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ABSTRACT 

We formulate and discuss Reggeon field theory, which 

enables one to systematically analyze the exchange of Regge 

poles and associated branch points in high energy hadron 

scattering. The field theory is first motivated by a con- 

sideration of hybrid Feynman graphs, and then a more 

general derivation from crossed-channel multiparticle unitarity 

relations is given. Rules for Reggeon interaction and propaga- 

tion are formulated. We treat in some detail the problem of the 

Pomeron or vacuum pole which has o(O) = 1 and is responsible for 

diffractive processes. 1n particular the renormalization group 

analysis of Reggeon field theory is presented and the structure 

of Pomeron partial wave amplitudes is elucidated. Also the 

question of Pomeron or absorptive corrections to secondary trajec- 

tories (both fermion and boson) is considered. We maKe some 

comments on important problems yet remaining in Reggeon field 

theory: in particular, we stress the study of its s-channel 

content. 

-l- 



I. INTRODUCTION 

. . The development of the theory of complex angular momentum (J) 

and the notion of moving singularities in the J-plane has provided 

for many years an important framework for the theoretical and 

phenomenological analysis of high energy (s) and small momentum 

transfer (t) hadron scattering processes. An elastic amplitude 

TLR(z,t) has the Sommerfeld-Watson representation 

TiB(Z,t) =-5 j 
-++i- 

w' [pJ (-2) +TPJ (2) 1 Fig (Jr t) (1.1) 
-&-im 

where z is the cosine of the center of mass scattering angle, and 

so is Linearly related to s, while T = il and denotes signature. 

The initial hope, based on non-relativistic potential theory, was 

that the only singularities of the partial-wave amplitude FiB(J,t) 

would be simple poles l-3 -Regge poles, whose position depends on t. 

(Fig. 1.1.) It iS well-known that in a relativistic theory a Reqge pole 

gives both resonance poles in the cross-channel (positive t) and 

high-energy power behavior, for fixed t, in the direct or s-channel. 

Both of these properties of a Reqqe pole can easily be obtained 

from (1.1) and their use to relate experimental results in channels 

related by crossing was one of the early triumphs of complex an- 

gular momentum theory. 

Unfortunately it soon 'became clear, following the theoretical 

work of Amati, Fubini and Stanqhellini, 4 Mandelstam, 5 and 

Polkinghorne 6 that in a relativistic theory Regge poles in FiB(J,t) 

must be accompanied ‘by further branch-point singularities - Regge 

cuts. These branch-points can be viewed as resulting directly from 
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the exchange of two or more Regge poles at high energy. Alterna- 

tively they can be thought of as resulting from unitarity in the 

cross-channel, since this requires branch-points at the production 

thresholds for two or more Reqqe poles. (The branch-points do not 

produce singularities in the t-channel physical partial-waves and 

so, unlike Reqqe poles, Reqqe Cuts are not directly observable in this 

channel.) The exchange of n Reqqe poles (Fig. 1.2), all of which have 

the same trajectory (y(t) gives a 'branch-point at CY (n) (t) : 

cI (n) 
Ct) - 1 = n [cf(t/n*)-11 (1.2) 

If we assume the existence of a Pomeron pole (P), which 

carries vacuum quantum numbers and has intercept ~~(0) = 1 then 

the branch-points involving a Reqge pole aR(t) (which may or may 

not be the P) and many accompanying _P's become particularly 

significant. This is because these branch-points lie to the 

right of the Regqe pole in the J-plane for negative t (this is 

clear from (1.2) if we take ocR(t) = ~1 
2 

(t)), and so, in the 

absence of special arguments to the contrary, ought to provide 

the dominant contribution to high-energy scattering. From a 

phenomenoloqical point of view, the branch-points are very un- 

attractive. While a pole has a residue, which, depending on t 

as it must, factorizes, a branch-point is characterized by a 

function of J and t representing the jump or discontinuity across 

the cut attached to the branch-point. In general there is no 

factorization and considerable freedom of parametrization. Not 
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surprisingly therefore, phenomenoloqists have avoided Regge cuts 

as far as possible, and in fact in some areas the experimental 

success of Reqqe poles is more striking today than at any time 

in the past decade. In particular the parametrization of TN 

charge exchange by a simple o-Regge pole exchange 

&I - 
dtir' p 

* pn) = 8(t)s2aP(t)-2 (1.3) 

has recently been shown to hold over an enormous range of labora- 

tory momentum. 7 

Nevertheless it has also become clear recently that both 

experimentally and theoretically Reqge cuts are unavoidable and 

must be accounted for. The rise of total cross-sections through 

Fermi-Lab and ISR energy ranges 8-10 may well ‘be parametrized ‘by 

a single Pomeron pole (P) but this requires cl,(O) > 1 and we know 

this is inconsistent with the Froissart bound. Therefore, any 

consistent parametrization of asymptotically rising cross-sections 

must make essential use of Regge cuts. 

The advent of the active study of inclusive reactions, in 

particular the combination of the Mueller theorem 
11-14 with the 

sum rules relating different inclusive cross-sections, 
15-16 has 

also shown that an asymptotically constant total cross-section 

associated with an isolated P pole, is inconsistent. It is first 

argued that if the total cross-section goes to a constant, then 

the triple p coupling observed in the triple Reqqe region of the 

one-particle inclusive cross-section must vanish at zero momentum 

transfer.15'17 A further sequence of arguments then leads to the 
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conclusion that the P couplings (to particles) which appear in 

total cross-sections should also vanish. 18,19 Hence the total 

cross-section cannot go to a constant. Thus as a matter of 

principle, Regge cuts must play an essential role if the total 

cross-section is to rise indefinitely or approach a constant at 

asymptotic energies. 

We have already pointed out that(1.2) implies the importance 

of multi-: cuts if ep(0) = 1. We emphasize that from a purely 

theoretical viewpoint multiparticle t-channel unitarity 20.21 

(if nothing else) requires, that if we wish to describe the Pomeron 

as a Reqqe pole then n; cuts with ap (l-l) (0) = 1 must also be present. 

