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ABSTRACT

The concept of reggeon field theory {RFT) is applied to particle
production in the multiregge region. For processes with repeated
Pomeron (}3) exchange we calculate the high-energy behavior of the
-5/6

production cross sections crn{s) and find that crn{s) ~ g

el(s) ~ lns

for every n. It is then shown that s-channel unitarity constraints are
respected: in the absence of P-cuts these processes are known to

violate the Froissart bound (Finkelstein-Kajantie disease). We show

that the inclusion of P -cuts in our RFT model cures this disease,
provided the P —particle-f vertex is not too large, Furthermore, we
demonstrate that the way in which s-channel unitarity is restored does
not lead to decoupling problems. Finally, particle production with a
secondary reggeon exchange is considered. We find that the on(s) have

qualitatively the same behavior as in the absence of P cuts.
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I. INTRODUCTION

The problem of formulating a consistent theory that describes

the high-energy, small momentum transfer limit of hadronic scattering
and accommodates a nonvanishing total cross section, has survived
many attempted solutions. Recently the existence of a strong coupling
solution in reggeon field theory (RFT)i’ 2 has stimulated a new series of
investigations, and many facets of RFT have been studied, related to both
diffractive and nondiffractive properties.

By their very construction, RFT's satisfy t-channel unitarity, but
although they involve multipomeron cuts which have been used in absorptive

E

models 5,6 to enforce s-channel unitarity, it is not a priori clear that
they obey all s-channel reguirements. In the absence of a complete proof
of s-channel unitarity, one is led, as a first step, to check whether RFT
at least satisfies some of the constraints imposed by unitarity. The
conventional Regge pole model has been shown to be inconsistent with
_unitarity in various inelastic processes, 7 and it is natural to test RFT

in the very same reactions. Such a test has been performed for the triple-
Regge region, 8 and all inconsistencies were found to be removed in RFT?
In this paper we study another pitfall of Regge pole models, multiparticle
production processes with repeated Pomeron exchange. It has been known

i0, 11

for many years that in these processes a Pomeron pole with

intercept one leads to a violation of the Froissart bound.
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Our interest in multiparticle production processes is not only
restricted to the test of s-channel unitarity constraints. One of the major
problems that have to be addressed, once RFT has been proven to pass
the most serious tests, is that of how the bare Pom.eron and the total cross
section are built up. Again, a complete answer to this has not yet been
obtained, but a study of multiparticle production processes may provide
further insight,

These are the two issues of this paper. The framework of our
calculations willbe a RFT whichis based onthe reggeon calculus for multiparticle
production amplitudes derived recently. 12 For processes in which only
Pomerons are involved, our RFT coincides with that used by Migdal,
Polyakov and Ter—Martirosyan1{MPT), but our formalism is general
enough to include secondary trajectories as well., Our main interest
is focused onto the integrated partial cross sections ogl(s)rather than

the production amplitudes T , and this, as we will show, requires

Z-n
the formulation of a RFT for the Ol'l(s) directly. In all these calculations
we use the linear, self-interacting Pomeron pole with renormalized inter-
cept 1, which has been described in Ref, 2. Asithasbeen shown in Ref. 13 this
corresponds to the bare intercept being greater than 1,

In the first part of our paper we study the partial cross sections
g for multiparticle production with repeated Pomeron exchange. In

particular, we want to test whether the Pomeron cuts cure the Finkelstein-

Kajantie disease of the simple pole model. In examining the high-energy
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behavior of %(s }, we find that for s - « and fixed n

ol'l(s)'vc{al(s) (4. 1)
for all n, This result is radically different from the sitatuion in the
absence of Pomeron cuts. But it also differs from the result obtained by
I\/IPT,1 who studied the same processes. We show that their result
actually represents a non-leading contribution to crn(s) .

In order to prove that these cross sections do not violate s-channel
unitarity we first rephrase the problem of the Finkelstein-Kajantie model
in terms of a j-plane singularity above j=1. 14 We then trace the fate of
this singularity in the presence of Pomeron cuts. The result is that for
small Pomeron-particle-Pomeron (PPP ) couplings the singularity disappears,
Thus s-channel unitarity is restored, We find, however, some indications
that for larger values of the PFPFP coupling the singularity may survive.

In the process of restoring s-channel unitarity, the Pomeron cuts
produce a softening of the renormalized PPP vertex. From models
where the PPP vertex vanishes as a function of the two Pomeronmomenta,
we know that the Pomeron is forced to decouple from many processes at
zero momentum transfer, even from elastic scattering, We show that
in RFT the PPP vertex is screened in such a manner that decoupling
problems do not arise. We do this by studying the PPR (Pomeron-particle-

reggeon) vertex at nonzero values of the reggeon momentum.
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This concludes our consistency tests of processes with repeated
Pomeron exchange. As a consequence of (1,1}, the sum of these cross
sections behaves like crel(s) and is not large enough to account for the
total cross section, In fact,when s-m,cel(s ) Gtot -~ 0 in RFT.i‘ 2 This situ-
ation hastobe confronted with certain absorption models where aconsistent
theory is formulated to build the total cross section only out of Pomeron

dominated processes. Our result implies that one has to

consider also production processes with non-Pomeron exchange, We
take a simple model where all particles are produced from one secondary
Regge pole, but allow for interactions with the self-coupled Pomeron,
The main subject we are interested in is the question to what extent the
presence of cuts changes the behavior of %(s ). It turns out that, unlike
the previous case, the cross sections are qualitatively unchanged by the
presence of cuts, We discuss the relevance of this result.

Our paper will be organized as follows: We begin in Sec. II with
the description of a simple model whose properties are similar to those
of the RFT model to be considered later and will serve as a useful guide
in understanding our results. In Sec. III we describe the formalism of
REFT that we will use later on. In particular, we will explain why we need
a special RFT for the cross sections and cannot proceed in the way of
I\/IP']T'.1 Sections IV, V, and VI are devoted to processes with repeated

Pomeron exchange. In Sec., IV we compute the high-energy behavior of

({l(s ). This requires some calculations, and we divide the section into
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two parts: the first will contain all the technical details, and in the
second half we present and discuss the results. Section V contains the
proof that the Froissart bound is obeyed, and in Sec. VI we make sure
that decoupling problems are avoided. In Sec. VII we consider processes
with a secondary reggeon, We conclude our paper with a summary of

results.
II. MULTIPARTICLE PRODUCTION: A SIMPLE MODEL

In this section we consider a simple model for multiparticle production
with repeated Pomeron exchange, It will turn out that many features of
this simple model will survive in the RFT of the following sections, We
will, therefore, use this consideration as a guide in understanding the
situation in more sophisticated models.

Let us consider the following structure for the cross sections

crn(Y), associated with the processes shown in Fig. 1:

n-2 Y n-1 dyi n-1
cn(Y) = const+U j H y1+p 6 (Y- E yi) {2.1)
i=1 \ Y, =

1

where Y =lns and y; are total rapidity and the rapidity gaps between
the produced particles, respectively., The constant U is proportional

to the square of the PPP vertex, This factorized form of the production
cross section is obtained if we take the Pomeron to be a simple moving

pole with intercept one and integrate over the momentum transfers t =
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For reasons which will become clear later we generalize the number of
transverse directions to be D (D=2 is the physical dimension). For each
ti integration, we then have an additional factor tip with p = ;—) -1,
(Alternatively, such a factor tip could reflect a dynamical softening of
the PPP vertex). In the following, we will call this the Finkelstein~

Kajantie model in D dimensions., It will turn out that RFT at D=2 will

have the same qualitative features as this simple model at D greater

than 2.

One may try to evaluate the asymptotic energy behavior of (2.1) by

scaling the rapidities:

7
Xi = :}'{: . {2.2)
This leads to
n-2 n-1 n-1
o (Y} = const: LS R S dx, 6[4- Zx. 1 . (2.3)
n Y1+(n-1}p Tof L oy b xii+p

The power of Y in front of the integral will indicate the correct agymptotic
behavior of 7 only as long as the integral is a finite constant. In this

case one finds that

_ U2
OI-I(Y) = const- m (2.4)
g (YY)
and %——)—- ~ 2 (2.5)
n YP

However, the X; - integrations in (2. 3) diverge at X, =0, and the integral,
therefore, will strongly depend on how we define the lower limit of the
rapidity integrations. For example, if we require that all subrapidities

become large when s — « , say
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ny“Yq O<qg=4 (2. 6)

then the asymptotic behavior of (2.3) becomes:

Y_i-p-(n-z)qp if 0<p<,1
-2
O;‘l(Y) - Un -1 -
Y {(In Y)

(2.7)
zif p=0

For g = 1, this agrees with (2.4) (except when p =0), but (2.7)
shows that the decrease of %(Y) as a function of s becomes smaller and

smaller, when q approaches zero, and in the limit g = 0, the asymptotic

behavior of %(Y') is:

y™i P 0<p<1
-2
q(¥)~ u” 9 0es (2.8)
Y (In Y} p=0
Let us first consider p # 0 . Then (2.8) tells us that
%(Y) ~ c%l(Y) (2,9)

for all n. This means that the region of phase space ¥, Z ¢Y, which
leads to {2.4)is far from giving the leading contribution to %(Y). In
fact, the behavior (2.7)or (2.8) comes from the small x-region in (2. 3)
which implies that in the most favored contribution to g all but one
rapidity is finite (they may still be large but do not increase with energy).
In order to see how this related to the contribution (2, 3), we keep

nonleading terms in (2.8):
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5 ~ Un-ZY'i"P [c +e Y P 4. 5¢ Y—(n-Z)p] (2.10)
n n1i nz2 nn-1

{c:.lj are some combinatorial constants}). In the first term (which is (2.8) },
all x but one are small; in the second all but two, and so forth, until in
the last term (which is {2.3) )all x are staying away from its lower
limit. Thus (2.10) can be considered as an expansion in the number of large
rapidity gaps. For the case p = 0 we only note that the situation is quite
different, and in the leading contribution (2. 8) none of the rapidity gaps is
driven to its lower limit.

It is important to note that in (2. 3) the divergence of the X,
integration at the lower end is closely related to the large ti behavior,
In performing the ti - integration which then resulted in (2. 1) we neglected
any ’ci - dependence of the vertices which would have led to a cutoff of large
t.l values. As a consequence of this, the ¥ - integration required a
cutoff for small values, If we would, instead of this, have included a more
realistic exponential damping of the PPP vertex (or simply have cut off
the ti integration), then the remaining yi - integrations would no longer
diverge, The results on the behavior of Ol-'l would not change, However,
it is important to keep in mind that such a crude approximation of the ti -
dependence, as we made in (2. 1), makes the ¥i - integration infrared divergent.

