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ABSTRACT

An analysis of an extensive sample of the world's data has been per -

formed to test the hypothesis of radial scaling, We have studied the inclusive

reactions:
S
pt+tp- Ks: + anything
P

to determine the behavior of the invariant cross section as a function of P

*, %
Xp = E /Emax’ the radial scaling variable, and s. The data cover a range

in p, from 0.25 to ~6.,0 GeV/c and a range in N s from 3.0 GeV to 63 GeV.

1) For small x_ and all available P the single particle inclusive cross

R
sections for the reactions:
+
™
ptp-— Kt + anything
P

to a good approximation scale for all 8, even down to the kinematic

threshold.

2) For large xR+ the single particle inclusive cross sections for

increasing N's show a rapid approach to the scaling limit from above., In
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these cases the scaling limit is always approached by ¥'s = 10 GeV. Thus
data for all particles to a good approximation exhibit radial scaling at all

available p | and x_, over ISR energy range,.

R

A comparison of radial scaling with Feynman scaling is given, It is

shown that in the Feynman case the cross sections for small X,

£ *
(x,=py lpmax) approach their scaling limit from below, and that the
approach to the scaling limit is slower than is exhibited for the case of
small Xp-

The systematic differences among the inclusive cross sections of
various particles are discussed in the range of N8 where radial scaling haa

been shown to be valid. In particular, the Py and Xp distributions of

E do/ dp3 are examined,
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I. INTRODUCTIODN

In a separate paper we have presented 4data on inclusive 72
producﬁion from pp collisions at the Fermi National Accelerator
Laboratory.1 Here we present an analysis and interpretation of
these 7° data. 1In addition we examine other single particle
inclusive cross sections to search for systematics in their
behavior.

To study the single particle inclusive experiments, a set
of variables should be chosen such that the single particle
inclusive cross section displays the simplest behavior with respect
to energy, p,., center of momentum frame angle, etc. It is matural
to choose a parameterizatioﬁ of the inclusive cross section: which
is meaningful in the exclusﬁve 1imit.2 We therefore define the
scaling variable:

Xp = 'ET——— ‘ . (1}

EAmax

*®
where E = the energy of the detected particle in the center of
L]
momentum frame, and E max.= the maximum energy kinematically
available to the detected particle in the c.o.m. frame. The

range of x, is 0 < x_ 2 1 for all p,, and the case x, = 1 cor-

R R ™ R
responds to the exclusive limit. Since this variable ig indepen-
dent of the center of momentum angle and depends on only the
radial distance from the kinematic boundary, we have called it
the "radial™ scaling variable.

Using this variable x the proton-proton single particle

Rl‘
inclusive cross section can be expressed as a function of three



variables s, p; and Xp?t

E 901' = f(s; Py xR) (2)

dp

where s is the square of the total c.o.m. energy. In this work
we study whether the invariant cross section at sufficiently
high energy scales, that is, becomes independent of s. It is
shown that this scaling is reached at a lower s than obtained
with the use of the Feynman variable Xy -

In an analysis of a single 7° inclusive experiment in p-p
collisions’ it has been shown that for sufficiently high vs

(Y€ 2 10 GeV) there is radial scaling:

ES%S = flpy, xg)- (3)

This scaling is observed for 0.3 GeV/c 5 p; £ 3.0 GeV/c and for

10 Gev £ /5 £ 27 GeV and for center of mass angle 20° ¢ 8" < 150°,
1t is therefore interesting to test this new form of scaling over

as wide a kinematic range as possiblé for other particles produced

in p-p collisions. We shall discuss the reactions:

T
p+p+ K
P

+ anything.

* 1+ OH

In Section II, the variable Xp is discussed and it is compared

with the Feynman scaling variable X, - Section III is a discussion
of the method of data analysis. A comparison of radial scaling
with Feynman scaling is given in Section IV. Section V is a
presentation of the various systematic differences among single

particle inclusive cross sections for various particles in p-p
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collisions in the radial scaling region. A summary is given in

Section VI.

I1. THE Xp VARIABLE

in an analysis of single 1 inclusive production,3 it has
been shown that the s-dependence and the laboratory angular
dependence of the invariant cross section could be succinctly
described by writing the invariant cross section in terms of
the transverse momentum p; and the variable x.. This variable

may be written in Lorentz invariant form as:

M 2 M 2

" ]_—.L. +_C_

* s s

Xp = % = ’ (4)
E

max M 2 M 2
1 - X 4 £
s B

where M_ = the invariant mass of the unspecified particlel{s)
{undetected}, ﬁx = the minimum possible M  value, M_ = the

rest mass of the detected particle and s = the square of the
total energy in the center of momentum ffame. The variable xR
has been used by several authors and was probably first used by
Kineshita and Noda4 in 1971 élthough apparently it had been
discussed by Feynman5 in 1965.

