only present the divergent part 

of the one-loop contribution, mainly to verify the argument of Section II. 

The method of evaluating IY up to one loop, by applying the steepest 

descent method to the functional integral ZS of Eq. (1. 91, is by now well- 

17 
known. In the following we shall suppose this knowledge on the reader’s 

part. 

The action S is given in Eq. (1. 13). We shall shift the origin of the 

functional integration variables $I 

(A.1) 

so that S + / ddxJ. $d oes not contain linear terms in B, which determines 

j[JJ. Up to one loop, $[J] is the argument of F. .” - 

Denoting $[J] by e, and regarding B_(x) as functional integration ,w- Y 

variables, we write the Lagrange density as 

2 2 
+z)-’ - + p B 

(A. 2) 

+$ ko2(a$)2(Q* B)‘(i +z)-~ +&B3) _-,.a 
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where we have used the abbreviation z = X0$/4. The task is to perform 

functional Gaussian integrations for the terms in the second bracket on 

the right hand side of Eq. (A. 2). The actual evaluation is considerably 

facilitated by the change of integration variables 2 + B(1 + z): 

2 
+ ;(aB)2-$-22 

{ I 

+ 
{ 

-ko(wm y$- y(i + z)-’ 

1 
- s ho~2B2~2(2 + z) dd 

+$ X~(B . a?)(t.a$)(i + z)-’ 

+$ Ao2(+ a$)’ B2(i +z)-’ 
,” ‘-‘M 

- $ xo2(i- B_p * a pk. a 4~1 + z)-2 

- a AoB2(a$)2(1 + z)-* 
- - 

+i Ao2($’ B)‘(a#?, +Z)-‘) + 6?(B3) (A.3) . N 

The one-loop divergences in I (1) arise entirely from the contraction 

of BiBj in each term in the third bracket above, and the iteration of the 
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first and third terms in the third bracket in Eq. (A. 3). Thus 

I?~‘[$ = [$ta$2(l + z)-2 - { t2 ddx , 1 (A.4) 

and 

= <B2> 
N E 

+$xo2($* a$)'(4 + z,-"-+ X0’& (4. L Ad af)‘(i + z)-2 

- $ Ao(a$)‘(i + Z )-I +3X a (A. 5) 

which arises from the contraction of B.B. within the same term, where 
1 J rv 

<B2> J d 

- E 
=(N-*) dk i 

(2~)~ k2 - p2 
= ICE, p’)(N - 1) 

The divergences which arise from the iteration of the first and third 

terms are 

2 

- Ao2Eij(t. a ‘$(a” $)$,+A:6ijb,ik. a$‘}(1 +Z)-’ . (A.6) 

Now 
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ijd< ( d x T (a~Bi(xi)Bjix)(a”Bk(0)) BP(O))> 

N ->I (E, p22(6. 6. 
lk me 

- 6. 6. 
1~ Jk 

1. (-4.7) 

Combining Eqs. (A. 6) and (A. 7 ) we obtain 

[$i)] div = A2 
2 

- $+ I (E, p2)jddx ((a4v2 6’ - (4. ad’\(i + z)-2 
-- - N (A.8) 

Combining (A.4, 5, 6), we obtain finally 

N-l 

I 
-; Ao(a,$)2(i + 2) 

-1 -- 
2Tre 

A2 
+o 

8 ( > 
E ( 4. a$)‘(1 + z)-2 

AA N 

X02 
+ 8 & k2cad2(i + z)-’ 6. 

t-4.9) 

The divergent terms proportional to (N - 1)(2rre)-’ may be transformed 

away completely, except the last term propoPtional to x,P’, by the 

following transformations: 
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A = x+6x 0 

= A l+yJ;2)] 
[ 

) (A. 10) 

(A. 11) 

Note further that 

&J = &L [i +; A;; 3, (1 +$ $,“)I 

The divergent, induced mass term is 

g(z) = i(z) A(1 +; mrz> 

(A. 12) 

(A. 13) 
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APPENDIX B 

The purpose of this Appendix is to present a discussion of the dynamics 

in the upper phase, alternative to the discussions given in sections III - V. 18 

The method we shall use is, strictly speaking, justifiable for small [ho ( . 

This is the case, for example, if A>> A, and A << 1, for 
C 

X0 = -Ac(4 - AC/A)-’ = -A C’ These conditions are met if A is positive and 

finite, and N is large. 

We begin by rewriting ZNL of Eq. (1.2) in a parametric form: 19 

ZNL[2] = ndx(x)nS I - x ~2-f$=wijddxj$ia~)Z +;*z} 
63.1) 

= C $taL)’ - p(X$’ - $)+ ,J - i) 

where C is a constant independent of J. We shall discard it hereafter. 

We are free to translate the integration variables p(x) uniformly by a 
., . 

finite amount, mL. 12, say, where m‘ is to be chosen at our convenience. 