After finding the asymptotic behavior of %(s ), one might try to
take a glimpse at the nature of the total cross section resulting from these

processes. Although it is known that the behavior of %(S) in the (n,ln s) -



-10- FERMILAB~Pub~75/55-THY

plane may be nonuniform, we do this by summing over the leading terms
of cn(s). For the moment we are interested only in a heuristic argument,
and that the conclusions made from this are correct will be shown later
on. For the case 0<p <1, Eq. (2.10) suggests that, as long as U is
small enough, the sum over the leading terms will converge, and the

~ny P

resulting g behaves like o

H .
T o ol owever, when U is large,

the sum starts to diverge, indicating that the asymptotic behavior of

C{ot is stronger than o In particular, a power of s might be built

el *

up which violates the Froissart bound. For p =0, CT‘.ot goes like Sa(a>0)
for any nonzero PPP coupling, which is another way of stating the
Finkelstein-Kajantie probtem. In Sec. V, we will present a more rigorous
treatment of this problem,

The model which we have discussed in this section seems over-
gimplified compared to RFT, Nevertheless, some of its qualitative
features will survive and the preceding discussion will help us to understand
the situation in RFT. In particular, we will find a strong similarity between
RFT and our model for 2 <D <4, i,e., 0 <p <1, The most distinctive
feature ofthis model is that inthe leading contribution (2. 8) tothe high-energy
behavior,n-2 of the n -1 rapidity gaps prefer to be finite, thus excluding
a n-dependence of the asymptotic behavior of g - This was related to
the possibility of divergencies at small rapidity gaps, and the divergencies
were the result of disregarding the large t-damping properties of the

vertices. Being aware of this problem we now turnto RFT in production processes.
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II1. RFT IN PRODUCTION PROCESSES

In this section we give a description of RFT in production processes,
We are mainly interested in production processes with repeated Pomeron
exchange, but we will formulate the rules general enough to include non-
Pomeron reggeons as well,

The basis of our RFT is the reggeon calculus for production processes
which has been derived in Ref. 12, 1t is the equivalent of Gribov's reggeon
calculus for the 2—2 scattering and exhibits many properties that one
expects on general grounds. In particular, it is in agreement with the
energy discontinuity structure required by the Steinmann relations and,
when continued to the physical region of the crossed channels,
exhibits the main features of physical partial wave amplitudes, The
transition from the reggeon calculusto RFT proceeds in the same was as
in the 2—2 scattering case, ©5ince one is interested only in those specific
points of (angular momentum, transverse momentum) - space, where an
accumulation of j-plane singularities takes place, one approximates all
quantities appearing in the reggeon calculus (vertex functions, propagators
and signature factors) by its behavior near this accumulation point. As
a resulf of this, one is left with a local field theory. As compared to the
elastic case, there is only one new feature one has to observe in deriving
RFT from the reggeon calculus for production processes. This is the

fact that because of the Steinmann relations the T2—>n amplitude cannot
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be written as just one multiple Sommerfeld integral, but is a sum of
different terms, each of them reflecting an allowed set of simultaneous
discontinuities. Only when making approximations in the spirit of RFT,
this sum of terms may collapse, and one is left with a smaller number
of terms. In the particular case of only Pomerons it happens that, for

any number of produced particles, all terms are combined to one single

term:
-1 -y, E -y E
- — _ (1) < .. 1 1.. n-1 n-1
LI JERS NPT FPRRL S e oo I E TR L €
(211'1}'l
'Fn(Ei;'En_i,qi,--qn_i) : (3.1)

The partial wave Fn is the object for which RFT is formulated. In

(3.1), we have used Ei = 1—ji, where ji is the angular momentum in the
’c.1 - channel, c-fiz= -t,l the momentum transfer,and ¥y the rapidity gap (Fig. 1).
The factor i = in front of the integral is the result of approximating
signature factors, The n-variables (Toller angles), whose singularity
structure is correctly described by the reggeon calculus, do not explicitly
appearin (3.1}, but Fn depends on them through ai'aj . The remaining part of
the n-dependence is, together with some phase factors, absorbed inte an
effective complex valued EPE coupling constant. The Feynmann rules fora
diagram of the partial wave FIl can be formulated as follows. (Fig. 2):

{(a) Define a direction, say from the left to the right.

(b} Ei’ C—{i are the sums of reggeon energies and momenta in the
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’ci - channel (marked by the vertical cut in Fig. 2). In order to maintain
energy and momentum conservation everywhere in a diagram, each
produced particle carries away energy and momentum

BBy 9y "9y

(c) Put a number V. atthe PPP vertex (V_ is generally complex)

0 0

and conserve energy and momentum,
2
(d) For all other parts of the diagram use the rules of the 2—2 RFT.
Introducing a field operator le?, t) for the Pomeron (and LIJTfOI‘ its her-

mitian conjugate), the coupling to the producedparticle isdescribedbya source

operator. TFor example, the nonamputated PPP vertex is

<0 [ 9Tyt Wt VTt Wt ) [ 0> (3. 2)
A derivationofthese rules has beengiveninthe final section of the second
paper of Ref, 12. They coincide with those used by MPT. We further
mention that for the case when a secondary reggeon is included the rules
(a) - (d) remain unchanged, In Section VII, we will consider particle
production from one secondary reggeon, together with absorptive Pomeron
cuts. We then use (a) ~ (d) together with (3.1). The only change is

the replacement in (3.1): (i )n—i - ﬁI:;(é),

with «(0) being the intercept of
the secondary reggeon,
In the following we concentrate on processes with only Pomerons,

If we allow only for fully enhanced diagrams, the Lagrangian for Fnis

given by:
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P ig
O T R M T Felu o] (3.3)

with
Z’O ='12‘ ¢+‘5‘;¢- 2 VLjJ+’ pr-AoquqJ, (3.4)

The first termﬂio describes the propagation of the free Pomeron, Ju
and J+¢;+ couple the Pomeron to the incoming particles, and the source
term qJ+VOLp attaches the produced particles to the Pomeron. The last
term in (3. 3) induces the Pomeron self-interaction, leading to absorptive
corrections. Without this triple coupling, we would have just the diagram
of Fig. 1. Including 29 generates those of Fig. 3. Looking at this
fipure, we recognize three effects of Pomeron cuts: (i) The Pomeron
propagator becomes renormalized (Fig, 4a), Since this is indevendent of
the particle production, it is the same as described by Abarbanel and
Br'on.zan2 for the elastic scattering; (ii) The PPP vertex (i.e., the source
operator L!J+VOL|J) undergoes a renormalization, (Fig. 4b), (iii) Particles are
produced out of different Pomeron lines (Fig. 4c¢), It will turn out that
these contributions are suppressed at large energies.

Before we plunge into calculations it is necessary to hesitate for a
moment and to recall our experience from the previous section. So far
we have been describing a RFT for the production amplitude TZ—'-n , but
what we are really interested in are the cross sections o, - Naively, we
would go ahead and compute T2—~n , then square it and integrate over

rapidities and transverse momenta of the produced particles. This,
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however, is somewhat dangerous. For from what we learned in

Sec. II, it follows that, since we have approximated all vertices by
constants (i.e., we have no damping coming from the large t-behavior of
the vertices) the rapidity integration will diverge., We have demonstrated
this in (2. 1) for the diagrams of Fig. 1, which are described

by our Lagrangian (3. 3) without Pomeron self-interaction., In order
to obtain the correct asymptotic behavior of the g . we had to introduce

a low energy cutoff for the y-integration, and the evaluation of the integrals
was only possible because we knew the dependence on each rapidity

separately. Using RFT for T , one usually obtains a scaling law

Z2-n
which does not give enough information to proceed in the same way., We
will, therefore, proceed in a slightly different manner,

The idea is the following: Let us take a diagram that contributes to
Tz-m and close it on itself. As an example, the square of Fig. 1 is
shown in Fig, 5, The result of this looks very much like a reggeon
diagram for the 2—2 scattering amplitude, In particular, a quartic
coupling arises as the square of the production vertex, This consideration

holds for any diagram of T (in fact, not only for squares of diagrams

2-n

but also for interference terms), and o :IdQ T T " can be

n n z2-n 2-m
written as a sum of a specific class of diagrams for the 2—+2 process.
Each of these graphs has, of course, still the divergencies mentioned

above, but now we can employ the methods of field theory” to regularize

divergent integrations. That this leads to the correct results for g
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can easily be checked for the simple diagrams of Fig, 5,
We finally want to demonstrate how the 2—2 reggeon calculus for
g can formally be derived. Let us take the 2—3 process. Then the

cross section 03 is:

—

_N a2 2 ~
40 =5 [ay,ay, 6 vy, -y, [a%a g%, T, 6,.5,.0,.4,)

with N being a normalization constant and Tz__ as given by (3. 1):

3

- zjdEﬂdEz TiEy VLB,
s§——mmmm e e

Tysyyy9,09) = 1 2 F, (EEq.q,). (3.6)
(27i)

3 127172

The complex conjugate to T is obtained by taking the complex

23
conjugate of the signature factors,which in (3, 6} appear in the factor

2

i~ and the complex valued PPP coupling VO in F2_>3 . Therefore,
T T L0 = () a8, 4B, 'yiEie'yzEzF T
2-371° V20909, s z ¢ 349 H 1Y
(2mi) V. v
0 "o’
(3.7

We insert this together with (3. 6) into (3.5), replace in T2 351'1,52 by

—

=y —q2 (T is invariant under this transformation) and perform the Yy
and ¥y integrations. This leads to &§-functions between reggeon energies

and allows to integrate over EZ and EZ. The final

of T nd -
and T, | 1 2

2-3 3

answer for 0'3 is:
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dw  dw
Jde  -vYE 1°%2
oY) = N> e f — Fosley zqiqz}
(2mi)
‘F, 4 (B-e,,E-w,,~q,-q,) . (3. 8)

This has exactly the form of RFT for the 2-+2 amplitude with reggeon
energy E and momentum transfer zero (Fig. 6) and holds for any
contribution to F2—>3 . We therefore define a Sommerfeld ~-Watson

transform cr3(E):

-YE
0, (¥) =—zi;ljdE e o m (3.9)

and for the computation of 03(E) we can use the reggeon calculus (and

RFT) of the 22 amplitude. As to the topology of diagrams for O’B(E),

a quartic coupling appears, as the product of the qF‘Pfls vertex in T2—>3
d . . - = - ::<

an ']I‘2 3" it is U0 VO VO and hence real.