The maximum energy (E’max) kinematically available to the

detected particle c in the inclusive reaction:

p + p~+ c + anything
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is dgtermined by s, the sguare of the total energv in the c.o.m.
frame, by the mass M_ Of the detected particle c, and by M,, the
minimum mass of the undetected particle system consistent with
guantum number conservation (charge, strangeness, baryon number,
etc.). For a single particle inclusive reaction this minimun
value of M, corresponds to the exclusive limit. A compilation

of the minimum wvalue of Hx and the exclusive limit reactions is

*
given in Table I. We can express E as:
max
N s-M24em?
E - X (<] . (5)
max 2/;

Since Xp is a ratio of total energies, the value of xp at the
particle c production threshold is 1, and for fixed, finite

*
E , Xp = 0 only at infinite s.

The radial scaling variable X is distinguished from the

* * *
Feynmansvariable x =P /P = 2p. /¥S in that the detected
i 1 max li
TABLE I
Inciusive Reaction Exclusive Reaction ﬁx
+ . + 2
p+p-+n + anything P+p+p+n+w 1.88 GeV/c
p+p-+ = + anything P+p=~+p+ 5 + n+ + 7~ 2.02 GeV/c2
p+p-~+ 2° + anything p+p+p+p+ n° l.88 GeV/c2
p+p-~ k' + anything p+p-~+ A° + P+ K 2.05 Gev/c2
p+p- K + anything p+p+p+p+ "+ X 2.37 GeV/c2
. 2
p+p-+p + anything P+p+p+op 0.94 GeV/c
- . - 2
p+p*p + anything |p+p+p+p+p+p 2.81 GeV/c
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particle's total energy is scaled by its maximum value, rather
than its longitudinal momentum by the maximum momentum. The
use of only the longitudinal momentum component means that the
variable x , is not related to the location of the kinematic
boundary at finite p,. One might, therefere, expect the invar-
iant cross section to have an s-dependence for fixed p, due
entirely to kinematic effects. In particular one would expect
E dc/dp3 for fixed p; and x, = 0 to rise with increasing vs

as the point in the x,  , x; plane at which the measurement is

n
being made moves further from the kinematic boundary. Therefore,

- . * -
in the region of center of mass angle 8 = n/2, x is clearly

H
not the best variable for studying scaling-and the systematics
of single particle inclusive production. Other frequently used

variables such as rapidity:

*
* E *+p,
y =1/2 1In —_—% | (6)
E -p,
and x;:
2p,;
x‘_ e —_—, (7)
Ye

also and not related to the location of the kinematic

boundary, and suffer the same defects. On the other hand the
expression of the invariant cross section in terms of the variables
xp and p, allows the s-dependence of the cross section to be studied

R
at a fixed distance from the kinematic boundary.

It is instructive to contrast radial scaling with Feynman
scaling by examining the methods by which single particle inclusive

measurements are made. 1In both cases, consider the invariant cross
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section at a fixed p; and compare, for example, Xy = 0.3 to
Xp = 0.3. Figure 1 shows the curves as a function of s along
which these measurements are made in both cases. This plot is

. *
made in the x; = 2p;//s and x,, = 2 p, //S plane. In the limit

i
of s + » we see that radial scaling and Feynman scaling are

identical hypotheses:

do
E 5;5 ¥ fp;, xg) = £(py- x)) (8)

However, the finite s behavior is quite different in the two
cases. In the case of Feynman scaling the point at which the
measurement is made moves away from the kinematic boundary. A
large s-dependent increase in the cross section due to increasing
phase space is thereby introduced. On the other hand measurements

at fixed x, reguire that the fractional distance to the kinematic

R
boundary remain constant. In this way, it appears that the s-
dependence of the dynamics may be more directly probed.

