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ABSTRACT 

A simple lower bound on the ground state energy density is de- 

rived for a scalar field on a lattice. This bound is applied to $4 theory 

in one space and one time dimension and the results compared with 

available upper bounds. 
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There has been in the last several years an increased interest in 

developing non-perturbative methods for computing the properties of 

field theory. 
1 

This is based on reservations one has about the appli- 

cability of perturbation theory in certain regions of choice of parameters, 

especially in regions where the theory in question may undergo a phase 

transition, and generally in any strong coupling region. To this one may 

add the uncertainty regarding the existence of a convergent perturbation 

expansion for any value of the parameters. (As simple a problem as the 

anharmonic oscillator Schrodinger equation fails to have a convergent 

expansion. 1 One general class of approaches to non-perturbative 

treatment begins with the simplification of placing the field theory on a 

discrete lattice. Within this class there are two broad subclasses. 

One may rotate the time axis into the complex plane, and make both 

space and time dimentions discrete achieving a certain similarity to 

lattice spin systems about which a great deal has been said. 
2 

Or one 

may make only the spatial dimensions discrete, and leave time as a 

continuous parameter. 
3 

The latter approach seems more natural when 

the Hamiltonian is the central object of study, the former when considering 

generating functions. This paper is concerned with the second of these 

alternatives. 

Having made the initial concession of the lattice approximation 

it is up to one’s ingenuity to obtain computational methods which ex- 

ploit the simplification while giving up as little further ground as 
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possible. Towards this end it is advantageous to have at one’s 

disposal rigorous bounds against which one may compare one’s latest 

favorite approximations. Some progress can be reported here. In a 

closely related paper, Drell, Weinstein, and Yankeilowitz, 
4 

hence - 

forth DWY, describe a variational upper bound on the ground state 

energy density of $ 
4 

field theory in 1 + 1 dimensions. Here we shall 

describe its natural partner a lower bound for the same quantity. In 

concert these bounds, at least for large values of the coupling, are 

capable of giving an absolute limit on the energy density of a few 

percent. 

In section two we will briefly introduce the notation and define the 

problem, and then derive the lower bound. In section three we will 

describe some numerical results for the energy density. 

II. The Lower Bound 

Suppose we are given two operators H and Ho acting in the same 

Hilbert space. All of the eigenvalues of Ho will be tower bounds to 

the corresponding, i. e. ordered, eigenvalues of H if their difference 
n 

A : H - H” is a positive semidefinite operator. This is too strong 

a condition to be of use though. Since we are concerned with the 

ground state the much weaker condition <O 1 A 1 O> 2 0 will give the 

bound Eo> Ei, where HI O> = E,, 1 O> and Ei is the lowest eigenvalue 

of Ho. This is easily shown for if <O 1 A / A> 2 0 then 

EO=<O~H~O>=<O~Ho~O>+<O~A~~ ZE; (II. 1) 
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We shall exploit the bound II. 1 by constructing an Ho corresponding 

to the lattice Hamiltonian H in such a way that the degrees of freedom 

are separated into identical but uncorrelated blocks, and hence an Ho 

which is diagonalizable by numerical methods. Before doing this we 

must set up the formalism of a field theory on the lattice. 

We begin by setting up ~notation. Supposing that the spatial 

dimensions are discrete we may associate a field strength $n (t) with 

each site of a Cartesian lattice. The sites are labeled by a d-tuple 

of integers n, with d the number of space dimensions. We will choose 

units such that the lattice spacing a is unity so we may also identify 

13 as the coordinate. The conjugate momenta to the field strengths will 

be denoted by rn (t 1 which in the example we consider will be given by 

don(t)/dt. Quantization is to be accomplished by [or tt), $m (t)] = 
r2 

-i 6 
la>%’ 

Since we are only interested in the static properties of the 

ground state we will drop the time dependence after this. 

The particular model we consider is e4 field theory, for which we 

choose the Hamiltonian in the form 

H=5;+fln2 + Xtb2n -f2j2++ &D2,,m$em (II. 2 1 

The D2 term represents the gradient term in H. Following DWY 

we find the form 

D2 = D2(n - m) 
Q,Q - - T 1 s 2 ik. q g -n dkke- :Ql -Q) 

(II. 3) 
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to be most convenient. It possesses several desirable properties 

which are discussed elsewhere. 4, 5 This leads in a natural way in the 

limit to the usual continuum form. When the cutoffs are removed Ii. e., 

2 
a + 0) D essentially becomes - b 

2 
6 (x - y). Happily we may con- 

struct the analog of the usual momentum operator 

P=-ixrrD 4 
n_,m n-n,m ?e 

ll 
1 

D d’ 
ik_.(m- n) 

-Q,‘21 = (2ald -TI -J k_e 

III. 4) 

and discover that it is the generator of, at least, discrete translations. 