The issue has been their relative experimental and theoretical 

importance. What we are now arguing is that for a completely self- 

consistent picture of the 2 the cuts are absolutely essential. 

This is true whether we are discussing the theoretical constraints 

of s and t- channel unitarity on the P or whether we are discussing 

experimental properties. 

In this article we shall review the derivation and current 

status of the one theory whose aim is to correctly assess the 

effect of all multi-P cuts. This theory was developed by V. N. 

Gribov22 and his collaborators and has been variously called the 

Regqeon diagram technique or the Reqqeon calculus. We have de- 

cided to call it Reqqeon Field Theory (RFT) instead because this 

name accurately states that we are dealing with a field theory 

for quasi-particles (Reqqeons) with a Laqrangian, field operators, 

Green's functions etc. In fact most of the recent progress in the 

subject has come from the use of currently popular field-theoretic 
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techniques based on the renormalization group. We should perhaps 

.~ add that with our present understanding we 'believe the field- 

theoretical picture of Reqgeons is only valuable in the scattering 

region. We do not expect it to be adequate to describe the 

t-channel creation of particles and resonances. 

Our aim is to give a coherent account of RFT rather than a 

historical survey or a detailed account of technical points. Wa 

have attempted to discuss those subjects which seem central so that 

a general reader can learn the scope and technical rudiments of 

the theory. We hope that references will lead both the general 

reader and the expert to the current literature. 

In PST the t-channel or cross channel is stressed. In our 

view the best starting point for a model independent derivation 

of the RFT is the multi-particle unitarity relation for the t- 

channel partial wave amplitude. 

That Regge cuts can be studied more directly in the t-channel 

unitarity relation than in the s-channel relation was first pointed 

out by Mandelstam. 5 In a fundamental paper Gribov, Pomeranchuk and 

Ter-Martirosyan*' (GPT) extrapolated and generalized Mandelstam's 

work to show that a complete structure for Regge cuts could ‘be ob- 

tained from the multiparticle unitarity relation for the t-channel 

partial-wave amplitude. (The ambiguities in the GPT work associa- 

ted with problems of signature and complex helicity continuations 

have since been resolved by White.) 21,23,24 The result is that, in 

the angular momentum plane Reqgeons look very much Like quasi- 

particles. The multi-Reqqeon branch-points can be regarded as 

Reqqeon production thresholds. The discontinuities across the 



attached cuts are given by formulae very similar to ccnventional 

unitarity relations and we therefore call them Reggeon unitarity 

relations. 

It is our belief that a proper treatment of Regqeon unitarity 

is, crucial for the study of scattering at Large s, fixed t. Our 

conviction arises because all of the multi-g channels are coupled 

by the discontinuity formulae, and for t - 0, the thresholds Of 

these channels approach each other. (In Eq. (1.2) when cc(O) = 1, 

a"(O) = L.) The resulting strong coupling of many 2 channels is 

a vital effect whose treatment is unique to the RFT. 

Some time after the GPT work Gribov showed, 22 by studying 

classes of hybrid Feynman graphs, how an underlying field theory 

of strong interactions could Abe expected to satisfy Reqqeon 

unitarity. He found a J-plane perturbation expansion which iS 

analogous to the Feynman-Dyson perturbation solution of convention- 

al unitarity. This was Gribov's original justification for the RFT. 

However the RFT is probably best thought Of as a device for ensuring 

that the Reqqeon unitarity relations are satisfied. From this point 

Of view it is clear that the RFT may also ‘be applicable to theories 

of strong interactions that are not simple local field theories 

(dual models, for example). 

ReqqeOns are treated directly as quasi-particles by aSSOCiating 

each of them with a field. No attempt is made to understand the 

spectrum of Reqqe trajectories: instead one attempts to study their 

interactions given that they exist. The philosophy here is the same 

as in the study of interactions among excitations such as phonons 

and plasmons in solid-state physics. 
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While care is taken to enforce t-channel unitarity, the con- 

. . straints of s-channel unitarity are not explicitly built into the 

WT. As a result one must verify that the theory does not 

violate these constraints. (Because of the limited phase-space 

region described by RFT a complete check of s-channel unitarity 

in the form "SS + 
= 1" is probably not possible.) When the 

renormalized p singularity has intercept one, the 2 interactions 

apparently remove the violation of the inclusive sum rules found 

for poles alone. 25 Furthermore when one tries to increase the p 

intercept above one, model calculations suggest that after all cuts 

are summed, the Froissart bound is at most saturated, in fairly 

general circumstances. 26,27 As a result we believe that the theory 

is complete enough to satisfy the constraints of s-channel unitarity. 

The above philosophy should 'be contrasted with that of s-chanmeL 

models. In these models the constraints of s-channel unitarity are 

built into the elastic scattering amplitude by repeated iteration of 

t-channel exchanges. For example, in eikonal models, when the 

eikonal phase is given by Regqe pole exchange, 28.29 one is summing 

the graphs of Fig. 1.2, which do not include any interactions among 

the Reggeons. Such interactions can be put in by hand, one at a 

time,30 but not in such a way as to satisfy Reqgeon unitarity. 

Note that the graphs of the s-channel models form a subset of the 

RFT graphs, which may help to explain why the RFT does appear to 

satisfy the constraints of s-channel unitarity. Models which satisfy 

full multiparticle s-channel unitarity have also been constructed 31-33 

but again they do not satisfy Reqqeon unitarity. 
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The RFT has one apparent Limitation which would be fatal if 

it were unmitigated. There are interactions among any number of 

P's or among P's and Reqqe poles carrying quantum numbers. Each r~ 

of these interactions is specified by an arbitrary function of the 

momentum and angular momentum of the _P's and Regqe poles coming 

together at a point. In the same way. arbitrary f,unctions are 

involved in the production and absorption of _P's by particles. 

The theory therefore has infinitely many parameters. 