This consideration holds for all crn(Y), and the diagrams for on(E)
are obtained by squaring those of TZ—»n (Fig. 7). The Lagrangian which
generates all these diagrams is:

ig
b 0 o1 li i
-—_— + - U
Z [ Lb v (lbi lbi) 0¥ Lbilbz wz

ot T
PG T (3.10)

The reason why we need two Pomeron fields l.[Ji and Lpz is that we
allow for Pomeron self-interactions in the lower and upper half of Fig. 7,

but the only place where LjJi and LLJZ may come into contact are the quartie
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vertex UO and the coupling to the external particles Jq:iapz. (Note that
these are not all diagrams which would arise a RFT with a full quartic
interaction (eg., the diagrams of Fig. 8 donot appear in our theory), We have only
those diagrams which arise from squaring TZ__n). With the Lagrangian
(3.10), crn(E) is given by the sum of all diagrams which are proportional
to UNTE

This completes the description of RFT for production processes.
We still want to mention that the reggeon calculus for q, which we have
derived here only for a pure Pomeron theory, remains valid when other
reggeons are included. The main reason is that in multiplying TZ——n
with its complex conjugate and integrating over the physical region of the
produced particles, the whole phase structure which makes TZ--n that
complicated, always becomes very simple: the phase factors can be

absorbed into the quartic coupling,which is the product of two complex

conjugate numbers and therefore real,
IV. HIGH-ENERGY BEHAVIOR OF on(Y)

We now turn to the high-energy behavior of the production cross
sections on(Y) for fixed n. The Lagrangian for these cross-sections is
given by (3.10), whereas the production amplitudes are described by the
Lagrangian (3. 3). The asymptotic behavior of crn(Y) as a function of Y

is controlled by the infrared structure of its Sommerfeld Watson transform
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crn(E). In order to evaluate the infrared behavior of on(E) we first define
the generating function

oE) = ) g (8) (4.1)

n

with ¢ (E) being proportional to gttt ,

n-2.
Gn(E) = U Gn(E) . (4. 2)

We find a renormalization group equation (RGE) for o (E}, expand the
solution in powers of U, and then determine the infrared behavior of the
coefficient functions BH(E). In addition to that, in order to see the relation
between the behavior of the cross sections cn(Y) and the amplitudes Tz*n,
we first consider the infrared behavior of the renormalized 'IE'PE vertex
and derive a scaling law for Tz»n'
In order to make the reading as easy as possible, we organize this
section in two parts. In part A, we derive and discuss the RGE's together

with its formal solutions. In part B, we present and discuss the results

and the physical implications.

A, Calculations

As we have said before, one of the effects of P cuts in production
processes is the renormalization of the PPP vertex. We, therefore,
first consider the infrared behavior of the renormalized amputated PPP

vertex P__PPE(Ei'ki) (Fig. 9a). In order to make our calculations
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s elf-contained, we start by reviewing the results of Ref. 2 on the Pomeron

11, .
self-interaction, The renormalized inverse propagator I (Fig. 9b)

14 11
- Zirunren. (4. 3)
satisfies the conditions
11 —
I (E,k,a",g,EN) =0 (4, 4)
£=0
k =0
4 e K,0” .8, B = 1 (4. 5)
dE N E--F
N N
k=0
—:qz—iri1(E,k,a',g,EN) = -a” , (4. 6)
dk E:_EN
k =0

The renormalized coupling constant g is given by the amputated 3-point

function (Fig. 9c¢):

r = r (4. 7)

In (4.8) g carries a subscript ''d" indicating that it has still dimensions.

We introduce a dimensionless coupling g through:
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The RGE for I‘“ has the form:

” 1 o - -
(¢, - B2, - (L-a’)a -ty [P em, Ke g By = 0

with

The solution (t = In &) to (4.10)
0

1 e
r 115}3, K,a%,g,E )=exp j
N -t

= B 0, g(E)
NE; N

=R _a a’(E)
NEN N

= ENBENln 2, (E)

-

33

(4.9)

(4.10)

(4. 11)

(4.12)

(4.13)

A e,
[i-vi(g(t’})]dt’ rt (E, k,a(~t),g(—t),EN) ,

{4.14)

In lowest order €, one finds an infrared stable fixed point g for g,

such that fort - - » g(-t)—~¢.
a” (-

At the fixed point g , the

Now we consider the renormalized EPE vertex T

For a” (-t) one finds:

t) =a” £ 2

values for Yy and z are

PPP
b A

4 I’PPP; unren,
" “y

(Fig. 9a)

(4.15)

(4.16)

(4.17)
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where 2,4 combines the renormalization constant of the source operator

+ .
Y VOLp and the wave function renormalization of the external Pomeron

lines., Z,4 is defined through:

—

E.,a%,g E) =1 (4. 18)

“E,=-E
=0

T EEEK
gpg( 1EXy

1 N

=

1

which indicates that we have taken out VO as an overall constant factor

to T . Further, (4, 18) tells that T depends only on two parameters,

PPP
b A

the triple Pomeron coupling and the Pomeron slope. Both of them are

PPP
b " AT

defined above, The RGE for PPPP is:
~y N
-8 9 -(L-a” - K . =
|:§3 @gg (C ~a )aa, Y4}T'E,PE(§E1, - ‘EN) 0 {4.19)
with
Yy " EN BENln 224 . {4.20)

The solution to (4.19) is:
¢

plEE K ga” By = exp +J @ Y4807 | Tppp(Ey K g(-t).a” (-0, By
-t

I‘PP

4%

(4. 21)

The only new quantity is V4(g). In lowest order ¢, only the diagram of

Fig. 4b contributes. Inserting the fixed point value for g, we obtain:

Y4(E) =B =-Z— . (4, 22)
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Since in our notation (c.f, (4.18)) T is dimensionless and, hence,

PPP
depends only on dimensionless guantities, PPPP on the rhs of (4. 21)
can he written as
Ei a’ (*t)E{El )
F L 3 g(-t), 1) 1 © (4- 23)
E’PE EN EN
In the limit § -+ 0 ({t - -®) we obtain, using (4.15) for o”(-t):
v, () E. a” —).- E
e 4 1 -Z
k - —_ —_t] =
LV g—PO N~ N N
Scaling on both sides the momentum vectors by §Z/2 , (4.24) can be written
as . .
E, e« k:k
z[2 > - i i5 -
TopplE, &5 g, By~ €r [, =1L, 5] . s
A g—-;-{) ~ o N N

The important result of (4. 25) is that the QI"—‘P’\I" - vertex which in the absence
of Pomeron cuts was a nonvanishing constant, is now screened and vanishes
as £ — 0 [note that B> 0 from {4.22)].

In the same way one derives scaling laws for the Pomeron - n particle -

Pomeron vertex (EnPE) (Fig. 10a). With the definition

-n_ 1-n

anPl}: - Z4 Zi FEnPE;unren. ’ (4. 26)
the result is:
E. o’k k
zf2 > 03+(n-1)(yq-1) L i
I (gEvg k--g.ﬂ".E ) ~ & 1 r 8 .1, 1 ‘
ql?nP']\?" i i N £+0 EHPE EN EN

(4.27)
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In order to obtain a scaling law for the physicalpartial wave Fn , we
observe that in the leading contribution only one Pomeron couples to the
incoming particlesi,8 such as illustrated in Fig. 10b. The expression for

the partial wave Fn. is then:

- 11 - J-1_.n 1 -1
Fn+z(Ei’ki)'N1[r (Ei’ki)] v rPnPP(E k)[ d‘E ’kn+1)] Ny

(4, 28)
Formula (4.27) yields the scaling law for Fn+2 :
np+(n+1)(y, ~1) E, k
P -z J
Fm_z(éEi, 1 £ Oé ®n+2 El\ig . (4.29)
N
Transforming via (3. 1) to rapidities, we obtain:
ﬁ { ((34,— =-F ? - E]_ - O!' k],k
- n-1 Y . —_— L
T, .,V k ) 1 l IdE ¢n 7. Y =
y-bco . N N
p-(n-1)(B+y,) v,
_ 1 LoyE2y (4. 30
X 20\ Y X kil - )

We finally mention that the parameters Vg0 Zs and B have been

. 19,20
calculated by other methods then the e-expansion. ? The values

obtained in the high-temperature expansion are:

N =
1
2
[ N
IA
[
.
o|w

<z<2, %—52{3+2y1+z$%. (4. 31)

After discussing the properties of the production amplitude TZ-*n ,

we now turn to the cross section dE) and its RGE. According to the

Lagrangian (3.10), dE) depends, in addition to (gi’ai ‘) and (gz,az') on
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the renormalized quartic coupling G . The renormalization of gi, a.f,l' is
independent of U and, hence, the same as described above., For the
definition of the renormalized quartic coupling U, we define the amputated
Green's function l"22 for the process Pomeron 1 + Pomeron 2 - Pomeron
1 + Pomeron (Fig. 11a)

22 _ 2,22

= 1 “unren, (4. 32)
and set
iy
22 - d
r~~(e,k.,e”,g,U,E ) =9 __
i i1 R N D+1
= = = == 2
lii E =E;=E =-Ey/2 (2n)
k.=0
i
(4. 33)

The subscript "d" to U in (4. 33} indicates that U

4 has still dimensions.

A dimensionless quartic coupling is defined by:

ED/Z-:[

N
U=U
¢ T BT (4. 34)

Next we have to renormalize the source operator JLbiqt and its
hermitean conjugate. To this end we define the amputated source - two

Pomeron vertex (Fig, 11b):
N =2Z,.Z N (4.35)
with

=1, (4. 36)



-26~ FERMILAB-Pub-75/55-THY

For o(E) (Fig. 11c) we need, in addition to a multiplicative

renormalization, one (constant) subtraction, which we define by means of

o (E) l =0 . (4.37)

E=-EN

We then have the relation

_ =2 =2 _ _
o(E) = 2y Z; [UUR(E) ARt EN)] X (4. 38)

The RGE for o(E) is

I:EN % * Z (-?’gag * gaa; * Yi(gi)) T Pyoyt ZYN]

N i=1,2 i
. . U = ’
G(E,gi.ai. ,EN) +A(gi,ai,U.EN) (4. 39)
with
Yy © Exd InZy (4. 40)
N
Py = Ex% Y(EL) (4. 41)
N
a=-zy 2z ?‘ENE ORIy (4. 42)
By dimensional analysis of o({E) we find that
-4, D
[6] =E "k (4. 43)

which leads to

[§8§+EN8E +a;aa,1+a;_aa, +1]d§E,gi,a;,U,EN)=O. (4, 44)
N 2

This together with (4, 39) yields:
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e, IR V(&) - B2yt 1 - 2vy |

[535 T

2

L

rd - - T
U(éE,gi,ai,U,EN) A(gi,ai,L,EN) . (4, 45)

The solution to this equation is:

o(EE, g0, U, By) =0 (E, g (-t)a (-1),U(-), B)

§]
-epr dt” [—1 + 2y, (g(t')) + ZYN(g(t'),U(t'))}
-t

0 0
+jtdt'A(EN,g (t'),U(t'),af(t*)) expj [-1 + Zyi(g(t" ))]

-t~

+ ZyN(g t**),U (t”)) dt"‘] (4. 46)