Therefore, Eq. ( B. 1) can be written as 

0.2) 

+ J.x 1 ddx (B. 3) -u 

where we have resealed the variables p by p - A oP/2* and dropped again 

an inessential multiplicative factor. 
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The functional Zp is just the generating functional of Green’s functions 

of a theory of N component scalar bosons interacting with an external 

potential A,p(x). It can be written as 

In zP[z] 

-- i Tr In <x II - (B.4) 

where Tr means the trace operations on N components as well as over 

space-time variables, and 

<XI-~ -m2 - Aop /y> = [-a2 -m2 - ~~~(x)]h~(~ - y). (B.5) 

It is useful to expand the right hand side of Eq. (B. 4) in powers of X0. 

Symbolically 

J. _ & _ m2 *_ Aop + i6 2 = ,J ’ a,; + i . A,(AoP)A,? 

(B. 6) 

+ J * AF(Ao!3)AF(Ao)3)AF~ +fl(Ao3) N 

and 

-Tr In 
1 - 

-a2 _ m2 +i6 
-i AONI(e, m2) 

+ A; ;j-ddx ddyW[aF(X - y)]2P(y) 

+ ho3) (B.7) 
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where A 
F 

= <.x (-a2 - rn2 +i6) -1 j y’ = AF(x - y; m2 ). 

In the spirit of the steepest descent method, and buttressed by the 

assumption X0 << 1, we shall ignore terms of order X03 and higher in 

Eqs, (B. 6 -7) henceforth. 

We substitute Eqs. (B. 6 - 7) in Eq. (B. 41, and then Eq. (B.4) into 

Eq. (B. 2). The result is 

ZNL[:l = e 
-$A,; 

J ndP(x) e 
; jddxkVx)[i - AONI - Xo~2(x)l 

x 

X exp+ 
‘J 

ddx ddy P(x)<xI K [y”P(y) , (B.8) 

where 

iX OZN 
<x(K[y> = - 2 AF 2( x - Y; m2) - Ao2j(x) * AF(x - y; m2)(y), U3.9) 

and, as before, I = I(E, m2) and 4(x) is defined as 

$x’ = ddyAF(x - y; m’)J(y) (B. 10) 

We must nowchoose m by some criterion. We shall demand that 

the single particle propagation characteristic expressed by the exponent 

of the first factor on the right hand side of Eq. (B. 8) 

;;* AFJ_ = ; 
/ ddx ddyJ(x) * AF(x - y; m2)z(y) 
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not be modified by the terms that arise from the p(x) integrations. As 

we shall see, this is achieved by choosing m such that 

1 - ho NI(e, m2) = 0 (B. 11) 

2, This is the mass eigenvalue equation for m , discussed elsewhere in the 

text: m2 # 0 only if X0 < 0. 

Equation (B. 8) is now simple: 

ZNL[L] = exp(- $2. AFL) 

(B. 12) 

x ~~dPk)exp iJ[$KP -(> <)p] , 

in a symbolic notation. The functional Gaussian integrations implied can 

be performed, with the result that 

[$ = $lddx ddy/-_JCx) * AF(x - y; m2).J(y) 

<x 1 K-’ [ y’ t’(y) 

+$trln <x[K[y> 

(B. 13) 

where tr denotes the trace operation over space-time variables (and not 

over N components ). It turns out that the contribution of the last term is 

of order N 
-1 

compared to the rest (we leave this statement for the 
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reader’s verification), and we shall ignore it henceforth. 

It is necessary for us to examine the structure of <x [ K-* [ y> 

more closely. We write 

<x[Kly> 

A02N 
= - a-i [e(x - y) - a <x 1 L 1 y>l 2 (B. 141 

where a 
-1 

= J(E, 0, m2) 

J(E, p2, m2) = i 
i 

m2 (p -k)2 - m2 
(B. 15) 

as before, and 

<xILly> = (x-y) + Jgd(x-y) I 
+ :2(X,* AF(x-y; m2)$y). (~.i6) 

We can now invert K: 

<xIK-ily> =+a<xI[i-aL]-*ly> 

x0 N 
(B. 17) 

=&a~am<x[Lm/y>,IJo)=i 

0 m=O 

Substituting Eq. (B. 17) into E q. (B. 13) we obtain finally 

+ln ZNL [Jl = I d ly d x ddy ~$x)<x 1 - a2 - m2 1 p $4~) - _J(x). sd(x - Y)$~) 1 “I 

1. 
-ziGa c am$(x)<x 1 Lm 1 Y>~(Y) 

I 
, (B. 18) 

m =0 
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where kis given by Eq. (B. i0). It is of interest to note the Fourier 

transform of <x 1 L I y> : 

<plLlq> = 
i 

ddx ddy e i(p . x - 9 . y) 
<XILlY~ 

= - (2n)d6d(p - q)[J(e, p2, m2) - J(E, 0, rn’)] (B. 19) 

2 dv 
+- 

N $P - k) . 

where 

gk) = /ddx eik ’ x$(x). 