It is possible that these parameters can be calculated in 

terms of a smaller set of parameters of the (assumed) underlying 

strong interaction theory. We favor the view that all these 

parameters are unimportant if the energy is high enough, while at 

current energies a phenomenoloqy involving only a few parameters 

can probably be constructed. The former statement is defended by 

renormalization group arguments to be discussed in detail Later. 

These arguments tell us that total and elastic cross-sections 

should have the asymptotic forms 

(1.4) 

- 9;9; (109aLdP/Po) , 
ABs-- 

(1.5) 

where p = t/(logs)" . (1.6) 

This asymptotic behavior arises from diagrams in which 

the external particles couple through poles (Fig. 1.3) 

- called enhanced graphs in the Soviet Literature. 

The numbers qA,q,B and the scale parameter p. in the "scaling 

function" cp will depend on the parameters of the RFT, but 17 and 

v and the functional form of cp wilL not. This was found to be 

the case in the original papers of Abarbanel and Bronzan 
34 who 
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considered the theory with just a triple p interaction, and of 

Migdal, Polyakov and Ter-Martirosyan, 25 . . who considered 'both the 

pure triple p theory and the general theory obtained by adding 

higher couplings. Actually r) and v are two of several exponents 

in the theory, that are analogous to the critical exponents which 

govern second-order phase transition theory. 35 The universality 

principle that the critical exponents of the theory are independent 

of the (unknown) underlying parameters is also 

directly analogous to the universality of critical exponents in 

phase transitions. 35 The universality of cp offers the possibility 

that we can calculate the shape (if not the scale) of the diffrac- 

tion peak at very high energies. We are fortunate that in asking 

for the form of the high energy 'behavior of hadron scattering 

processes we are asking a question which can have an answer which 

is both simple and universal. 

Our plan of presentation will be this: Wa begin in Section II 

with a brief review of Gribov’s derivation of Reggeon calculus 

rules from hybrid Feynman graphs. These rules underlie the RFT 

one abstracts from the graphs. We believe the hy~brid graph approach 

provides the best physical motivation for the RFT and this is why 

we begin with it. The hybrid graph approach has, however, suffered 

from criticisms of double counting (which are difficult, although, 

we believe, possible to resolve),and one can certainly question the 

generality of the rules extracted from a particular model field 

theory. As a matter of principle therefore we prefer to introduce 

the RFT as a solution of Regge cut discontinuity formulae, that is 

Reggeon unitarity. 
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The derivation of Regge cut discontinuity formulae using only 

.~ the hallowed S-matrix principles of unitarity and analyticity is 

discussed in Section III. The discussion concentrates on the two- 

Reggeon cut, with the extension to the n-Reggeon cut covered 

briefly. We also discuss some points that are independent of RPT, 

for example the sign of the 2,P cut and the use of a sum rule to 

relate its magnitude to inclusive reaction data. 

Section IV is devoted to the problem of the Pomeron and its 

self-consistency within the RFT. We first review early work by 

Soviet workers and others which is based on the Schwinger-Dyson 

equations of the theory and is directed towards a "weak coupling" 

P (that is asymptotically constant total cross-sections). We 

then discuss the application of the renormalization group to the 

problem. We show that an explicit solution for the P exists which 

is actually a "strong-coupling" or "scaling" solution and gives 

(1.4) and (1.5). We then discuss the interaction of the "scaling" 

P with boson and fermion Regge poles. The Section closes on a 

speculative note about the existence of further solutions to the 

WT. 

In Section V we review the use of the RFT to describe inelastic 

processes. We discuss the "cutting rules" of Abramovskii, Gribov 

and Kanchelli36 which can be used to derive an RFT for inclusive 

production processes from that for the elastic amplitude bypassing 

both the hybrid Feynman graph and the Reggeon unitarity approaches. 

We discuss 2-N production processes using the hybrid graph approach 

and briefly discuss the triple Regge region from both this approach 
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and Reggeon unitarity. The rest of the Section is devoted to the 

. . general issue of the s-channel content of Reggeon field theories 

which we address incompletely while stressing its importance. 

Section VI is a discussion of conclusions and views toward a 

phenomenology using the RFT. We discuss some orders of magnitude 

to indicate our conception of where "asymptopia" may lie. Our 

prejudice is that what we primarily see at present accelerator and 

colliding beam energies is a “bare” P, together with its “~bare” 

couplings. We discuss 'briefly how one might attempt to make a 

phenomenology out of this observation. The final part of this 

Section is a resume of our article emphasizing the important con- 

clusions and giving our outlook for the future of Reggeon Field 

Theory. 
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II. HYBRID FEYNMAN GRAPHS AS MOTIVATION FOR REGGEON FIELD THEORY 

RFT was first abstracted from a study of hybrid Feynman diagrams 

by Gribov 22 in 1967. Examples of such diagrams are shown in Figs. 

2.1 and 2.3. Their importance is that they represent explicit 

examples of the general form of amplitudes that we expect to rep- 

resent multiple Regge exchanges in a relativistic field theory. The 

circles represent off mass-shell two-body amplitudes that will 

eventually be represented by their Regge asymptotic form. The first 

step, however, is to find the relation between the asymptotic 

behavior of the circles and that of the entire graph. One can then 

study the interaction 'between J-plane poles and cuts by making 

appropriate choices for the asymptotic behavior of the circles. 