On the rhs of this equation, we put gi {t) = gz(t) = g(t) (because g1
and g, are renormalized in the same way and the functional form g(t)
is the same for both). The first term on the rhs of (4.46) is the usual
solution to a homogeneous RGE, and the second is due to the inhomo-
geneous term of (4.45), What makes the solution of (4.45), despite
the inhomogenuity, rather simple, is the fact that A, the inhomo-
geneous term, is a constant with respect to the reggeon energy
EE. In solving (4.45), the only t-dependence of A enters through
the auxiliary functions gi(t), ai’(t) and U(t)., This explains (4. 46).
The functions gi(t) and a’i(t) are the same as in (4.140), and the
only new function is U(t). U is a quartic coupling, and we know

21, 22

from previous investigations that these couplings tend to be infrared
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free. In order to determine U(t) for our case we look at the §3U function.
It has the form:
B, = rU+ 0(U%)
U
with

(S lw)

Dt
1= vy E)) ty,(e,) T v ig,) +v,(e,). (4.47)
Inserting for g, and g2 the fixed point values, this becomes:

r:Q
2

cz=1 + 2y, * 2B . (4.48)
These are all quantities known to us, and using the numerical values

obtained in the €-expansion (4.16), (4,22) or the high-temperature

expansion (4. 31) we find r>0. For example, in the e€-expansion:

€
r=1 - ) (4.49)
Thus the point U = 0 is an infrared stable fixed point, and for small
¢ (or t—=o) U(~t) has the hehavior
U(-t) ~ UeTt | (4. 50)

This result depends mainly on the sign of r, which is a function of z,
Yy and 8 . Once these quantities are given (from e-expansion or high
temperature expansion), the evaluation of r involves no further

approximation. In the next section we will find that the sign of r has

still another important effect.
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Before we go on, a word might be in place about the renormalizability
of our theory at D=4. Our RFT for the production amplitude, as given
by the Lagrangian (3. 3) is renormalizable at D=4 just as the RFT with
a triple Pomeron interaction for the 2-2 scattering, But the RFT for
the cross sections, as written is (3.10), has lost this nice property.,

In fact, if we were to compute any Greens function away from the
infrared limit, which has a quantic coupling in it, we would have to
introduce an infinite number of counter terms, depending on U and gi,
in order to avoid infinities. This is again the result of taking constants
for all couplings and disregarding damping properties for large t-values.
However, in the infrared limit it has been shown by Bardeen et al, a2
that only a very limited number of interaction operators can possibly
play a role,and in our theory it is only the operator ULJJ;rlbing L!JZ

Now (4. 50) shows that this operator goes to zero in the infrared limit,
and the quantity r which determines its infrared behavior is given
through the quantities =z, Yi’ﬁ' Each of them is computed in a theory
that is renormalizable D=4. This is why (4. 50) is valid even at D =4,
and all results of this section can be continued up to D=4,

Our next step is to determine the infrared behavior cn(E). To
this end we expand the rhs of Eq. {4.46), which, as it stands, is valid
for all t, in powers of U, In doing this we have to assume that this

expansion converges, but since our theory is infrared free with respect

to U, we can choose our U=T(0) small enough such that a convergent



=30~ FERMILAB~Pub=-75/55-THY

perturbation expansion exists. We then write the £hs of Eq. (4.46) asa
power series in U [c.f, (4.2)], and on the rhs we expand all functions in
powers of Ult) (the function U(t) depends on U as a boundary value U(0)=TU). To
simplify our consideration we take 2,7 &, to be the exact fixed point

values, such that the function g (-t) on the rhs of (4.46) becomes a constant,

(However, our results would be the same if g,-8, are chosen to be near

the fixed point). Egquation (4.46) then becomes:

n o~ . -
ZU O pen (EE,g , @ ,EN) = (4. 51)
n

n._ ) e(ZYi'i)t
DU 5 (Eg e (1), By
n

o] ..n
exp [[tdt z vcn(g)U(t ) ]
n

o]

n -(2y1-1)t'
1 D Ut A (g .e (19), Be
n

-

t

0
, ,r n
. exp [“ [tcit z an(g)U(t ) jl .

The remaining t-dependence of an and An can be extracted by use of

dimensional arguments:

. . _.Dj/2-1 ,, -DJ2 . E
on(E,g , (-t),EN) = EN a”’ {-t) & ( E—l\-T- , 2, 1,1) (4. 52)
_gP/2-1,7-Di2 _~tzD/2 (_E_'_’g ,1,1>
N n EN ;
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-D/2

D/2-1 4t A_lg,1,1) (4. 53)

)= By

- - -tz D
gD/2-1_.-D/z -tzD/2

N An(g,i,i).

So far, equation (4. 51) together with (4.52) and (4. 53) is valid for
all values of t. We now consider what happens for small £(t = - @). In

this limit, we know that

U(-t) ~ Ve (4. 50)

8]
1
f dt- )t ~ vt — [erm—i]. (4. 54)
-t nr

So the U dependence on the rhs of Eq. (4.51) becomes fairly simple, and

and if we equate the coefficient of U" on both sides, we find that

0n+2(§E.g :Q’:E

_ .2 )¢ nH
.- e(2Y1 1+2z 2 ) Z . ert(k-i)(4 55)
N n, k e

g_)o k:1 ’

where the constants c¢ are combinationsof v ,5 (E/E
nk on’' 'n

An(g ,1,1). Finally, putting w = £¢E, we have:

N g ,1), and

2y, -1+=z-

D
1 2

n+1i
Z c wr(k-”. (4. 56)
n,k
w—-0 k=1

. ! - - N + -nr]
o (Y)y~ o, (Y)U S +Cn2 Y cae CnnHY . (4. 57)
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This is the key result of the calculations of this section.

Before we turn to a discussion of this result, we would like to

point out that the infrared behavior (4.55) of o

a+2 strongly depends on

how U(t) approaches its fixed point value. For example, if BU: cU2+ 0 (U3)

has a double zero at U=0 (i.e. r=0), then U{-t) has the form:

_ U
U(-1) = T Ut (4. 58)
and the analogue to (4,56) would be
2\'1 -1+z D/2 n
O hi? (W) ~ w (Inw) (4. 59)

This would have been, for example, the result in the absence of cuts at

D=2.

B, Results and Discussion
After these rather long calculations let us pause for a moment
and contemplate what we have achieved. We first derived a scaling law
for the partial wave amplitude Fn (4.29) and the scattering amplitude
TZ—'n (4.30). If we use this result to evalute the cross section O we
obtain:

2B - (n+1)(2p+2vy,+D/2 z-1)-1 n+i D
fII (dx, d" k)

i=1

-« 6 {4 -in)

(4. 60)
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with x, = }’i/Y.ThiS is the result of MPT in Ref., 1. However, we know
that the xi-integration is divergent at X, = 0, and, therefore, only if

we restrict the X5 to be greater than some finite cutoff, say

x, Za{y zaY),isthe rhs of eq. (4. 60} defined. Any energy-dependent
1 1

cutoff would introduce further energy dependence of the infegral in (4. 60),
over which we have no control.
Since we anticipated this danger, we developed our RFT for the

cross sections. The result for oy is written in (4.57):

(Y)~oel(Y)Un[E 13 Y'r+...+6mﬂY'nr]. (4.57)

cr1+2 ni n2

The most prominent feature of this is clearly that the asymptotic

energy behavior of % is the same as for o We have kept the

el”
nonleading terms because they show the resemblance to our simple
model in Section II. (2.10). Let us take, for example, the last term

in (4.57). It has just the same behavior as obtained in (4.60), because

ZB-(n+i)(ZB+2v1+zD/2-1) 1-2y,-zD/2 cop
Y =Y YO, (4.61)

1- 2Y1 -zD/f2
and Y ig the asymptotic behavior of ¢ .. But we know

el
that the power of Y in (4. 60) belongs to that configuration of particle
production where all rapidity gaps are large. We, therefore, identify
the last term in (4.57) as the contribution of this region of phase space,

As to the other termsin (4. 57), we use the analogy to our model in

Section II. (4.57) is the expansion in the number of large rapidity gaps,
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and the leading contribution comes from the first term where only

one rapidity gap is large. We illustrate this situation in Fig. 12.

We plot the rapidity distribution of the produced particles of a single
event. Inthe leading term of (4.57) (Fig. 12a), we haveone "hole'" (inorder
to preserve symmetry, this hole can be between any two of the outgoing
particles), in the next term, two holes and so forth. In the iast term,
the produced particles are uniformly distributed (Fig. 12¢).

Looking at Fig. 12 we make another observation. It has been
argued23’ 24 that high energy scattering in RFT with a Pomeron having
intercept one can be viewed as acritical phenomenon. One of the
characteristics of phase transitions is the simultaneocus existence of
different phases of the system. In hadron scattering, different phases
correspond to different densities in rapidity of particle production.
This feature is exhibited in Figs. 12a and b, where rapidity regions
with high particle density (particle clusters) are adjacent to ranges
with zero density (holes). This situation has to be confronted with
Fig. 12c, which represents the last (non-leading) contribution in (4. 57):
this type of particle production is what one would expect in the usual
multiperipheral models,

In all these considerations, the picture obtained from our simple
model of Section II has served as a rather faithful guide, In fact,

comparing the multipomeron exhange without cuts in D> 2 transverse

dimensions with our RFT result we find that the qualitative picture has
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not changed. In both cases we have on"* o (A consequence of this

el’
is that those types of production which are present only when cuts
are included, e.g. Fig.4c, leave no signature on crn(Y)). Only at
D=2 the presence of cuts does lead to a change. Without cuts, we

have from (2. 8)

(ln )

Y ¥ (2. 8)

() -

and in this contribution all rapidity gaps are large. Once the triple
Pomeron coupling is turned on, we have (4. 57), and the produced
particles prefer a very different configuration.

Our result (4,57) can further be illustrated by a simple counting
rule of anomalous dimensions. If we think of production process where
only one renormalized Pomeron is exchanged between two renormalized
EPE vertices, then a simple counting of anomalous dimensions
coming from the Pomeron propagators (4. 14) and the EPE vertices
(4. 25), leads to

9, (Y)~ const.f 1I_-Iidy 5(Y - ZY ) ———— 1+r , (4. 62)
Yy
with r given in (4,48). Repeating the arguments given in Section II,
this leads to (4.57) and may serve as a heuristic way of tracing the
effect of anomalous dimensions,
In these calculations we have not included non-enhanced graphs

which, once finite values of rapidities appear, are no longer negligible,
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However, the fact that for large s all (but one) rapidity gaps are
pushed down to their lower limit is dictated by the enhanced graphs.
In other words, if we would include non-enhanced graphs into our
calculations, then the infrared behavior of U(t) and, hence, the
asymptotic expansion of Ty (Y) in (4. 57) would not be affected. This,
again, is a consequence of the results of Bardeen et al. 22

This completes our treatment of the asymptotic behavior of the
fixed multiplicity cross sections. The next problem to be adressed is
the high energy behavior of o (Y), the sum of cn(Y). One might be
tempted to derive this from the infrared behavior of ¢(E) in (4. 46).