Another property of the variable x_ which distinguishes it

R
from the Feynman variable x, is its totally diffexent s-threshold
behavior. The s-threshold for a given value of p,; is defined as
the minimum value of s which can have the specified value of

Xp O X . .For the x_ variable, this threshold is given by:

R R
- 2 2 2 = 2 2, %
5T=2-r+nx-nc+2[m +'rmx —Mc)l {9}
pel + ”cz
where: T-=——-—:———-
*r

Hence for the limit Xp = 0, the s-threshold Sy is = «, for a fixed

value of p;. The limit xp, = 1 (the exclusive limit) corresponds
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to a finite S, for finite p,. Comparing the s-threshold values

at these two extreme values of Xp = 0 and xp = 1 with the

corresponding s-thresholds for the same extremes for Xy there

are very great differences. The s-threshold for the Feynman

variable x  is determined by the kinematic boundary, so letting
*

P max be the maximum possible momentum of the particle in

the c.o.m. then,

P.max = EL—-—......_._.-—-_—.'-—_E.. = 3 (10)
1 - Y 2
Hence in the limit x,, = 0, and p; fixed,
/s, = 2p, (11}
The limit X, = 1 corresponds to Ys = » for fixed p,. Thus for
a given X, Or Xg and fixed p; the threshold energy in the two

cases is quite different.
We wish to compare the s-dependence of the invariant cross
section for fixed Xpe PL with the invariant cross section for the

same numerical value of x, at the same value of p;. 1In this way

the two cross sections will approach the same asymptotic limit.
We are interested in this approach to the asymptetic limit.
There is clearly some point at which the thresholds occur at

the same energy JsT.. This happens for: (using high energy

approximations)

2p,; 2py
x 1 - x,, 2 (12)
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ie., x=x, =x = l—.
R it /3
Hence for Xp = xil < %:, the threshold for the radial variable
2
Xp lies at a higher /s than the threshold for the Feynman variable
X,, » whereas the opposite is true for Xp =Xy > .

“ o

Finally it should be emphasized that E do/dp” is always
finite at the s-threshold for fixed X and p,;,, but is zero (exclud-
ing p-p elastic scattering) at the s-threshold for fixed x,, and
P,- This means that the cross section for fixed X, + pp must
rise over some range in vs due to purely kinematic effects. This
s~dependence seems to be a major cause for the observed fixed Xy ¢

py behavior of inclusive cross sections.

II1. THE DATA ANALYSIS

A. The Object of the Data Analysis:

The object of the data analysis is to convert the data from
each experiment into a table of invariant cross sections as a

function of ¥s for given values of p; and Xp Or P and x We

it e

divided the range of x_, into 10 bins of 0.1 units, ranging from

R
0.0 to 1.0 and the p, range from 0.125 GeV/c to 10.125 GeV/c was
divided into 40 bins of 0.25 GeV/c. The variable ¥s was not binned,
and therefore each value of ¥s of a given experiment provided a
unique entry into the compilation.

Since a given datum generally did not fall at exactly the

middle of the p,, X, or xt' bin, a small adjustment was performed
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to move it to the center of the bin. This procedure is described
in more detail later. Only statistical errors were used to dencte
the experimental uncertainty of each data point. The experiment-'
to-experiment systematic errors were estimated from the consistency
of the data set to be A + 15%, but in many cases they could not

be reliably determined, and were therefore not included.

B. Criteria for Choice of Data:

The requirement for including data in the compilation was

the existence of a published table of cross sections for the produc-
+

tion process p + p - ¢ + anything, ¢ = 2°, K:, or pi. In only a

few instances were fits to the data used to generate values of
E dc/dpa. These exceptions were made when there were no other
data in the same kinematic range. A list cof the data used is

given in Table II.

C. The Finite Binning Corrections:

Each set of data was binned in 0.25 GeV/c units of p, and in
0.1 units of x, or x, and it was found that the variation of E Qgs
R " ap

even for these small bins was sizable. Therefore, it was
necessary to adjust the data to the center of each bin, both
in p;, and in xp or x, . The value of the invariant cross

section for a given experiment entered into the compilation for

a fixed p, and Xp was computed by an expression of the form:
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do

E==5 (py , xg , 8) = E 3 (Pir %gr s} g {py. Py ) £ {xpr x7) (13}

dp dp

where: plo, xR° are the central values of the p; and Xo bins;
dg - . .
E =3 {py. Xp o 8) is the cross section averaged over the Pir Xp

o
R’