In order to illustrate Gribov’s .procedure let us outline his 

discussion of the diagram of Fig. 2.1. We wish to calculate the 

asymptotic behavior of this diagram for large s = (pL+p2)* and 

fixed t = (pl-p;j2. For simplicity we take all the particles to 

be spinless and to have equal mass, m. It is convenient to 

introduce Sudakov variables 37 by writing a general four-vector, k, 

in the form 

where 

k = op2 + BP1 + k, 

2 
F, = Pl - + p2 

2 
i;, = P* - + PL 

(2.1) 

(2.2) 

and o and fi can range from plus to minus infinity. The vectors 

El and i;, have length 
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-2 
6 

-2 _ 2m4 + m 
Pl = P2 

s s2 
(2.3) 

so that at large s we make an error of O(i) by setting 

-2 -2 
PI = P2 = 0 (2.4) 

The vector kl is a two-dimensional space-like vector orthogonal to 

6 and to E2. In particular 

2 

q = (P,-P;) =2+(E2-PL) + q1 (2.5) 

and so q2 - q:. We shall nearly always neglect terms of order 

(m 2 or t)/s. (This means that in the J-plane any results we 

derive are accurate only within a neighborhood of at most one 

unit from the Leading singularity.) In terms of the Sudakov 

variables we shall, however, write d4k in the form 

d4k = 6 p dad,8 d2k1 (2.6) 

where p = (2 - m*)'. Keeping the factor p = -$ s6+ 0 (+) will 

enable us to make our treatment of absorptive parts straightforward 

at a Later stage. 

The two-body amplitudes in Fig. 2.1 will be denoted 'by 

fL(kL,k,k2) and f2(pl-kL.q-k,p2-k2). It will 'be assumed that f 1 

and f 2 are Large when their energies sl = (kl+k2) 2- 2kl,k2 and 
2 

s2 = (pl-kL+p2-k21 - 2(pL-kL).(p2-k2) are large, that is O(s). 

It will also be assumed that they fall off when the momentum 

transfers k2 and (q-k) 2 and the masses kf, (pl-kl) ‘,ki, --- become 
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2 much larger than m . These assumptions are certainly reasonable 

when the asymptotic behavior of the fi is dominated by Regge pole 

exchange. In this case the fi can be written in factorized form: 

for example 

fL(kl,k,k2) = g(k;, (k-kL)2:k2)g(k;, (k+k2j2:k2) 

. G(k2, 2kL-k2) (2.7) 

The Reggeon propagator G, has the Sommerfeld-Watson representation 

C+iw 
G(k2 ,2kl.k2) = -r 

$-im 
$$ QGL(k2) (2(kl-k2)jL (2.8) 

where as usual the contour of integration runs to the right of all 

singularities of G 
L 

and crosses the real axis between 4,=-L and L=O 

-iqtty kjz) 
.-inL + 7 

= 
sin774 (2.9) 

with 7 = = 1 for even or odd signature. 

In general, of course, cut contributions to the fi cannot be 

written in factorized form. However, as we shall see cuts which 

arise from the interplay of two or more poles can 'be expressed as 

integrals over factorized forms. As a result it is sufficient to 

study hybrid diagrams using only expressions of the form of 

equation (2.7) for the fi. 

We are now in a position to read off the high-energy behavior 

of the diagram of Fig. 2.1. First consider the denominators arising 

from the left-hand cross. For s >> m2 
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k2-m2+i< = 2 2. 
1 aL@Ls+kl,-m +lC 

(pl-kL) 2-m2+i< = ~L(fiL-L)s+k:,-@Lm2+if 

(k-kL)2 -m'+i< = (~(,-a) (~L-P)s+(k,-kL;)2-m2+iC 

(p -k 
11 

-q+k)2-m2+ir = (cd,-d (,5L-L-B)s+2q2(a-~L-L-B+Bl) 

+ (q,-kl+kLl) 2+m2(p-8L)+i~ 

(2.10) 

Notice that the four-momenta squared which enter (2.10) also appear 

as mass variables in the fi. The requirement that they and the 

momentum transfers ‘be Less than or order m ' gives 

kfi ’ ,5 m kf 5 m2 

9 = m2/s a = m2/s 

A similar analysis of the right-hand cross gives 

kii < m2 kf 2 m2 

82 w m2/s B - m2/s 

(2.11) 

(2.12) 

N2 2 1 Q!71 

Finally the requirement that 2kL'k2 = fi1cx2s and 2(pL-kl)* (p2-k2) 

= (L-pL)(l-cr,)s be of order s gives 

8, = 1 KY2 = 1 (2.13) 

Since ,6 << 8, it can ‘be neglected in the denominators of (2.10). 

Similarly (Y can be neglected in the corresponding terms arising from 

the right-hand cross. 
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Putting together all of the above results we obtain a 

complete factorization of the integral represented ‘by Fig. 2.1 

which can now be written in the form 

dAl d.e2 d2k, 
T&q') = "" j 2ni x 

4-/s@ (2n) 
2 5, 5, Nt A (q,kJ2 

1 2 1 2 

. GtLk:) Gjs2 ((q-k,) ‘) s 
%+L2 (2.14 

where 

Nt L (q.k,) = *'J" d"L;;;;;d2kL' g(k;, (k-kL)2;kz) 
12 

. g((p,-kl)2, (pL-kL+k-q)2: (q-ki)2) (2.15 

Ll &2 2 2 1 
* 6, (L-8,) [kl-m +icl- [ ( l L p -k )2-m2+i<]-L 

. [(kL-k)2-m2+ir]-L[(pl-kL+k-q) 2-m2+iC]-L . 

X is the coupling constant for the three-particle vertices. 

NL ~ (q,k,) can, of course, also be expressed in terms of the 
12 

quantities associated with the right-hand crosses. 

Several features of equation (2.15) are worth noticing. 

First the g's depend on orL,fiL, and CI only through the mass 

variables k 2 
1, (pl-kl)', (k-kL)2 and (pl-kl+k-q)'. Since the i< 

prescription for the singularities in these variables is the 

same as for the propagators we see from (2.10) that the e1 and 

o( integrals vanish unless 0 5 ,8, 5 1. For 8, outside of this 

range, all singularities of the al integrand Lie on one side of 

the contour. We also see that if the coupling between the two- 

body amplitudes, which determines Nt ~ , were planar, all 

12 
singularities in the e-plane (in the region where o1 and e are 
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2 of order m /s) would Lie on the same side of the o! contour. As a 

result, the asymptotic contribution of the graph would be negli- 

gible. 