If we use for ¢ and A on the rhs of (4.46) the scaling argument (4. 52)

together with the infrared freedom of U(-t), we obtain

2Y1~1+ZD/2
G(EE,g Ja”U!E )"g ’ (4'63)

or ag(¥Y) ~ o Y} . {4. 64)

1 ¢

This obviously represents the sum of the leading terms of crn(Y) in

(4.57):

- - n-2f~ -~ -nr
) =agm p TR g, Y] @)

But here again the experience from Section II provides us with a warning.
For small U, the sum of leading terms converges and might yield the

correct behavior of ¢(Y), but when U becomes larger, the sum of
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leading terms begins to diverge,andthe neglect of the nonleading terms is
certainly no longer justified. What in fact may happen is that a new
power of s is built up, which may violate the Froissart bouad. Such

a situation would correspond to a new singularity of o(E) in the E-plane,
To find the correct behavior of ¢(Y), we therefore turn to a study of

possible new singularities of o (E) away from E =0.

V. THE FINKELSTEIN-KAJANTIE PROBLEM IN RFT

The question whether repeated Pomeron exchange leads to a new
singularity of o = Zcrn to the right of j=1 and, hence, leads to violation
of the Froissart bound, is actually one of the main interests in studying
these production processes. Originally, Finkelstein and Kajantie“
demonstrated that along a specific line in the (n, Ins}-phane o {s)
grows faster than allowed by unitarity. But this is just the reflection
of a new singularity in ¢(E) to the right of j> 1. In Section II we
mentioned that when p=0 the existence of such a singularity is
unavoidable, no matter how small we make the "I-"PE coupling. For
p> 0, on the other hand, a small enough U might prevent the existence
of a singularity above one. In the last section we learned that RFT
resembles very closely to the simple model of Section II with
p=D/2-1> 0. So our expectation is that in our model for small U we
have no new singularity while for large U we may still have problems.

We will now demonstrate that this expectation is correct. The

search for anew singularity which corresponds to a two Pomeron
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bound state requires, in principle, more than just studying infrared
properties of Green's function, and it seems as if the tools of the RGE
used in the previous sections are not adequate. However, the know-
ledge of the BU function provides us with enough information to ensure
that the singularity which causes the Finkelstein Kajantie problem in
the simple pole model, disappearsonce cuts are included. Refore we
start any calculations, let us sketch the main idea, following Gross
and Neveu.25 Let us consider the (rencrmalized) 2 Pomeron —~ 2
Pomeron Green's function 1"‘22 {Ei, _k} U, EN), where we have supressed
the dependence on all other parameters. At a renormalization point

it defines the quartic coupling U:

v -T%E. E.u Eg) (5.1)
i’ i Ei=-E1\T/2
K =0
1
On the other hand, we have a RGE:
[¢8,-p, 0 ]T%% (¢B,k,U,E,) =0 (5. 2)
£ Uuu R R !
with the solution
22 > 22 >
= k -
r (§E.ki.U,EN) r(E, o U (-8), B . (5. 3)

Choosing in (5, 3) Ei = - ENIZ, 1?1 =0, we have on the rhs by the definition (5. 1):

22 — _
r (E.k.,T, By = Uity . (5. 4)
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Now the function U(t) is, as usual, defined by:

dU(t)

& C " Bptl) U = U. (5.5)
This equation is solved by
U(t)
t= - f dx (5. 6)

Now suppose that BU (x} < 0 for all x> U, and the integral

I dx o
T = j;] ﬁU(X)«: , (5. 7)

converges at infinity, Then it follows from (5. 6) that U(t) has an

infinity at t=T. But because of (5.4), U(T)= «» implies also

FZZ(-eTEN/Z,O,U,E )= . (5. 8)

N

This shows how a singularity inT 22 can be traced in the behavior of
[3U. In the following we will use this method, in order to compare the
question of new singularities in the Finkelstein-Kajantie case with our
RFT model.

Let us first examine the BU-function in the absence of triple

Pomeron interactions. Then only the graphs of Fig. 5 contribute to

o (E), and I"'?'2 is given by:
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22 - .22 -
T (Ei’ ki’ « Udo) unren, r (Ei’ki’ & 'Ud) ren.
(5.9)
- Udo
> Df2-1 Df2
o -D/2 D\fw
- — (k. +k - - - -
1 Udo[z (kg v, - B Ez] 1“<1 )(2)
and, following (5.1),
Ud
U, = o 575 - (5.10)
.y gR2-t"Diep(, Dy
do "N “ 2 /\2

In (5.9) and (5.10), we have given U a subscript d in order to indicate
that U still has dimensions. Using the dimensionless combination
U ED/Z -1

. TaTN
Us —p7— (5.11)
o

we obtain for the @U function the exact form:

(D
ﬁU—(E-i) U-U"K {5.12)

where
D/2
_ Dy/m
c-rf-2)(x) 77 513

We have plotted the behavior of |3U in (5.12) in Fig. 13 for both
2 < D < 4and D=2. Using the arguments given above we note the

folilowing:
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(a) 2<D< 4, BU has two zeroes at U=0 and UC> 0, the point U=¢
being infrared stable. If the physical value U is chosen to be in the
range [0, Uc]’ the effective U will be driven to zero. For the

physical U> UC, the effective U moves to the right, and according to
our argument above, there exists a value T for t such that U(T) = «,

and a singularity at E <Oor j>1 exists, All this can be made explicit by

solving the equation (5. 5):

e-(D/Z—i)t
-(Df2-1)t "’

Df2-1
K Dj2-1
KU

uft) = (5. 14)

-ite
and choosing for U values within [0, U] or U>U_, resp. (U, =(D/2 - 1)/ K).
(A closer look at (5.14) with 0 < U < UC tells us that even in this case a
pole exists, if we allow for complex values of t. However, one can show
that this corresponds to a singularity of 1“22 on an unphysical sheet of

the E-plane, as long as 2<D< 4, and, therefore, it is of no interest for
us).

(b D=2. We start with case (a) and let D approach 2. Since the

value of Uc =(D/2-1)/K goes to zero, the interval [0, Uc] shrinks to
zero, and at D=2 there are no values for U left where U(t) would not

encounter a pole., Solving again (5. 5):

U

A ST

(5.15)

we see that for any value U a pole occurs at
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) 1 _t_ -1/KU
t——KU or £=e =¢ . {5.16)

Since E=1-j=-¢ EN/Z, this singularity lies to the right of j=1:

E

- TN .- KU (5.17)

E
. N
= + _—
j=1+§ >

(It is importantto note that, as a consequence of our method of
regularizing divergent integrals, Eq. (5.10) and (5.17) describe the
physical situation reliably only for |El5 EN. But this is all we need for
our purpose.) The results from (a) and (b) agree exactly with what we
had anticipated in Section II.

Now we want to see to what extent the situation changes when a
triple Pomeron coupling is present. In the last section we discovered
a close similarity between our RFT model and the Finkelstein~Kajantie
case for 2< D< 4 transverse dimension. This leads us to the expec-
tation that the situation of our RFT model will be similar to case {a)
above. That this is correct follows from ]3U (Fig. 14) which we studied
in the last section. We found that the slope of BU at U=0 is positive
and different from zero, for 2< D< 4 as well as D= 2. This, together
with our argument given above, guarantees that there exist a range of
values U such that the effective coupling constant U(t) is driven to
zero without encountering a singularity. For the physical U being

within this range, no new singularity is generated, and violation of
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g-channel unitarity is avoided. This proves that in our RFT the

Finkelstein-Kajantie problem no longer exists.

Having ensured the existence of a range of U-values, for which
unitarity is obeyed, one still may ask what happens if U becomes
large. Before we try to find an answer to that question, we first
introduce a slight modification into our theory which will not affect
any of our previous results on % (Y) but will allow us to continue our
theory to D=4 dimensions. As we said in the previous section, the
RFT given by the Lagrangian (3.10) is not renormalizable at D =4,
although the infrared behavior of ¢ (E) and c;n(E) remains valid at
D=4, But now we want to know a little bit more than only the infrared
behavior of U(t) and would like to determine the p-function at least to
order UZ. The sickness of our theory at D=4 becomes already
visible in the absence of Pomeron cuts: the Uz-term inthe BU
function in (5.12) is not defined at D=4, since K {5.13) becomes
infinite. We can avoid this by including another term into the bare

2
Pomeron trajectory and propagator

2
a (t)=1+at+a ot . (5. 18)
P o] o0

This changes i‘oi in {3.10):

1 T .
ioi 2 ¥ ¥ I

li T

. . 2 T P
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and makes the theory renormalizable at D=4, When applied to the
Finkelstein-Kajantie case, this theory reproduces the correct results for the
whole interval 2< D=4, Inthe presence of a triple Pomeron coupling

it has been shown® that the t’-term in (5. 48) does not affect the infrared
behavior of g and o”, and thus, had we included this term into our

previous calculations, none of our conclusions would have changed,

Now our theory with (5.19) for Oﬁoi in (3.10) is renormal-
izable at D=4, and we start considering BU at D near 4, Because
of the presence of the triple Pomeron coupling, it is now no longer
possible to compute the exact ﬁU—function. However, we know that
for ¢ =4-D small, the effective triple Pomeron coupling is small,
and BU will not too much differ from the case without a triple Pomeron
vertex. In the appendix we show this in some detail. Then the situation
can be described by the p-function of Fig. 13a: there is a range {0, UC]
for which the effective coupling constant U is driven to zero, and no
singularity occurs. For U > UC, a singularity appears. We conclude
from this that in the neighborhood of D=4, our RFT model contains
still a new singularity when U is large enough,

If we go away from D=4, we loose the control over the large U
behavior of ﬁU. All we know is that the slope r of BU of U=0 remains
positive and nonzero all the way down to D=2, which proves the
absence of a singularity as long as U is small enough, Whether the

singularity associated with large U survives cannot be decided.
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Before we turn to a discussion we have to add one missing link to
our argumentation. The argument that we have made about the existence
or non-existence of a singularity applies to the 2 Pomeron - 2 Pomeron

. 22 . . 22
Green's function I’ and we have to make sure that in going from T

. . 2
to o (E) the situation remains unchanged. It is clear that if 1“2 has

no singularity o {(E) will have none either. On the other hand, if FZZ
becomes infinite for some value of its external energies and momenta,
this singularity will not be washed out by going from PZZ to ¢ (E).
One verifies this by taking a look at Eq. (4.46) which expresses o {E)
in terms of the effective coupling U(t). The singularity of 1"22 was
found to arise when U(t) becomes infinite. In (4,46), an infinity in
U(t) will, in general, also lead to a singularity of Y, [g(t), Uit)]

and, hence to a singularity of o (E).