~

bins weighted by its statistical error. The functions f{x x

Rl

and glp,, plol are the finite binning corrections in x_ and Py

R
respectively. They shift the data average. from the statistical

mean values Xp and p; to the centers of the xp and p, bins (to

xRO, pio). The functions £ and g depend on the particle type,

and g(p,, plo) was also allowed to depend on x The explicit

R*
functional forms of f{;R' xRO) and g(;l, p;o) were determined
by performing a rough fit to the binned, uncorrected data. Since
these corrections are typically , 30%, a rough determination
of these functional forms was adequate to describe the data over
one bin width.
The form adapted for the f(;R, xRO) correcting function is

given by: | oun
o (1 - xg)

) = (14)

s o.n
(1 - xR)

where the exponent n is a function of the detected particle

type.
The function glp,, plo) used is given by:
- o (p;z + ﬂlz)q
glpy: PL ) = 3 2

{15)
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where the power g and the parameter m2 showed a slight dependence
on xp but was roughly independent of particle species.
Although the explicit determination of the various parameters
n, m2, g was approximate, the resulting error in these corrections
was small. It is estimated that the error in the parameter n is
+ 1, the error in q is *+ 1 and the error in m2 is ¢+ 0.1 GeV2 giving

rise to an error in the X correcting function of:

Af

i + 5y

and in the p, correcting function of

I+

.A_i = 6%.
g

D. The Rebinning in x,: .

The final stage of the data analysis was to compute the invari-

ant cross section for fixed Vs, Pzr with x, replacing Xp- This

i
was performed on the compiled data for fixed Xpr Pas by calculating
for each table entry the corresponding value of x, and using a
small correction to shift the x; binned data to the middlg of

the x, bin. This small correction (5 30%) was performed by using

the Xp dependence of E do/dp3 to shift to the appropriate X value

corresponding to the middle of the x, bin.

Iv. COMPARISON OF RADIAL SCALING WITH FEYNMAN SCALING

. .
_ " . :
The invariant cross section for wa. K*, and p  are presented

in figures 2 through 8 for constant p,, Xp and constant pj,x, versus

YsS. These graphs cover roughly 25% of the data compilation. The
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qualitative featurés of this comparison between the radial scaling
hypothesis and the Feynman scaling hypothesis for these single
particle inclusive cross sections are given below.

1) In the low x region (x £ 0.2) radial scaling is good
to within the estimated ¢ 15%, experiment to experiment systematic
errors, from the s-threshold to the highest energy available at
" the ISR. ©On the other hand, above the corresponding x,, energy threshold,
there is a very large enrergy dependence of the cross sections. In this
low X, region, the approach to the Feymman scaling limit is from
beléw, and in the case of large p, ~ 3.0 GeV/c the Feynman scaling

7.8 If one

limit is not obtained even in the ISR energy range.
restricts the comparison of these two types of scaling to the /s
region above the radial variable s-threshold, one observes less
difference. 1In the same range of /s, the s-dependence of E do/dp3

for fixed x is slightly greater than that for fixed Xpr and the

i
cross section appears to rise to its asympotic limit at large /=s.
Therefore in the low x (xR or x,. } regicn, the primary breakdown.
in Feynman scaling is below the radial variable s~-threshold.

2) For Xp > 0.20 there is a rapid approach to a radial
scaling after Vs passes above the Xp threshold. Furthermore for
vs i 10 GeV radial scaling appears to be achieved for all pJ.9
The deviation from radial scaling at low ¢S is greater for larger
values of Xg- In all cases the radial scaling limit is approached
from above for increasing vs.

For x,, > 0.2, the approach to the Feynman scaling limit is

also from above. This is in contrast to the situation at low x

where the approach to the scaling limit is from below. Since for



a given point on the Peyrou plot x, large x implies

<
+ = ¥gr T

x,, = Xg and therefore in this limit xp and x, scaling are the

same. Because of this transition from an approach to scaling

from be?ow at small x to an approach from above at larger x

H "'

there are values of X,, and p, where Feynman scaling is good at
very low /s {n~ 5.0 Gevi. For example Feynman scaling for n',

x,, =0.25 and p; = 0.75 GeV/c is good to within experimental
systematic errors from /s = 5 GeV up to /5 = 53 GeV. It appears
that a kinematic thresholq effect is superiﬁposed on a dynamically
induced decreasing cross section. Thus the s-dependence of the
cross sections, for fixed X, +*Py and for fixed Xps Py« as they
fall to their scaling limit are different. 1In the former case,
kinematic boundary effects distort the behavior. A discussion

of the various inclusive cross sections will now be given.
Referring to figqures 2 through 8 we see:

A} n7: (Figures 2 and 3) PFor Xp = 0.05, radial scaling

is good down to the radial scaling threshold as is evident from

Figure 2a and 3a. Feynman scaling for x,i = 0.05 is evidently

viclated even for small p, and the invariant cross section for

fixed x,, and p, is rising with increasing v¥s. For Xp Z 0.20

the radial scaling limit is always approached from above for increasing
¥s and by roughly /s 2 10 GeV the scaling limit has been attained

for all p;. The approach to the Feynman scaling limit for X4

> 0.2 shows a turn over. For small p; (: 1 Gev/c) the approach

to the scaling limit is from above with increasing /s, but for

larger p; (; 1.25 GeV/c) the approach to the scaling limit is

from below. 1In all cases radial scaling appears to be good for
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vs I 10 GeV, whereas Feynman scaling may be vicolated by a factor

of ten from vYs ~ 27 to 53 GeV.

B) r°: (Figure 4) For X, = 0.05 ¢ 0.05, there is good

evidence for radial scaling down to the radial scaling threshold.

Feynman scaling for X, in the same range is again violated and

the invariant cross section rises from below for increasing /s.
For xp = 0.25 + .05 radial scaling is good down to Vs = 10 GeV for

all p,. For x, = 0.25 ¢t .05 Feynman scaling over the same vs

region is violated by approximately a factor of 2 for pg = 1.25

GeV/c and by a factor of 4 for p; = 2.25 GeV/c. Feynman scaling

>
R -
is good to within experimental errors for +s > 10 GeV, whereas

appears to hold for p, A 0.75 GeV/c. For x 0.35 radial scaling
for X, Z 0.35 Feynman scaling is obeyed for only low Py-

C) Eii {Figure S5 End §) The K° data show the same quali-
tative features as the »° data. There is however a difference
between K and X~. The k' data for fixed P, x, appear tc have
somewhat less s-dependence than the corresponding K~ data. A
comparison of the two scaling hypotheses in the same range of +s
for K° shows a systematic s-dependence for fixed p,, xll(especially
for X ), which is absent in the data for fixed Xg-

D) p': (Figure 7) The data at xg = 0.05 * 0.05 exhibits
good radial scaling down to the radial scaling s-~threshold, but
for large p; * 3.75 GeV/c the Feynman scaling hypothesis for
x, = 0.05 is violated by almost an order of magnitude over the
ISR energy range, and appears to be approaching the scaling limit

from below. For small p, (5 0.75 GeV/c) Feynman scaling is
%

approached from above. In general the violations of Feynman
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scaling are less severe for protons than for any other particle.
At low p,. high xp 2 €.65) the radial scaling limit is approached
from above, and as for the other particles,this approach to radial

scaling is more pronounced for large rather than small Xpe

E) E: (Figure 8) Radial scaling for small x_ % 0.2

R
appears to be satisfied for anti-protons down to the radial

scaling s-threshold. For larger x_ there are indications that

R
the radial scaling limit is approached from above, although the

data are incomplete. Feynman scaling is badly violated for
anti-protons even at very high energies. For example at p; =

1.25 GeV/c, X, = 0.05, the anti-proton invariant cross section

rises by roughly a factor of 2 for the vs range from 30 GeV
to 60 GeV.
In conclusicon, for single particle inclusive reactions use

of the radial scaling variable x_ leads to an earlier scaling

R

of the invariant ¢ross sections than use of the x‘; variable.

Unlike the Feynman scaling limit, the radial scaling limit is

always approached from above for increasing s and is reached

by ¥s % 10 GeV. This is consistent with the s-dependence of the

total proton-proton cross section at low ¥s (v 5 to 10 GeV). The
Feynman scaling limit is approached either from below, from above, or
is exact depending on the dominance of phase space effects, dynamic
effects or the fortuitous cancellation of these two effects. At
small x (~0.05 to 0.20) there are large viclations of Feynman

"
scaling due to large changes in the phase space suppression, which for
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large p, (especially for p and K~ data) remain even at ISR energies.

V. INCLUSIVE CROSS SECTIONS IN THE RADIAL SCALING REGION

Since all single.particle inclusive cross sections for fixed
Xp and p; appear to scale for energies Vs . 10 GeV, there are
sufficient data_to examine the systematic differences between
particle species in this radial scaling region.

To illustrate the kinematic range in the radial scaling
region, (vs z 10 GeV) covered by the compilation, normalized
Peyrou plots for each particle type are presented in Figure 9.