This Last result is the connection between Regge cut asymptotic 

behavior and the presence of a third double spectral f,unction in 

the associated "two-particle/two Reggeon amplitude" which we shall 

find from a different point of view in the next section. Note that 

since M2 =(p -X) 2 
1 

c -osfm 2, we can picic out the a-integration in (2.15) 

and write 

+- 
NL c (q.k,) = +- j” $ T (M2, q.k,) 

12 42 -= &l&2 
(2.16) 

where TL e. (M',q,k,) is defined by the remainder of the integrand 
12 

in (2.15). The M2-contour can now be rotated to give 

NLlL2 (q.k,) =d+ f dM2 ALlL2 
m2 ' 

(M2, q,k,) (2.17) 

where A 
&LL2 

(M2,q,k,) is the absorptive part of T 
%&2 

(M2,q.kL) in 

the M2-variable. We shall comment further on (2.17) shortly. 

Since the important singularities in a and al, in (2.15), 

occur when these variables are of order m2/s, each of these in- 

tegrals gives rise to a factor of $. Consequently, N1 ~ becomes 
"1 2 

independent of s at high energies. 2 In addition, for q2 and k, 

negative, which is the region of interest, N 
LlL2 

is real. If the 

simple crosses of Fig. 2.1 are replaced by more general couplings 

we still expect (2.14) to hold. Of course, N 
LlL2 

will no Longer 

be given 'by (2.15) but we still expect it to be independent of s 

asymptotically and real in the s-channel physical region (this is 
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provided that the couplings do not themselves contain Regge 

singularities - a circumstance we consider shortly). 

Next we note that since.,/; p does not change sign under 

s - - s, the signature of the amplitude T(s,q2) given by (2.14) 

is determined by the product of the signature factors E C 
.LL~‘L2’ 

This is a generalized form of the result that the signature of 

the two-Reggeon cut is given ‘by the product of the signatures 

of the contributing Regge poles. 

The Reggeon calculus has as its objective a set of rules 

for the calculation of the signatured partial-wave amplitude 

F(J,qf) which is related to T(s,qf) by the Sommerfeld-Watson 

integral 

c+i- 

T(s,qf) = + j- dJ 5, sJ F(J,q:) 

c-i- 

(2.18) 

E,, 'being the signature factor corresponding to the signature of 

T (s,qf) . (2.18) can be inverted to give 

m 
F(J,qf) = $ J' ds' (s') -(J+l)A(s’,q:) 

1 
(2.19) 

where 

A(s,& = AbsT(s,qf) = ~[T(s+if,qZ)-T(s-ic.q,2)] (2.20) 

(2.18) is equivalent to (1.1) to leading order in s. The Mellin 

transform (2.19) is more convenient for our purposes here than the 

Froissart-Gribov projection which appears in (1.1). In the next 

Section we shall use the Froissart-Gribov projection because it 

diagonalizes t-channel unitarity equations. 
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Using the facts that 

Abs(@) = s' , ~~s(-.%.-) =- =-- 1 1 

2PJS 2p-$,& s 

we see from (2.14) that 

A(s,q:) = + ; $ dt ~~3 d& d2k, .-- 
(2Tr) 2 

YL 
1 “5 2 

N; 
1 e 2 

(q,,k,) 

. Gg 
1 

(kf)Gg ((c@,)~) s 
.eL+L2-L 

2 

(2.21) 

(2.22) 

with 

1 
QLL2 = r~ c - cos [-;(tL+L2 + 

(1-TL) CL-T2) 
+- -) I (2.23) 

gl L2 

2 
2 

and 
L-T. 

Gi 
= sin[:(gi + +)I 

Finally, (2.19) gives 

(2.24) 

dLl dt2 d2k, 
F(J,q;) = d' z 2ni 

(2n) 
2 Y.c. L 

1 2 
NiLj2 (q,, k,) 

Gg 
L 

(kf) Gg ( (q,-k,) 2, 
2 

(2.25) 
J+L - LL - L 

2 

If the amplitudes fL and f 2 are dominated asymptotically by Regge 

pole exchange then 

1 
GL(kf) = -- ' 

L 1-uL (kf) 
, Gg ((ql-k,)') = 

2 t2-a2 ( (qL-kL) 2, 

(2.26) 
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In this case 

. . 

F(J,q:) = j 
d'k, 'eLcx2 

- 
(2n)2 J+L-aL(k~)-a2((q,-k,)2) 

(2.27) 

d.el d2ki 
= J- ,i (2n)2 YaLa2 NiLa Ggl (kf) GJ+lq-J2) 

(2.28) 

where the &l-contour runs to the right of the pole in G 
tL 

and to 

the Left of the pole in G J+L-& ' 1 

(2.28) now corresponds directly to the Reggeon (Feynman) diagram 

of Fig. 2.2. The vertices where two particles produce or absorb two 

Reggeons represent the factor N 
al"2 

1/Y 
%ff2 

(we absorb the signature 

factor into the vertices). The propagators represent the Reggeon 

propagators G 
Cl' GJ+L-L2 and the loop represents the Ll and k, inte- 

grations. There is conservation of both one minus angular manentum 

and ir, at the vertices if one pair of external particles is regarded 

as a source for angular momentum; and transverse momentum q,, and the 

other pair is regarded as a sinj, for the same quantities. Both angular 

momentum and transverse momentum then flow through the diagram. 

One is ordinarily interested in the 'behavior of F(J,qf) near 

the J-plane branch-point generated ‘by (2.28). For the P-P cut, Y- 

where T~=T~=~, y 
cl"2 

= -1 in this domain. One sees then that the 

effective two particle - 2P coupling \/y N 
ff1e2 Ye2 

is pure 

imaginary. Similarly we see from (2.23) that the two particle - P + 

meson trajectory coupling is also pure imaginary independent of the 

signature of the meson trajectory. 