One has 

e 
-iP.n 

- %? 
iP*n 

= “m fn’ - - 

This momentum is NOT generally conserved (It doesn’t commute with 

the o4 term in H), but it is conserved up to integral multiples of 2ir 

(or reciprocal lattice vectors). This will turn out to be important. 

At this point we have a well-defined problem to solve. The 

Hamiltonian II. 2 has an infinite number of degrees of freedom, 

though, and so some further approximation is needed. This approxi- 

mation we now make by modifying the derivitive term in H to give an Ho 

satisfying the bound II. 1. Consider Ho given by 

Ho = G+rg2+ X1$2-f2)2+ \c,E2,,,Q,m, 
(11. 7 1 
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or 

A = $c (D2 
4-m 

-ijZn m!$ 4 

4, m 
_I_ 4m 

(II. 8) 

where D2 is a real symmetric BLOCK DIAGONAL matrix with identical 

blocks. In the remainder of discussion we will restrict ourselves to one 

space dimension for clarity. There is no restriction in principle though, 

or in practice for a hardy soul. This Ho by design is numerically sol- 

vable (in principle at least) since it is the direct sum of “effective Hamil- 

tonians” on a finite number of sites. If we can choose D2 in such a way 

that <01.&l O> z 0 we are done. < 0 1 A 1 0:. depends on the two point 

function < 0 1 $,ern I O>. We can, by our previous discussions, write 

a spectral representation for this matrix element. Saturating in a complete 

basis of momentum eigenstates, and demanding that the vacuum be in- 

variant under discrete translations one may obtain 

< ,ol bin$go> = 
J 

dp p(p) e-ip(m - n) ;p(p\ z 0. (II. 9 1 

Thus <Ola IO> z 0 if 

.ip(m - n) UT2 
m,n m,n 

- DZrn n) > 0 (II. 10) c 

This is’probably not the weakest available condition on ?? that 

one may obtain. For free field theory one discovers that 

is2 
= n,m 

1 c K K2eiKcn - mi 
2N + 1 

; K = 2nj/(ZN + I) III. Ii) 

when n and m are in the same block of size 2N + 1, and zero elsewhere 
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will in fact satisfy ~0 / A 1 O> z 0 by explicit construction of the 

spectral weight p, but fails to satisfy the inequality II. 10. This D2 

moreover gives better lower bounds (higher 1 as well as having interest 

as the natural generalization of II. 2 to a finite lattice. We have been 

unable to show under what conditions if any, for an interacting field 

theory, II. ii provides a lower bound. 

The program is now clear. One selects a blocksize for Ho 

-2 which one can deal with practically, and chooses the elements of D 

in order to satisfy II. 10. How to do this is a matter of numerical ana- 

lysis, and taste, which we now discuss. 

III. Applications 

One has complete freedom in choosing the matrix elements of 

-2 
D , and in the most general calculation one could vary over the matrix 

elements subject to the constraint II. 10 so as to maximize the ground 

state energy of Ho. We have chosen to consider a well-defined pre- 

s cription for D2 which satisfies II. 10 and seems to be justified intui- 

tively. In particular we first suppose that within each block of size B 

that D2 n m only depends on / n - m I . Equation II. 10 as a 

function of p is periodic 2rr, and we only need to consider the interval 

-77 5 p 5 TI. Thus it may be rewritten as 

P2 

B-l 
2 iT2 (0) + 2 c - B-n 

B 
-2 D (n) cos trip), 0 2 p 5 TI (111.1) 

n=l 
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where the sum over D2 may be done explicitly from II. 3, and 

fi2 
n, m 

?2((In-m 1 ). Supposing that for the ground state it 

is important to treat the small p region as well as possible we expand 

the right-hand side of III. 1 in a power series in p‘ of B terms and 

demand equality thus fixing E2. The remainder in the expansion can be 

shown to be negative, and so this choice for is2 satisfies II. 10. In table 

III. 1 we present for the first few values of B the matrix elements of D2 

within a block. 