In these plots, x| = 2p, *//E is plotted ‘against x, = 2p;/v/s

for a given x_ value of a given particle. It is seen that only in

R

the case of 1° mesons (Figure 9%¢) is a wide range in x'., x; for

a given x covered.l For the other particles, most of the data

R

R
or near 90°.

for large xX_ are concentrated eithexr in the forward direction,
It is of particular interest to compare the dependence of
E dd/dp3 on p; for constant Xp and on xXg for constant p;. We
make this comparison for each detected particle in the single
-+

O * *
particle inclusive reactions: p + p + x°, K%, P + anything.

A) The p; dependence of E do/dp3 for constant x_, is displayed

R
in Figure 10 for each of the single particle inclusive reactions

listed above. These graphs were generated by projecting on the

P, axis all of the data in the particle compilation for a given

.

constant value of Xp+ A separate peint is plotted for each vs

value in the takle above 10 GeV. Referring to these figures, it

is noticed that the invariant cross section for p, ~ 1.5 Gev/c
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for all particles becomes steeper for increasing Py as xp increases.
Furthermore the slope of E dc/dp3 versus p; at low p; decreases
for increasing xg. This p, dependence of E da/dp3 can be parameter-

ized by the following universal forﬁ, applicable to all particles

and at all x_:

R
A
E 223 = ——— - {16)
dap 2
- Pi g
Xp = constant {1+ — )
m
2

A minimum X fit was performed on the data to determine the values

2 (GeVZ). q for each particle

of the parameters A (mb/GeVzl, m
in each slice in Xp. These parameters.are presented in Table III.
It is evident that for low x, and small p; the largest invariant

°, K+, X , p and B respectively

cross section is for x'. Then 7, =®
follow in order of decreasing magnitude.loht large xp, the proton
inclusive cross section dominates because of leading particle
effects.

The fit parameters n? and g for mesons display an interesting
similarity. The evident general trend of the parameter m2 is to
grow from approximately 0.3 GeVz/c4 at xp v .05 to roughly
2

1.5 Gev2/c4 at xg = 0.55. This growth in m

an expression of the flattening at low p; of E da/dp3 with increas-

with increasing X is

ing Xp- The fit parameter g shows the general trend of growing
for increasing x_ from approximately 3 at small Xp = 0.05 to

2

R

roughly € at Xg < 0.55. The m

to the p and p invariant cross section show this same behavior

and q parameters from the fits

with increasing Xo- However m2 for protons and anti-protons grows °
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from ~ 1.0 at x, 2 0.05 to ~ 2.0 at xp ¥ D.55 and is therefore
generally larger than the value of m? for mesons. The parameter

'

¢ for protons and anti-protons is also different from mesons: g
increageg from roughly 4 at x, Y 0.05 to B at Xg 2 0.55 and is
therefore systematically larger than the corresponding values
for mesons.

A check was made to insure that this general behavior of
the parameters m2 and g is not a consequence of relative normal-
ization errors among various experiments. A fit to only the %°
data of D. C. Carey et al..1 showed the same general behavior.
To verify that the trend is not due to an increasing pa range

with increasing x additional fits were made with cuts in the

Rf

P, range to constrain it between 0.5 < p; £ 2.25 GeV/c for nt

o 2

and for p; X 2.25 GeV for T . The calculated parameters A, m
and q for this test were found to be consistent with the values
from the unconstrained fits.

It is interesting to note that in the limit as Xp 0 (or
equivalently, p, fixed as ¢¥s + =) the extrapolated form of the

invariant cross section for mesons is consistent with:

1im E 9—9—3— = B (17)
. + 0 dp 531
R Py

This observed p;-dependence seems to exclude the constituent

11which predicts a 1/pL8 behavior, and is

interchange model
closer to the l/p_[4 dependence postulated by Berman,

. 2
Bjorken and Kogut.l Protons and anti-protons, however appear

to be more consistent with the form:
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A
1im gde) - ——— (18)
xR +~0 dp (1 + P )
S

giving a p, dependence of Y l/p‘,_8 at large p,.