-2L- 



Note that if we put LL=aL, t2=a2 in (2.17) we have expressed 

the two-particle - two Reggeon coupling N 
@1"2 

as an integral over 

the absorptive part of the two particle/two Reggeon scattering 

amplitude T 
YcL2 

(M2,q,k,). Comparing this with (2.19) evaluated at 

J = -1 we see that (2.16) is analogous to evaluating the two 

particle/two Reqgeon partial-wave amplitude at a nonsense point - 

in this case J = o(L+o12-1. This is the connection of the coupling 

N 
"Lc12 

with a 'nonsense fixed-pole residue" which we shall find in 

the next section. 

It is straightforward to generalize the above results to the 

three-Regqeon cut diagram shown in Fig. 2.3. One merely uses for 

fL(kL,klk2) the two-Reqqeon cut amplitude of (2.14). Proceeding 

as before one finds that the contribution of Fig. 2.3 to the 

elastic amplitude is given by 

dL dL2 d&3 d2k, d2k, 
T(s,q2) = 5 s -1 _ - 

2ni 2ni 2ni (2n) 2 
(277) 

2 - NL ~ J 
12 3 

(s,k..k~)G~L(k;2)GL2((kL-kl)2)GL ((q-k,j2) 
3 

where NL.Le_e- is obtained from 
L L 3 

by Np, L , 
12 

LL by PL+L2-1 and &2 

part of T(s.q:) as 'before then 

dLl dL2 d2kl, 
F(J,q:) = s - - -_ 

2ni 2ni (217)~ 

(2.29) 

(2.15) by replacing q(k:. (k-kL)2,k:) 

by L3. Calculating the absorptive 

gives 

d2k2J. -- 
(27fj2 "Lcr2"3 

N2 
"la203 

* G 
"1 

(k;& (k+ 
2 

J+2-.el-.e2 ( (q1-kLL--k21) 2, 

(2.30) 

which corresponds to the Reggeon (Feynman) diagram of Fig. 2.4. 
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The generalization to the case of n-Regqeons is immediate 

. . 
n d&. d2k;. 

F(J, qf)=2nij' r: --& i=l 2ni (2nj2 'oL.**en 

J-l + ~(*.-L~lb2(q_-i;Lkiii 
i=l l 

(2.31) 

where in both (2.30) and (2.31) 

Y$.. .Ln = (-L)n-l (2.32) 

Note that we have written (2.31) in a symmetric form by introducing 

6-functions conserving angular momentum and transverse momentum. 

The interpretation of (2.31) is as follows: two particles act 

as a source of two momentum q, and "energy" 1-J: from this source 

n-Reggeons with momentum k. II and energy 1-p-i i=l,...n, emerge with 

amplitude N& ~ 
1 2***'n 

dY L1...Ln . Each Reqqeon propagates with the 

amplitude G(t. k. ) appropriate to it until they are all absorbed 1' II 

by two particles acting as a sink. At each stage energy and 

momentum have been conserved: the overall energy and momentum con- 

servation 6-functions have been factored off. 

This rather attractive description of the n-Reqgeon diagram 

is supported 'by the study of more complicated hybrid diagrams. 

Consider Fig. 2.5 next. An extension of the foregoing Sudakov 

analysis shows that this corresponds to the Reqgeon diagram of 

Fig. 2.6, and yields for F(J,qf) 
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I d2kl, 
F(J,q;) = {j A 

d2k21 d.el dt2 

{ (2n)2 
- --+2W262(q,-kLL-k2i) (2n)2 2ni 2771 

. 2ni b(l-J-(1-&,)-(1-L,) )Nt ~ L 2(klL~k21)YCl~2 

'rq, $. J(kL 
12 1. 

~k21~g1)GL(~L,kL~)G2(~<2,k2~);G3(J,q,,) 
i 

(2.33) 

The additional ingredient here is the triple Reqqeon vertex r 

shown in the present calculation as Fig. 2.7. More complicated 

contributions will change the detailed form of r but leave F(J,qf) 

as in (2.33). Since the coupling of two particles to one P is real 

and that of two particles to two 2's is pure imaginary, the triple 

P coupling of Fig. 2.6 must be pure imaginary for k ,k ,q - 0, 
11 2J 1 

since F(J,qz) must be real below the t-channel threshold. This 

means that +/c r& ~ J must 'be pure imaginary and so r 
'2 12 LlL2J 

must be real. The coupling of a meson trajectory to a P plus a 

meson must similarly Abe pure imaginary. 

To derive Reqgeon rules from a general hybrid Feynman graph 

one identifies familiar elements, for example, G,r the N's, and 

writes the desired contribution to F(J,qL) as products of the 

basic building blocks put together with energy and momentum inte- 

grations. The final outcome is that to obtain the full partial- 

wave amplitude we must write down the complete set of "Feynman" 

Reqqeon graphs including general interactions in which arbitrary 

numbers of Reqqeons are destroyed and created. 38 
The correspond- 

ing contributions to the partial-wave amplitude are then constructed 

by writing down vertex functions for all couplings, propagators for 
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each internal Reggeon Line, and s$ 
d2k, 

_ 
(rnJ2 

for each internal Reqgeon 

Loop. Energy, E = (1-t) and momentum being conserved at each vertex. 

Notice that because the Regqeon propagator is linear in E we 

must specify the direction of propagation of the Reqqeons. 

Diagrams which are topologically identical, but which have 

one or more Regqeons propagating in opposite directions are 

distinct.22 

Clearly we have arrived at a set of "Feynman" rules for writing 

down our partial-wave amplitude and we shall formalize this further 

in Section IV. We finish our description of the derivation of these 

rules from hybrid graphs by noting the rules for the phases of the 2 

couplings that we have found. From (2.32) and similar signature 

factors for Reqgeon interaction diagrams we find that if N, is the 

coupling (treated as a constant) of two particles to m P's and A,, 

is the coupling of m p's to n p's then 

Nm 
m-l 01 (i) , A,, o! (i)m+n-2 (2.34) 

We have now given a bare outline of the arguments of Gribov 

to motivate a field theoretic description of Reggeons. We do not 

intend to attempt the complete decomposition of a relativistic field 

theory into hybrid diagrams. This would be required to turn our 

present heuristic justification of the PFT into a proper derivation. 