Let us now discuss some implications of our results. First we
notice that our RFT model has again the same qualitative features as
our simple model with p=D/2-1>0 of Section II. It is only the point
D=2 where the simple pole model becomes very peculiar, while RFT
retains the same behavior that it had for 2< D< 4. The nice consequence
of this is that RFT at D=2 obeys the Froissart bound, provided we take
the EP'\I? vertex (the quartic coupling U is the sguare of the EPE
vertex) not too large. This taken to be the case, the asymptotic

behavior of o(Y) is given by the infrared behavior of o(E), namely

(4.63), (4.64):
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o(Y) ~ o _(Y). (5. 20)

el

Since in RFT el (Y) < % ot (Y), there is no problem with unitarity,
The result (5.20) has an important consequence for the formation

of the total cross section. Since ¢ (Y) is smaller than o the pro-

tot’
duction process with repeated Pomeron exchange are not the most
relevant contribution to %o’ This is different from certain absorptive
models5 where the Pomeron can consistently be built up by processes
involving only Pomeron exchange. The fact that in our model Pomeron
dominated production processes are not sufficient to build %ot leads us
to consider processes with secondary Regge poles, and we will do this

in Section VII,

The next comment we want to make concerns the consequences of
our result for other RFT models. We have stressed the importance of
nonzero anomalous  dimensions, resulting from the Pomeron self
interaction, This leads to the expectation that in infrared free RFT's
(weak coupling Pomeron), where such anomalous dimensions do not appear,
s-channel unitarity will be violatgd. In fact, more detailed calculations
for the ¢4 Pomeron theory (which is described in Ref. 21) show that the
Finkelstein-Kajantie problem is not cured, and a singularity above one

is generated for all values of PPP-coupling, This points out to diffi-

culties exhibited in infrared free RFT's.
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Finally we want to say a few words about the possibility that in our
model, if the 'E’P'\P" vertex is large enough, we still may have a singu-
larity above j=1. We found that it exists near D =4 transverse dimensions
and may very well survive when going to D=2, If this is the case, then
we either have to conclude that unitarity restricts the range of allowed
values of the EPIZ vertex, or we have to search for other inelastic
processes that might help to eliminate the singularity. Clearly the pro-
duction processes that we have considered are not complete in the sense
of s-channel unitarity. Namely if we decompose the reggeon diagram
in Fig. 15a into # la Abramovski, Gribov, and Kanchelli, 21 then we
obtain, in addition to our contribution (Fig. 15b}, also the configuration
Fig. 415c which stands for other types of multiparticle production. From
this point of view it may bethat singling out the production process of
the Finkelstein-Kajantie type is just an unfortunate way of cutting the
total cross section into pieces. This, however, are speculations,and
calculations have to be done, before one can rely upon this. For the
moment  we will be content with having a range of values for the PFPP

vertex where there is no need to search for cancellation mechanisms.
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Vi. THE POMERON-PARTICLE-REGGEON VERTEX

In order to complete our plan, we have to show that the way in which
s-channel unitarity is restored does not lead to any decoupling problems.
We have seen that in our model the basic mechanism which reconciles the
repeated Pomeron exchange with s-channel unitarity is the screening of
the EPE vertex (4.25). This scaling law tells us that, when both Pomeron
energies and momenta go to zero, the vertex vanishes. The form (4. 25)
of the PPP vertex has to be compared with another form which has been

suggested to restore s-channe! unitarity in production processes:

&,t)=(“+¢£[a+0&ft)]. (6.1)

Tppp'fsrty 2

The basic difference between this and (4. 25) is that in (4. 25} the PPP
vertex depends also on the two adjacent angular momenta. This depend-
ence leads, via Sommerfeld-Watson transform, to inverse powers of
ln s, and it is these powers which prevent the cross sections from rising
too strongly.

The form (6.1) is known7 to lead to the decoupling theorems. (In
the literature, decoupling theorems are usually derived from invlusive
sum rules. 28 But it is possible to arrive at the same conclusions in the
framework of multiparticle production processes). Because of the dif-
ference between (6,1} and (4, 25), RFT has a good chance to avoid these
difficulties. For a more detailed examination of this point, we repeat the

argument which, when applied to (6.1), leads to the decoupling problems.
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Instead of considering the production of n single particles via
Pomeron exchange we now take the productions of n particle pairs, and
assume their invariant mass to be sufficiently large. Then, for an
appropriate choice of quantum numbers, a secondary Regge pole with
mass tR is exposed between the two particles (Fig. 16). We now con-
sider the cross sections crn for the production of n such pairs with fixed
invariant mass M2 and fixed internal momentum transfer tR# 0. Without
any cut corrections and using a nonvanishing PPR vertex, we clearly
violate s~channel unitarity in the same way as in the Finkelstein-

Kajantie case. We, therefore, have to show that the Pomeron cuts are
sufficient to avoid this desaster.

In order to be consistent we start with all possible enhanced
diagrams (Fig. 17). We then isolate those which contribute to the Regge
pole inside the particle pair (for example, the diagram in Fig. 18 has no
Regge pole, but only a Regge-Pomeron cut, and this singularity is, for
tg # 0, well separated from the Regge pole),and examine whether they (Fig. 19)
alone already satisfy s-channel unitarity. At first sight this seems to be
a fairly strong demand, but a brief reflection shows that it is the simplest
way to avoid complications. Namely, if these contributions wer e not enough to obey
unitarity, we would have to add those diagrams that give rise to the RP-cut,

RPP-cut, etc. and show that their sum respects unitarity. But if we take

the Sommerfeld-Watson transform of the reggeon energy, we obtain a
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Regge-pole contribution, a RP cut, etc., and since the position of these
singularities has different tg-dependencies, these terms appear to be linearly
independent from each other. It is, therefore, hard to imagine how a
cancellation between all these terms might occur.

Returning to the lzPR-Vertex, we are prepared to find a screening, and
this screening has to be strong enough. Before we start calculation, we
point out that such a screening will not imply decoupling problems. Although

we do not exactly know how to continue our RFT from negative t_ to positive

R

values (on the way tot >0 some approximations made in RF'T are no longer

R

valid, and new j-plane singularities emergezg), the reggeon calculus of

Ref. 12 tells us that at the particle pole (tR=m2, and physical angular

momentum in the reggeon channel) all Pomeron cut contributions must

decouple, and only the bare PPR vertex survives which we take to be different
from zero. The decoupling of all cut contributions at physical angular
momentum is part of the reggeon calculus for the production amplitude. 1z

We are now going to show that our RFT model does exactly what
we expect, namely the E’PR vertex is screened for tR # 0, and the
screening is strong enough. From a formal point of view, the existence
of this screening is by no means obvious. For all scaling laws which
have been derived in RFT are valid in the limit where all external reggeon
energies and momenta are scaled to zero. In our case, however, we
consider the PPR vertex at the point where the reggeon, being on or
close to its mass shell, stays away from zero (tR # 0), and only the

Pomeron is infrared.
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To see why nevertheless an anomalous dimension is built up, we
recall that the orgin of an infrared anomalous dimension is the accumulation
of infrared divergencies. We, therefore, start by considering infrared
singularities of some simple diagrams that contribute to the PPR vertex.

We take the reggeon mass t_ to be negative and nonzero, and examine

R
the limit of vanishing Pomeron variables (Ei -0, 1?1—*- 0). We will find
that in this limit an accumulation of infrared divergencies occurs, and

that we can separate certain digrams which yield the most singular

contribution (Fig, 20).

The simplest diagram is shown in Fig. 2la and consists of a single
(w, k) loop integration. A singularity of this integral occurs if two (or
more) singularities of the integrand pinch the integration contour, and
using the standard techniques of Ref. 30, we find two infrared singularities.
The one is the two-Pomeron cut and arises when the poles of the two
Pomeron propagators pinch, the other is generated by the simultaneous
singularities of all three propagators and occurs only if the reggeon sits

For both these singularities the relevant region of integration is
that of small « and k , l.e., both Pomerons are infrared,and the internal
reggeon is close to its mass shell. A similar result holds for the diagram

of Fiig. 21b: the most singular behavior is obtained when (6. 2) is fulfilled,
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and in order to make the integral singular, all internal Pomerons have to be
infrared and the internal reggeons close to mass shell.

In Fig. 21¢, we have no more infrared singularities than in Fig. 21a,
because the Ez loop produces no new singularity at E{=0, El =0,
Thus it has the same infrared behavior as Fig. 2la and only leads to
(finite)} renormalization of the RPR vertex in Fig. 21a. Inthe same way,

a gelf energy correction along the reggeon line (Fig. 21d) only produces,
when compared to Fig, 2la, a new singularity in £y Ez {the reggeon-
Pomeron cut), which is well separated from the Regge pole. It

yields no new contribution to the infrared limit EI*O. EI*O . These two
examples show that a Pomeron, omitted from the reggeon line, does not
enhance the infrared singularities and the most singular diagrams are
those of Fig. 20.

We are now going to describe a theory that takes into account all
diagrams of Fig. 20 and, to leading order, will give the correct infrared
behavior of the PPR vertex. We expand the Regge trajectory around its

value at tp = -Qz :

ag (@07 = o [@F] + 57 ((Q+ 107 - @F)

= ap Q%) + 28° Ok + g k%, (6. 3)

and drop the term p~ kz ., because only small values of kK are important

for the infrared behavior. Our Reggeon propagator thus becomes:
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—- — -‘1
Gp = B - ag(@) - 1) - 20" G+ K + ie)

1l
=
f
)
I
[
)
\
¥:D)]
o
+
-
m

(6.4)

For the Pomeron we use the same propagator and selfinteraction
as before. Interaction between Pomeron and reggeon takes place via a
Pomeron + reggeon -~ reggeon vertex function, approximated by its value
at zero Pomeron momentum and Q2~reggeon momentum. The reggeon
calculus of Ref. 12 tells us that this coupling is again purely imaginary.