B) The x, dependence of E do/dp3 for constant p, for various
particles in the radial scaling region of v¥s 3 10 Ge¥ is shown in
Figure 11. It is seen that the cross sections for all particles
with the exception of protons at low p;, fall as Xp * 1 for all
pP,. To parameterize this Xz dependence (for all partiéles except

protons) we performed a minimum x2 fit of the invariant cross

section to the theoretically motivated form:"11
do n
E —x = B(1 - x;) (19)
dp R '
fixed p“_

where B and n are free parameters. Reasonable fits were cbtained
in all cases. The resulting values of B {mb/GeVz} and n are

tabulated in Table IV. The particles listed in rough order of

increasing n, are (p), X', v, n, 1°, K, p. To check that these

fits were independent of the x_ interval, a cut in x_, was made for

R

the n° data constraining 0.15 < x

R
R 2 0.35,and a minimum xz fit was

again performed. Within errors, the fit parameters were the same.
The power of n for a fixed p;,in the preceding parameterizae

tion of E ﬂgg ,eflects perhaps, the dquantum pnumber

dap Py
conservation requirements {charge, baryon number, strangeness etc.)

in the production of particle c.11 These regquirements may be

calculated from the exclusive limit of the invariant crosé section,
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since the undetected particles in the inclusive experiment must
contain the same quantum numbers as the exclusive limit.2 It
appears that the more a given single particle inclusive reaction
is forbidden (i.e., more guantum numbers to balance in the production

of particle c), the larger is the value of the exponent n.

VI. SUMMARY

We have parameterized the single particle inclusive produc-
tion cross sections in terms of s, p; and the radial scaling

variable Xpi

E =3 = fis, p;, xR) .

* &
where Xp < E /E max.
We have found that above ¥s 2 10 GeV, all of the cross section

data are consistent with radial scaling for all | TR
de
E1=E(Pllx) '
dp R

Y§ X 10 Gev.

Below v$ = 10 GeV and for Xp 2 0.2, there is a rapid approach to the
scaling limit from above. For xp < 0.20, there is good radial
scaling down to the threshold.

Feynman scaling‘is achieved at a larger value of ¢s where the
suppression due to the presence of the kinematic boundary is suf-
ficiently small. 1In the cases of large p;, (or even small pyL for

p and K}, this s—dependence is still present even in the ISR

energy range.
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Parameterizing the single particle inclusive cross sections
in terms of Pir Xg and /s, we find in the radial scaling region
Ys 3 10 Gev, that the shape of the p; dependence of E do/dp3

for all particles for constant Xy as a function of x_ show the

R
same general behavior. From the minimum x2 fits to the invariant

Cross section to the form:

we find:
1} The parameter mz grows with increasing Xp for all

particles and is generally larger for protons and anti-protons

than for mesons.
2) The parameter q grows with increasing Xg for all particles.
3) The parameter A, which reflects the overall magnitude

of the invariant cross section, decreases for increasing Xp for

+ - + - - R
n, ", ﬂo. K , X, p. For protons,A increases with increasing

o
4} In the limit of Xp = 0, the invariant cross section for

meson production is consistent with:
A 1

lim E doi) o
da
>0 P s>

*r
and for protons and anti-protons (although the errors in the p

cross section are large) with the form:



-~ 24 -
lim (E 52;3 a - . -
Xp * 0 dp;_ plﬂ

The shape as a function of x_ of the single particle

R
inclusive cross section for constant p, shows a very strong
dependence an the species of the detected particle. In partic-

ular, the more forbidden the production of the detected particle

is, the steeper the slope of E 923 | versus x,. Parameter-
P pl fixed
izing the invariant cross section for fixed p, in the form:
e 9o, =B - x",
dp

pi fixead

we find that:

the parameter n for the various particles is given by
the following increasing order: p, K+, n+, no, t , K, E. Only
protons at low p; show an increasing E dc/dp3 versus increasing

x,, for p; fixed.

R
In conclusion, the most important result of this investigation

is that all data for long lived particle production in proton-

proton collisions exhibit radial scaling at all p; for s :

10 GeV.

Expressing single particle inclusive cross sections in terms

of p; and x; allows a simple and systematic behavior to be revealed

for particle production.
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Fig.

Fig.

Fig.

i:

2:

3:

Figure Captions

The plot shows the lines in the center of momentum
frame along which measurements are made to study scaling
in the case of fixed Feynman (F) wvariable x“ , and fixed

radial (R) variable Xp-.