Clearly we would need as a starting point some picture of the initial 

process which generates an isolated P pole with up(O) - 1. The 

amplitude for this process would then provide the input two-body 
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amplitude for our hybrid diagrams. (Conceptually it is sometimes 

useful to picture this process as the familiar multiperipheral or 

ladder mechanism,36 but this is not essential.) However, there are 

still problems associated with the breaking up of hybrid diagrams 

which correspond to Reggeon interactions, such as that of Fig. 2.5, 

into a part corresponding to the full Reggeon diagram (that of 

Fig. 2.6 for Fig. 2.5) and parts corresponding to renormalization 

of the original, or bare, pole and or vertices. To handle this 

problem correctly it is necessary to introduce a cut-off in the 1, 

and k integrations in Reggeon diagrams and to relate this cut-off 

directly to the 'break-up of the phase-space in hybrid diagrams. A 

discussion of how this can be done and how the accusations of 

double-counting at this stage can be avoided, has been given by 

DeTar.3g 

Fortunately we can avoid this problem by using Reggeon 

unitarity as a 'basis for the RFT, as we discuss in the next Section. 

The Reggeon unitarity equations are applicable once we know, or 

rather assume, that there is an isolated P pole in the neighborhood 

of J- 1, t- 0. These equations reassure us that we have not been 

double-counting in discussing hybrid diagrams. Before Leaving the 

counting problem altogether however, we note that we shall discuss 

the use of a cut-off RF'T in relation to the renormalization group in 

Section IV. It is worth noting from the above discussion that the 

cut-off may well be an essential feature in ensuring that the RFT 

is well-defined both mathematically and physically. 

The generality of the Reggeon unitarity approach to RFT gives 

a powerful logical basis to the apparently more model dependent, 
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albeit rather more physically motivated process described above. 

To compare the results of this section directly with those of the 

next section we briefly discuss taking the discontinuity across 

the cuts attached to the Reggeon branch points occurring in the 

partial-wave amplitudes we have obtained. 

Consider first the n-Reggeon branch point generated in (2.31). 

This can be viewed as a "threshold" singularity generated ‘by the 

poles of the propagators Gt, (kfl). The discontinuity is obtained 
1 

usual "Cutkosky rules" of putting each Reggeon on its "spin" by the 

(mass1 shell: 

discJF 
n 

T.-L 2 2 

(J,qf)=(-l)"-'2Vi sin[:(J-C e)]s d kLl...d knA 

i (2nj2 (nrJ2 
b2(q - ; k. 

1 i=l I.1 

x 6(J-1-g [ai(k;,)-ll)(;C,,)-L N2 cYL...cxn (2.35) 
i=l I. 

This expression being simply obtained from (2.31) 'by writing 

Gj (k;;) 
*1 

- 2ni S(Li-cyi(k2iL) 1. 

For more complicated Reggeon diagrams there will be a contrib- 

ution to the n-Reggeon discontinuity from every n-Reggeon state that 

can be found by "cutting" the diagram vertically. (There will, as 

in a conventional field theory, 'be a renormalization of the pole 

position in each propagator by "self-Energy" insertions. This 

renormalization will only be unambiguously defined from hybrid 

diagrams once the cut-off is introduced as discussed above.) To 

take all these contributions into account we follow the usual 

unitarity prescription of complex-conjugating that part of the 

diagram to the right of the cutting Line. More technically, the 
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part of the diagram to the Left of the cutting Line is evaluated 

above its J-plane branch c'ut, while that to the right is evaluated 

below the branch czt. After summing all contributions the final 

result is that the complete discontinuity has the same form as 

(2.35). except that 

‘i + (J-ic) 
1 

...a 
n 

INa __ a (J) I2 = No _ .cL (J+ir)N 
1 ' n 1' n al...CLn 

(2.36) 

where N al..-cxn (J) is the complete two particle - n Reggeon amplitude. 

The complete imaginary part of F(J,qf) arising from its Reggeon 

branch-points is given by the Reggeon unitarity relation 

discf(J,q:) = nz2 d,iscf (J,qf) (2.37) 

where discf(J,q2) is given by (2.35) with the substitution (2.36). 
n J. 

The purpose of the next Section is to derive (2.37) directly from 

multiparticle t-channel unitarity. We can then argue that the 

procedure of the Latter part of this Section can be reversed and the 

RFT viewed simply as a solution of (2.37). 
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III. REGGEON UNITARITY RELATIONS 

In this section we discuss the derivation and implication of 

Reggeon cut discontinuity formulae from the point of view of 

t-channel unitarity. We use standard S-matrix methods and the 

results depend on conventional S-matrix assumptions of analyticity 

put together with the existence of moving poles in the J-plane. 

Briefly speaking we argue that branch points in J arise from the 

presence of two or more moving poles in J. If there are additional 

singularities in the J-plane,, we will not find them. Indeed, in the 

spirit of "maximal analyticity in the J-plane" we assume them to be 

absent. The full treatment of multiparticle t-channel unitarity in 

the J-plane is rather complicated but we shall try to minimize the 

technical details without depriving the reader of all insight into the 

procedure. 
To motivate the use of the t-channel as the correct place for 

an S-matrix analysis of J-plane branch points let us look at the 

Feynman graphs which w%re the original indication of the presence of 

cuts.4'5 (Figure 3.la and Figures3.lb.) Both graphs have many inter- 

mediate states in the s-channel gotten by cutting the ladders which 

give rise to the Regge behavior. A priori all possible numbers~:of 

particles in the s-channel must be considered at the same time to 

discuss the large s, fixed t behavior of these diagrams. 
40 Since we 

are, however, interested in a fixed t limit, by continuing t from 

the scattering region, t s 0, to some finite time-like point we 

can restrict our attention to particular t-channel intermediate 

states. In the diagrams in Figure 3.1 the lowest intermediate state 

in t is the four particle state. This suggests we may be able to 

study the two Reggeon cut in the full partial wave amplitude by Look- 

ing at the four particle unitarity integral in the t-channel. Indeed, 

this is so,20~2L provided, of course, that the Reggeons involved 
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couple to some two-particle states. 