The Lagrangian for this theory is (Fig. 19):

£ - Jf- ———° ¢ ¢(¢+¢T)+%¢T5'¢-{1-a Q416 6
t R
Ct= ot
- (2B ¢ Q-v¢+h.c.]-1WOchb¢>, {6.5)

where Oio (given in (3.4)) is the free Pomeron part, y and ¢ are field
operators for Pomeron and reggeon, respectively. The EPR vertex is,
as before, given by a source term VOLPT(fJ. For the term

1 - aR(Qz)}q‘;T@' we use the idea of Abarbanel and Sugax‘31 and shift the

@Q@N1 .

reggeon energy by replacing ¢ — exp [it (1 - *p
As a result of this, the "intercept'' of our reggeon is zero rather than G

For the examination of the infrared behavior of the IEPB vertex

we proceed in the same way as we did before with the EPE vertex, i.e.,
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we define renormalized quantities and write down the RGE. In doing this
we observe that the renormalization of the Pomeron quantities (field
renormalization, slope and triple-Pomeron coupling) is independent of
the interaction with the reggeon. TFurthermore, the reggeon field and
slope 3” remain unchanged through renormalization, because we have
dropped the Pomeron emission from the reggeon (4 ¢ T¢ -interaction).
The only new renormalization conditions are, therefore, those for the PPR
vertex (i, e. the Vo uTqb source term), the PRR vertex and the

renormalized coupling W :

12
UpRR™ % TPRR; unren. (6. 6)
e A,
_ -1 Af2
FEPR % % P,lfPR;unren. (6. 7)
r (E E_K k_) } L s 6. 8)
PRR 22 B =B,=-Eg , D1
K, =K, =0
Tppr (Bp B, KLk g g g =1 (6.9)
PPR 1’7271 2 _E’1 EZ E
K, =K,=0

In (6. 8) and (6. 9), we have suppressed the dependence on the
parameters of our theory (e”, g, P, W ) and on the renormalization

point. Wd on the rhs of (6. 8) has still dimensions. We define:

b= N-QF =P (6. 10)

aEN

_ D/4-1 ,-Df4 -t
W—WdEN a 1

WdEiN/Z(sz-i)a, t/z2(1-Df2) -1 (6.11)
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h f r iS:
The RGE for hlf’PR is

0 . (y -1 k)=
[Eﬁ-ﬁgag'(ﬁ-a )%,*B,‘]Vaw‘ﬁpaFL (YS 2\’1):’ FEPR(éEi’ki] 0

{6.12)
with
Py~ E‘N BE W (6.13)
1 L i
B =E_2 = -= (2 + = (6.14)
Y N EN 2 (a 2 )
Yg = EN BEN 1nZ5 , (6.15)

and the other quantities as defined earlier. For Pw  We calculate the

lowest order contribution to T pPRR (Fig. 22) and obtain:
-

1 2
-b/2 X X d-x 2
pj;dx(1+x) (1-2)[1 > T T " ] (6.16)

which at D = 2 implies the existence of an infrared stable fixed point

W# 0. But rather than evaluating its numerical value in this approximation,
we make the following observation. Looking at the graphs that contribute

to the renormalization of I' PPR and I I«SRR » and using our renormalization

conditions (6. 8), (6.9), we have:
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Wd - WdozilzrfPR; unren. Ren. point (6.17)
ZS ) Zilz FEPR: unren. Ren. point (6.18)
and
O S
" Pl (Woozy 5T, ) (6.1
v.-z e 8 (23 ) (6. 20)

unren.
N 1

At D=2, a zero of ﬁWimplies YS =0 , and the solution to the RGE is:

Tppr (8 BELEE, .k, k o8 W,n Ep)

~1/2v il - i
~€ I‘PPR[Ei,EZ,ki,kZ.a (-t), k(-t), g(-t), W t)’EN] . (6. 21)

L™

Taking Ez and E-Z to zero (i. e., the reggeon on its energy-

momentum shell) and making use of the fact that I is dimensionless,

PPR
")
we rewrite:
-2
E a’ k
z/2 - -1/2yy [ 1 1
0; F) ’; » [t ] - 3 »
FPPR(gEi’ ¢ kel W “EN> : B E
", N N

EJW:“('t)E (6-22)

N
The scaling function ¢ approaches a finite limitas p— =

It is now straightforward to see that the screening in (6. 22) is
strong enough to prevent the cross sections % for the production of

n pairs with fixed but large invariant mass and fixed internal momentum
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transfer tR# 0 from violating s-channel unitarity, From (6.22) it follows
that the E—particle pair - E vertex has the anomalous dimensigns -yi,and this
has tébe comparedwith the dimension g for the PPP vertex. From ihe
discussion of the last iwo sections we know that the quanitity which

ensured the restauration of s=channel unitarity was [ef. (4.47}]:

r=2yi+2ﬁ+—[2)-z-1.

Taking for B what is now the screening exponent of the P-particle
pair-Pomeron vertex, namely “Yy. we find that r =z D/2 -1 ig still
positive, and all our discussions in the preceding sections tell us that

there is no violation of s-channel unitarity. This completes our

demonstration that repeated Pomeron exchange in RFT respects s-channel

unitarity without decoupling problems.
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VII. OTHER PRODUCTION PROCESSES

The study of production processes presented in the former
section was mainly centered around consistency questions. We showed
that repeated Pomeron exchange in multiparticle production processes no
longer violates s-channel unitarity constants, once absorption is included
and the lzPE coupling is not too large. However, the very way by which
the Froissart bound is restored, namely the screening of the production
vertices, led also to the result that the part of the total cross section

which is built up by those processes is proportional to ¢ The ratio of

el ’

to © is, whichever of the awvailable numerical values for the

%el tot

critical indices one takes, a decreasing function of s, and processes with

repeated Pomeron exchange are thus not the main part of o, This leads

ot ’
to the question which multiparticle production processes do build up the
increasing cross section.

The candidate for generating the Pomeron singularity are production
processes mediated by non- Pomeron exchange. However, we have seen
that, at least in the Pomeron dominated production processes, the
generation of a new singularity is strongly disturbed through the presence of
absorptive cuts. As shown in (5.17), in the absence of cuts one can, with
an appropriate coupling U, promote the new singularity as much as one

likes. But in the presence of cuts, this is no longer the case,

because, at least for a certain range of values for U,
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we now have nonew singularity at all. In this section we will address
ourselves to the question whether the influence of cuts is always that
strong. We will examine this in a model of multiparticle production, in
which only one secondary trajectory (henceforth called reggeon) couples
to the produced particles. Absorptive effects are taken into account by
allowing the rescattering Pomeron to couple to the reggeon and to itself
{again we take only fully enhanced diagrams). Rather than computing
the production amplitude, we again turn directly to the cross sections
and make use of the formalism developed in Sec. III. The diagrams that
we are going tostudyare shown in Fig. 23. We recognize the following
three renormalization effects: (i) The Pomeron propagator becomes
renormalized, and this happens just in the same way as in the pure
Pomeron theory. (ii) The reggeon propagator gets renormalized, and
this renormalization is independent of the particle production. Hence we

can use the results of Abarbanel and Sugar31

who have investigated the
interaction between a reggeon and the Pomeron. (iii) The RPR-vertex
undergoes renormalization. This is the only quantity that we will have

to compute.

We take the Lagrangian:

L . L Tttt
A '}_“:Zzgai'Uo‘i’:t‘?si‘bz‘i’z“LJ 9,9, 90,9, (7.1)

with (cf. (3.3) for the Pomeron part)
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£ i ot R R t
T A S A T S S Sl TR SRR
. ir
it t t. Yo o7 ot
TS0, 80 ~an ve rve, - M-a l0e 95 5 6 e T (T.2)

0

Here o qbi are the field operators of the Pomerons and

reggeons, respectively. Shifting the reggeon energy by the substitution

6 QI - a (0] t(bi , 1.3)

we eliminate the term [1- aR {0) qSiTq‘)_l in Of— T ie. we shift
the reggeon intercept to zero. This is possible only because the reggeon
number is conserved.

Now we can proceed in the same way as we did for the Pomeron
and examine the infrared behavior of on (E) ., which is related to

o {Y) via

(0) - 2
B 1 -EY
s (Y) =S SO f dE e o, (E) . (7.4)

The key point is again the infrared behavior of the quartic coupling U .

Defining the dimensionless coupling U by

U E Df2-1

U= —_D7_2 ’ (7.5)

we obtain for the BU -function:

BU =r U+ O(UZ) , (7. 6)

=

with r_, =

D D &
= -1 -= — + +
R 2V 3T & eY g T 2R ¢ (7. 7)

R
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in analogy to {4, 48) with v being the anomalous dimensions
gy iR

» 4R

of the reggeon propagator and RPR vertex, respectively, and

= o d .
h EN ENQR(EN) (7.8}

Calculating YiR and ViR in the manner outlined in Sec. IVa, we observe

that these two quantities are closely related to each other. In fact we
have

Yyr T Yap 7 O (7. 9)

in all orders of perturbation theory. This follows very simply from a

"Ward' identity that relates the RPR vertex to the reggeon pI‘()p.':tga.tor:33

reggeon -
d
(E . E PR ) = Punren (E’k1)

| dE E = E1

FRPR,uﬂI‘ (7.10)

Here I T®88%°T i3 the inverse reggeon propagator, and (7. 10) is

easily understood by looking at graphs that contribute to Fppr and the
self energy of the reggeon. The "Ward" identity (7.10) is a consequence
of the fact that in our theory the number of reggeons is conserved at each
vertex and that all produced particles couple to the reggeon. In a theory
with a iriple reggeon coupling, or in the pure Pomeron case there is

no "Ward' identity. Formula (7, 10) together with the definition of

vy 30d Yyp°

-1
= 7.11
FR PR Z4R I1RPR;unr‘en. ( )
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leads direectly to (7. 9).
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(7.12)

(7.13)

{7.14)

(T.15)

(7.16)

We then find that in (7. 7) the anomalous dimen-

sion associated with the reggeon propagator is cancelled by the screen-

ing of the production vertex to all orders of perturbation theory. Finally,

we have to determine the function h in (7.7), (7.8). It is the function

which in the RGE for the reggeon propagator determines the infrared

behavior of the renormalized reggeon slope (the analog to { for the

Pomeron), If the renormalized reggeon trajectory is to remain

linear near t = 0, then h , evaluated at the fixed point values for all

coupling constants, has to vanish. In fact, Abarbanel and Sugar found

a solution to the reggeon-Pomeron interaction. where the renormalized

reggeon trajectory is linear near t =0, and the value of h

corresponding to this solution, is zero in their approximation {first
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order € -expansion). 3¢ we expect that if this linear solution survives in
higher order ¢ , then h will remain zero. Therefore, the coefficient
e of U in (7.7) vanishes at D = 2, unlike the Pomeron case (4. 47), where
r # 0. This is a nonperturbative result.