As noted in Section V, the above result (B. 18) may be derived from 

an effective Lagrangian 

yeff = :i(aX_,2 -$m2L2 -&(s2)2: (B. 201 

in the large N-limit, with the proviso that in the construction of the 

S-matrix, the following rule be used: 

i ddx .iP * x <T(~~(x$~(o))>e = N[J( E, p2, m2) - J(E, 0, m2)] (B. 21) 

Finally let us evaluate the effective coupling constant a: 

a-*’ = iJ(g,“i,2 t m2)2 = I?(1 - 5-(<)‘(4rrn’j-’ (B.22) 
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so that 

a = 4mn 
2 

asc “0 
+’ In the same limit the effective Lagrangian is 

Peff = : ; (& )2 - trny - Eg (x2)2 : 

(B. 23) 

(524) 
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APPENDIX C 

The following identities are useful in understanding Section II: 

ddx ,.,(‘) 6r = 
‘1 &j(X) 

qzki [xl + ti + z )fil] 

+ (5 * apS)a%i(4 + z)f2 (C.1) 

+t5 * aS j2 Si[2f2 +(l+z)f ’ 
2 1 + 26 $1 + zig’ 

where Xij(0) is given in Eq. (2. 14a) and the form of r is given in Eq. (2. 22). 

I 
(ai)2$li + &3[2(K2(~) - KJz)) - (1 +~z)Ki(z) 1 

-(E * ape )apEi(i + Z) -‘[2Ki’ (z) f K2(z )] 

- (5 * at)’ Ei 2(1 + z)K2’ cc. 2) 

where Xij has the form given in Eq. (2.331, and I!” is given in Eq. (2. 19) 
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We have enclosed a corrected version of the page (p. 36) on which 
these formulas appear. These changes have no effect on any of the 
rest of the paper. 

Secondly, in footnote 6, the second last sentence, “The large 
N expansion has also been used in statistical mechanics.. . ” should 
be expanded to read “The large N expansion . . . (Cambridge Univ. 
Press, 1971); R. Abe and S. Hikami. Prog. Theor. Phys. 2, 1851 
(1973); S. K. Ma, Rev. Mod. Phys. e, 589 (1973) and references 
therein. ” 
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op tit; lectures at Les Houches, 1975 (to be published). 

13 By “second order” phase transition we mean only that the order parameter 

is continuous across the transition. 

14 The N which appears in Eq. (3. 21) for xc is really N - 2, reflecting 

the fact that the nonlinear O(2) c model is a free field theory. In this 

case there is of course no phase transition, no renormalization, and no 

p function. 

15 The critical exponent for an order parameterp , called p, is defined by 

P = lim 2X-E 
A +o alog A 

-I- 

where A = A - A C’ There should be no confusion of this constant with 

the Callan-Symanzik p function. 

i6 S. Coleman, Commun, Math. Phys. x, 259 (1973). 

“See, B. de Witt, Phys. Rev. 162, 1195 (1967); 162, 1239 (1967); B. W. 

Lee and J. Zinn-Justin, Phys. Rev. D2, 3121, 3137, 3155 (1972); E. 

Abers and B. W. Lee, Phys. Repts. s, 1 (1973). 

18 

19 

Our approach here is in spirit similar to, but in emphasis different 

from, that of E. Brgzin and J. Zinn-Justin, Ref. 4. See also D. Bessis 

and J. Zinn-Justin, Phys. Rev. DZ, 1313 (1972). 

Here x and o (see Eq. (B. 10)) are N-component vectors. 
nJ N 
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Fig. 5.1: 

FIGURE CAPTIONS 

Dominant graphs which contribute to A 
F ij 

for 

the Lagrangian (1.9 ). 

Dominant classes of graphs which contribute to 

AF ij for the Lagrangian (1.3). 

m as a function of h/AC for (a)s = . 1; (b)e = .Oi. 

m as a function of XN for E = 0. 

The Callan-Symanzik function p(A). 

The leading graphs which contribute to the Tij 

functions. The graphs for T2i are simply reflections 

of those for T 
12 

and hence are not shown. 

The bare four-point vertex i I-. (4) in the upper 
ilk1 

phase. The vertex includes an infinite sum of daisy 

loop corrections. 

Graphical representation of the matrix ZZ. 

Graphical and analytic form of the equation (4. 14) 

for Tij’ 
The figure illustrates the ij = 11 and 12 

components of the equation. 

The leading classes of graphs which contribute to 

r (4) 
S and A&)+ e@ 

The classes of graphs which give the dominant 

contribution to A 00-r $J$ 
The dotted lines denote 

c particles and the solid lines denote o particles. 



Fig. 5. 2: 
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The classes of graphs which give the dominant 

contribution to the ~$4 + 066 scattering amplitude. 

The dotted lines denote u particles and the solid 

lines denote 4 particles. 
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