The II0 we have constructed may now be diagonalized numerically 

for different values of parameters giving lower bounds for the energy 

d ensity in the ground state. The way in which this has been accomplished 

is to first diagonalize the “local” operators in II’, i.e. those which only 

depend on the degrees of freedom at one site, in a large harmonic 

oscillator basis so as to generate a basis of anharmonic oscillator 

states, and compute in these states the matrix elements of the coordinates e 
n 

This procedure is straightforward. The “local” Bamiltonian may be 

constructed as a matrix of size N x N directly from matrix representations 

of bn and in of size (N + 4) x (N + 4). This is necessary to eliminate wrong 

matrix elements from appearing on the edge of the matrix. The oscillator 

frequency may be considered a variational parameter. This procedure 

is very easily made to give precise results. If the oscillator frequency 

is adjusted correctly a 3 X 3 matrix will give a ground state eigenvalue 

which is accurate to within 0. 1% for all values of the coupling constant. 
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In the numerical results here a 50 x 50 matrix was found to give the 

first 20 or so states (i. e. eigenvalues and eigenvectors 1 to about eight 

significant figures. The total effective Hamiltonian in a block is then 

rediagonalized in a basis of the first M anharmonic oscillator states at 

each side. Its lowest eigenvalue is then studied as a function of M, and M 

is increased until it has converged to a desired accuracy. This lowest 

eigenvalue divided by B, the number of sites in a block, is then the desired 

lower bound on the energy density within the above-mentioned accuracy. 

In practice the lower bound was required to converge to within a small 

fraction of the distance of the lower bound to the best available upper 

bounds. For the one site block one is already finished when the local 

Hamiltonian is diagonalized. For more sites in a block, here we have 

computed for B = 2 and 3, the effective Hamiltonian is again constructed 

as a matrix which is a direct product of single site operators. To obtain 

results which are accurate to three significant figures over the range of 

parameters considered it was necessary to keep 4 or 5 states per site 

in the two site case and 6 or 7 states per site in the three site case. The 

contribution from states when all of the local oscillators are highly excited 

was not important, and comparable results were obtained in both cases 

when only states were kept for which the total number of excitations was 

limited, with much smaller matrices to diagonalize. The rate of convergence 

for this procedure was found to be very crudely exponential with about two 

states per site per significant figure required in the three site case. The 
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methods for obtaining upper bounds to this particular problem have been 

discussed in detail in DWY. 

In figure III. 1 we present a set of bounds for the Hamiltonian II. 2 

as a function of f2 with Xfixed at 1. The shaded region is that between 

the best upper and best lower bound. Indicated as well are three trivial 

lower bounds for comparison. One is the classical minimum energy 

density, one the ground state energy density of massless free field 

theory, and last the ground state energy density of massive free field 

theory with a constant potential chosen so that A ( e2 - f2)2 2 2 2 
$1 $4 +c. 

By computing with only three sites per block the energy density is con- 

strained to within several percent of its value over the indicated range. 

IV. Conclusions 

The bound which has been presented is useful as a diagnostic tool 

for investigating other less conservative methods of computation. With 

considerably less justification one may attempt to extract information 

from the approximate ground state wave function which results from the 

calculation. For example, the vacuum expectation value of local operators 

may be computed in the approximate ground state. Some further infor - 

mation of the same kind can be obtained by studying for both upper and 

lower bounds their dependence on a term like JO( $) added to H, where 0 

is some operator. This is because <O [O(e) [ O> J = de/dJ, and by studying 

both bounds one may constrain d e/dJ. 
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The issue of renormalization is an important one, but has been ig- 

nored here. One must of course have some justification for computing on 

the lattice in a given range of parameters. The present method cannot 

shed any tight in this direction, but rather comes into use after one has 

attempted to deal with this problem. One hope is that by appealing to re- 

normalization group arguments one can extrapolate to a strong coupling 

regieme where the approximations become valid. 

We are pleased to acknowledge useful discussions with our col- 

leagues at SLAC especially R. Blankenbecler, S. Drell, M. Weinstein, 

and S. Yankeilowitz, also R. Savit at FNAL. Thanks also go to the 

Applied Math division at Argonne for their development of the program 

SPEAKEASY. 
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Fig. III. 1 
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Figure Caption 

Plots of bounds on the ground state energy density 

of the Hamiltonian II. 2 for X = 1. 
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