As a result of this, the function Uf{t) will have a different form than

in the Pomeron case (4. 50), where r was nonzero. In the present case

BU = a U2-+0(U3), (7.17)

and a must be negative., To prove this, let us assume that a > 0. Then

U = 0 is an infrared stable fixed point, and U(-t) has the form:

U
Ul-t) = ——m———
(-t) = == (7.18)
We stated in Sec, IV. (4. 58} and (4, 59) that this leads to
2y -1+D/2
ey @) ~w D (nw) . (7.19)

However, a closer look at the coefficient of '&n teaches us that,

+2
for a> 0, the sign alternates as a function of n. Thus positivity of the
cross sections, which is an input into the construction of RFT for On s
tells us that (7. 18) with a> 0 is not possible. So let us take a <0, and
assume that BU has no higher terms. Then (7, 18) is the exact behavior

of U(t) and (7. 19) that of En . Furthermore, (7. 18) indicates the existence

1
of a pole at 30 - Finally, if [SU in (7. 17) has further terms that
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lead to a second zero of p , then this zero at U is infrared stable
and U(t) gets driven to that point:
- = -b
Uity ~-U +(U -U)e t, {7.20)

t—>w»
where b is the slope of [3U at U . With this we go back into (4. 49) and
again find a behavior like (7. 19). We, therefore, conclude that (7, 19)
describes the infrared behavior of Bn , and this is a consequence of
quite general arguments. Turning to the Y behavior of oy (Y) , we

find:
2 _{(0) -2 n
R (InY)
On+2(Y)“S T (1nY}

u” . (7.21)

-2y R
This result is the analog to (4. 57) for the Pomeron dominated production
processes. Except for the n-independent power of 1nY, it has the same
structure as our simple modelinSec.II with p =0, i.e., the Finkelstein-
Kajantie model. This comes about, because the screening of the RPR
vertex (anomalous dimension Y4R) is just enough to cancel the anomalous
dimension of the renormalized reggeon propagator (YIR)' What then
remains in the shrinkage, and since we have used the linear solution

for the reggeon, our result is practically the same as one would obtain

in a model without Pomeron cuts. The dominant contributions to o ,(Y)
are due to that kinematic configuration where all rapidity gaps are large

(and not only one as it was the case for Pomeron exchange),



-65~ FERMILAB-Pub-75/55-THY

We thus have established that the effect of Pomeron cuts in those
multiparticle production processes which are described by a secondary
reggeon exchange, is considerably weaker than in Pomeron dominated
processes. In fact, the qualitative behavior of o (Y) is practically
unchanged in the presence of cuts. As a consequence, the mechanism of
generating a new j-plane singularity is not disturbed, andthese processes
can, even in the presence of cuts, serve as a candidate for building the
Pomeron singularity.

We finally want to relate our results to some other work along

this line that has been done recently. 6, 35-37

The effect of absorption
in multiparticle production from a secondary Regge pole has been studied by
Ciafaloni and Marchesini. 6 For o ,(Y) they find a result which is similar
to ours (7. 16). Compared to their calculations which are motivated by
an s-channel absorptive picture, our calculations are more complete
from the point of view of t-channel unitarity. In particular, they do not
consider self-interactions of the absorbing Pomeron or renormalization
of the reggeon propagator. That the conclusions are the same, despite
the different frameworks of calculations, means that the character
of a secondary reggeon is quite insensitive with respect to absorption
by the Pomeron,

Having established that the presence of Pomeron cuts does not

destroy the mechanism of generating a new singularity in o (E) and

assuming that, for an appropriate value of the RPR~coupling, this
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singularity corresponds to the Pomeron, one might ask whether these
processes can account not only for the correct position of the singularity

but also for the power of (In s) that are required for o, ¢ in RFT.
o}

Within our calculations, an answer to this requires a study of the nature
of this singularity (if it is a simple pole, no (In s)-factors would arise),
and our knowledge of the BU—function is not sufficient for this purpose.
On the other hand, Caneschi and Jeng035 have studied absorptive
corrections to the cut Pomeron, and identifying this with the singularity
built up by multiparticle production processes, their results may shed
some light on this question. They claim that they can construct a
solution which yields the same behavior of the total cross section as

that derived from the study of 2+2 processes,
VIO, SUMMARY

In this paper we have confronted RFT with one of the most
serious tests of s-channel unitarity that have failed in the past for
Pomeron pole models. The constraint we have studied is that following
from multiparticle production. We find that, in the presence of cuts,
processes with repeated Pomeron exchange no longer violate the
Froissart bound, provided the EPE coupling is not too large. However,
we qualify this result by giving some indication that a two Pomeron bound
state of j>1 can still be formed, if one takes the PPP coupling large

enough., We do not know whether such a bound state can be eliminated by
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other types of production processes, or whether its possible existence
imposes a restriction on the value of the PPP vertex.

In the process of preserving s-channel unitarity all Un(s) are
forced to behave asymptotically like 01 » the physical picture emerging
from this being that mainly only one large rapidity gap is opened between
the produced particles. The rapidity distribution of a single event will,
therefore, exhibit large fluctuations. This is in agreement with the idea
that particle production at high energies resembles a system being at a
phase transition.

The basic mechanism by which violation of s-channel unitarity is
prevented is the screening of the EPE vertex. By opening this vertex and
studying the PPR vertex at nonzero reggeon momentum we show that
decoupling problems do not arise.

Wethenpointed out that inthe case of particle productionbya secondary
Regge pole the presence of Pomeron cuts does not lead to as drastic changes as
in the Pomeron dominated processes. Namely the qualitative behavior of
crn(s) remains essentially unchanged once cuts are included, and the
produced particles have still a uniform rapidity distribution. This indicates
that even in the presence of cuts these processes can generate a new singu-
larity which can be promoted for any finite coupling.

In this paper we have mainly been concerned with the question
whether RFT with a Pomeron whose intercept is one passes a strong

test imposed by s-channel unitarity. But at the same time we have gained
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some insight into the mechanism in which the bare Pomeron might be
built up. One of the most important questions that have to be asked in the
future is why the Pomeron singularities actually is at one. It has been
suggested that this reflects a underlying structure of hadrons and hadron
dynamics. But it is also possible that the full content of s-channel
unitarity does not allow for a Pomeron intercept other than one. We hope
that our results might be of some help for future investigations along this

line.
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APPENDIX

In this appendix we will study in detail the ﬁU function (defined in
Eq. (4.44)) near D=4, The Lagrangian we use is defined in (3.10)
together with (5.19), Our main interest is to show that near D=4 the
structure of [.’:U is nearly unchanged through the presence of the triple
Pomeron interaction and that the results holding in the absence of the
Pomeron self-interaction carry over. To this end we compute fi-U
{(which is a function of U, a and gz} up to order gz and UZ.

The Lagrangian in (5.19) contains, in addition to the those para-

meters whose renormalization has been described in Section IV, the

new parameter a . Following Ref. 26 we define

2
2
- () it m e gaEy = a, (8.1)
* \ok E:E
N
kZ:O

and introduce its dimmensionless version:

E

a=— - 4

= q° (A.2)

The RGE for any Green's function contains an additional p-function

which describes the change of a as a function of EN:

5a{g,a) = EN 8E a(EN)- (A. 3)
N
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2
To first order in €, |3a is 6

2
B o-a- £

a bdw (A.4)

. . 4
and ﬁg and {/a” are the same as in the theory without the k -term
in the Pomeron trajectory. The function ﬁU has the form:

a 2
pU= -r(gz)U-C(g ,a)Uu (A.5)

with r from (4.47),

Before we turn to the actual computation of C{gz, a) we note the
following, In order to solve the RGE for any Green's function (e.g. I'ZZ)
we search for the solution of the auxiliary functions

B - gl Lam] g - g (4. 6)

da(t)
dt

- - p_ g7, 2] a0 - a (5.7

dugy) _
dt Py

n

[U(t), g%, alt)], U©) =T - (A. 8)

In first order e, ﬂg does not depend on a and we, therefore, solve
successively (A. 6), and (A. 7) and obtain for Uf{t):
dU 2

5 c-ru+lwmu (4.9)
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(r is also a function of t, but we know that for large t is approachs the

constant, (4.48) and we are interested in the solution to (A. 9) for large t).

The solution to (A, 9) is:
-rt

U= 70T

with
t

I(t) = f atr eV cry ar .
o
As long as I (=) is positive and finife, we have
0 < I{w)< w

U = 1/l{x),
c

such that,for Uc < U, U(t) in (A. 10) encounters a pole.

We, therefore, have to show that (A.412) is, indeed, satisfied in

(A.10)

(A.11)

(A.12)

(A.13)

our theory, The graphs which contribute to C (gz, a) in {A. 5) are shown

in Fig, 24, ILet us first take D=4, Then we know that

and

(A.14)

(A.15)

(A.16)
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i.e. for large t

at)~ == (A.17)

2
|

For small a, the contribution of Fig. 24a 1o C (gz,a) is of the form

In (1/a} - positive constant, i.e. with (A.17)

C (t) ~ Int * positive constant. (4. 18)

All other graphs of Fig. 24a yield contributions of the form gzlnzt,
but since ga ~ 1/t (from {(A.15)] they are much smaller than (A. 18).
Hence, Fig., 24a gives the leading contribution, and inserting (A. 18)
into (A, 11) we find that indeed (A. 12) is satisfied. When D# 4, gz is
of the order €=4-D and Fig, 24b-c yield contributions to C (t) of the
order e¢. Therefore, for small ¢, Fig. 24a gives still the leading

term whose large t-behavior is now:

C (t) ~ const > 0, (A, 19)

Again, (A.12) is satisfied. This demonstraies that near D=4 the
presence of f -cuts does, indeed, not affect the existence of a pole in

Ut) for U> UC'
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FIGURE CAPTIONS

Repeated Pomeron exchange without cut corrections.
Feynman rules for the reggeon calculus of the production
amplitude,
Repeated Pomeron exchange with cut corrections.
Effects of absorptive cuts in the production amplitude:
(a) renormalization of the Pomeron.
(b) renormalization of the PPP vertex.
{c) particle production from different Pomeron lines.
A reggeon diagram for o, (E), resulting from squaring
the diagram of Fig. 1.
A reggeon diagram for o 5(E).
A RFT-contribution to o (E).
Quartic interactions that do not occur in our RFT for G
Green's functions that are computed in Sec. IIa:
(a) the PPP vertex.
{b) the Pomeron propagator.
{c) the triple Pomeron vertex function.
(a) The P n-particle P vertex.
{b) The 2--nt2 amplitude.

2

] 2
(a) The 2-Pomeron—+2 Pomeron Green's function I .

(b) The coupling to external particles N .
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Fig. 11 (¢} The generating function ¢ (E).

Fig., 12 Particle configurations in o p,(Y).
(a)} The leading contribution with one large gap.
(b) The next-leading contribution with two large gaps.
{c} The last contribution where the particles are
distributed uniformly.

Fig. 13 The ﬁU—function in the absence of Pomeron cuts:

(a) for 2<D<4; (b) for D= 2

Fig. 14 The Py -function when cuts are included (2 =D <4},
Fig, 15 Different cuttings of a contribution to ot
Fig. 16 Opening of the P 2-particle P vertex. The horizontal

straight line denotes the Regge pole.

Fig. 17 Enhanced diagrams for the process 2-+2 + (n-1) particle
pairs.

Fig. 18 A diagram that does not contribute to the Regge pole.

Fig. 19 A diagram that contributes to the Regge poles in all

particle pairs.
Fig. 20 Diagrams which contribute to the leading infrared behavior

of the EPR vertex,

Fig, 21 Some lowest order diagrams for the PPR vertex.
Fig, 22 Lowest order renormalization of the PPR vertex,
Fig. 23 Reggeon diagrams for multiparticle production via

secondary reggeon exchange.
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Fig. 24 Diagrams contributing to ﬁU, which are of second order

2
in U and up to first order in g .
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