The n' invariant cross section E Qgg for constant x, or x
dp R

and for various constant values of p, versus the center

of momentum energy vs. The dotted line is to guide the

eye through points of constant x_ and py- The smooth

line is the average value of E Egj for constant Xp and
ap
p, for /& 2 10 GeV, and extends from the /5 threshold

{calculated using Eg. 9, taking into account the finite
bin widths in xp and p;) to /s = 70 GeV. The cases where
there was only one high p; data point were not plotted.
a) Xpor x, = 0.05 ¢ 0.05

b) xgpor x;, = 0.25 t 0.05

€) xporx; = 0.45 t 0.05

d) xporx, = 0.65 % 0.05

e) xporx, =0.851% 0.05

The © invariant cross section E ng for constant Xg ©Or
dp

x, and constant values of p, versus ¢s.
a) Xporx = 0.05 & 0.05
fi

b) Xp OF x“ = (.25 2 0.05

c) xporx, = 0.45 t 0.05

d) XpOr x, = 0.65 * 0.05

The 7° invariant cross section E Egi for constant Xp or

x‘.l and constant values of p; versus /8.

a) Xp or x” = 0.05 ¢ 0.05
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b} xRor x" = 0..25 ¢ 0.05
c) Xp Qr x, = 0.45 t 0.05
d) xRor x, = 0.65 t 0.05
+ . . .
The K invariant cross section E do_ for constant

3
dp
xpor x and constant values of p, versus /s.

a}l Xp OF x" = 0.05 2 0.05
b) xRorx = 0.25 t 0.05
It
<) Xg OF x" = 0.45 % 0.05
d) xgorx, = 0.65 * 0.05 )
The K invariant- cross section E 923 for constant
dp

xpor x, and constant values of p; versus /s.

a) Xporx, = .05 ¢ 0.05
b) Xporx = 0.25 * 0.05
<) xporx, = 0.45 ¢ 0.05

d) xporx, = 0.65 ¢ 0.05

The proton invariant cross section E 99—3- for constant
aa " ap

X Of x, and constant values of p, versus /s.

a) Xporx, = 0.05 t 0.05

b) xp®Tx, = 0.25 ¢ 0.05

€} xp©fx, = 0.45 * 0.05

u

d) xporx, = 0.65 ¢ 0.05

e) XpOorx, = 0.85.% 0.05

The anti-proton. invariant cross section E y—; for constant
dp

Xporx, and constant values of p; versus /s.

a! Xgorx, = 0.05 * 0.05 -

b) =xporx, = 0.25 % 0.05

d) x 0.65 t 0.05

¢} xporx, = 0.45 ¢ 0.05
R

orx,,
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Fig. 9: The normalized Peyrou plot showing the kinematic region
covered tor each particle species in the data compilation.
The forward-backward symmetry of p-p collisions was used
to map -|x, | to +|x“|. The quarter circles are lines
of various constant values xh.
a) Normalized Peyrou plot for =n
b) Normalized Peyrou plot for =
c) Normalized Peyrou plot for «
d) HNormalized Peyrocu plot for K
e} Normalized Peyrou plot for X
£} Normalized Peyrou plot for p

g) Normalized Peyrou plot for p

Fig. 10: The trinsverse momentum dependence of the invariant cross
do

section E 3 for various constant values of xR in the
dp
radial scaling region: s ] 10 GeV. The solid lines are
the function 2 where the values of A, mz. q are
(1 + P_Lz)
—=-
m
given in Table IXI.
a) n+ invariant cross section: E g53
dp CxR)
-, . . do
b) 1 invariant cross section: E —3
dp <xR)
c) n° invariant cross section: E 923
dp
<Xp>
d) X invariant cross section: E 923
dp x>
-, . . do
e} K invariant cross section: E =3
dp
<xR>
f) p invariant cross section: E Qni
dp

(xR)
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do

3
dp <xp>

Fig. 1l: The Xp dependence of the invariant cross section

g) p invariant cross section: E

E —5 for various constant values of p; in the radial
dp
scaling region: s ] 10 GeV. The solid lines are the

function B(1 - xR)n where B and n are determined from

the minimum x2 fit to E 223 . and are given in Table IV,
dp “Ps>
+ . . dg
a}) w invariant cross section: E =¥
’ dp <pi>
- . . . dg
b) T invariant ¢ross section: E —
dp <pL>
¢} 7° invariant cross section: E 923
dp <p“_>
+ . :
d) K invariant cross section: E QEE
dp <p,>
- . . . do
e} KX invariant cross section: E —3
ap <Py
. . . do
f) p invariant cross secticn: E —
ap <py>

The dotted line is to guide the eye, since no fit

of the form B(1l - xR)n vwas performed.

g) P invariant cross section: E 923
dp <p,>
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