MandeLstam5 actually analyzed in detail the diagrams of 

Figure 3.2 rchere one of the Ladders (Regge poles) of Figure 3.1 

is replaced by a single particle. Neither Figures 3.la nor 3.2a 

has a Regge cut while 3.lb and 3.2b do. Mandelstam showed this 

for Figures 3.2a and 3.2b by considering the three particle 

unitarity relation in the t-channel. He argued that only in the 

case that the five point amplitude shown in Figure 3.3 has both 

a right & Left hand cut in the sub-energy s 1 could a J-plane 

branch point be present in the elastic amplitudes of Figure 3.2. 

Figure 3.2a has only a right hand cut and does not yield a J-plane 

cut: Figure 3.2b has both right and Left and gives rise to a 

J-plane cut. In other words, a J-plane cut will only occur when 

the "three particle-Reggeon amplitude" of Figure 3.3 has a "third 

double spectral function." This part of Mandelstam's argument is 

independent of Feynman graphs as is the final form for the con- 

tribution of the cut to the partial wave amplitude 

(I/t-m) 2 $ 2 

F (J,t) - Jdtl 
X (tLtl,m ) C(trtl) 

t J+l-cr(tL) ' 

where C(t,tL) is a smooth function of its arguments, o! (t 

pole trajectory coming from the Ladder graphs, and X(x,y 

(x+Y-z)~-~xY is the familiar kinematic factor. 

(3.1) 

,) is the 

,z) = 

Subsequently, Gribov, Pomeranchuk, and Ter-Martirosyan (GPT) 20 

compared the form of (3.1) with the contribution to the two particle 

unitarity relation for F(J,t) coming from a spinless particle of 

mass rn~ and a particle of mass m 1' spin JL, helicity nl. This is 
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+J 

ImtF(J,t) = z1 
XH (t,mf,m2) l'(J+l-nl) 

n =-J t f 

11 
l?(J+L+nL) Jlnl (t)f* Jlnl(t' ' 

(3.2) 

where f 
JlP is a 

helicity partial wave amplitude for the transi- 

tion: two spinless particles - spinless particle + particle of 

spin JL, hellcity nL.~ This formula contains a fixed pole at 

J = JL-1 arising from the helicity state with nL=J 1' and near this 

point strongly resembles (3.1). Further, it is known that the 

residue of this fixed pole will vanish unless the amplitude giving 

f .,,(t) has a third double spectral function. This is the usual 

connection between nonsense wrong-signature fixed poles and third 

double spectral functions. i There is a rather thick layer of 

jargon in this, and we are required to ask the reader's patience 

and refer him to standard references 41 for an explanation of terms.1 

This comparison suggested to GPT that J-plane branch points 

could be viewed as resulting from the presence of a fixed-pole in 

Reggeon particle intermediate states all along the Regge trajectory. 

This observation was the key to subsequent analysis of J-plane c'Jts 

using t-channel unitarity. A complete analysis of three particle 

unitarity together with a discussion of the Reggeon-particle cut in 

(3.1) has been given by White." This Last cut moves off the 

physical sheet of the J-plane around the two Reggeon branch point 

when t becomes small. Since it, therefore, does not contribute to 

the large s, fixed t behavior we turn our attention to the two 

Reggeon cut. 

To study the two-Reggeon branch-point we consider not the 

complete t-channel unitarity relation for t 2 16 m2, but instead 
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isolate the discontinuity across the four-particle threshold. 

This eliminates the need to discuss the two and three particle 

contributions to the unitarity relation. The Feynman graphs of 

Fig. 3.1 do not have two or three particle intermediate states 

in the t-channel and so for them the four-particle discontinuity 

would 'be the complete unitarity relation for 16 m 2 c t s 25 m2. 

In general the four-particle threshold discontinuity can be 

42.43 written in a fairly conventional S-matrix form 

~..-J-cJy~ (3.3) 

s and s are physical amplitudes, but the other 

amplitudes are defined by analytic continuation of these physical 

amplitudes,. continued around the four-particle 

threshold as illustrated in Fig. 3.4. sis z analyt- 

ically continued around both the four-particle threshold in the 

total energy t (this is denoted by the 4) and around all phase- 

space thresholds in the sub-channels (this is denoted by 
CE 

and involves going around two-particle thresholds in all two- 

particle channels and three-particle thresholds in all three-partic 

channels). The integration implied by the right-hand side of (3.3) 

is over normal four-particle phase-space. 

The next step is to project this unitarity relation onto 

partial waves. In Figure 3.5 a complete set of partial wave 

variables is given. Since the external particles are spinless we 

need only the total angular momentum J and (mass) 2 = t = Q2 of the 

four-particle state, Ji, ti = Q. 2 
1 for the two pairs of particles 
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and ni the helicity of each pair. The total helicity n = nL + n2. 

One can now use these variables to construct the unitarity relation 

for partial waves coming from (3.3):44 

F(J,t) - F4(J,t) = 

z j'dp C II A(J,JllJ2, In/./nl/n2/)F(J.JL,J2,nL,n2,t,tl,t2) 

\n\cJ JLz\nL( 

J24n21 

F4-(JSJLPJ2,nL,n2,t,tL,t2) (3.4) 

with 

h(~.~~,J~,t,t~,t~) = 
(2Jl+1)(2J2+L)r(JL-nL+L)r(J2-n2+L)r(J-n+L) 

r(Jl+nL+1)I'(J2+n2+L)T(J+n+L) 

(3.5) 

and 

(Jt-2m)2 (dT-,JtL)2 ,3 ct t t ) Yet -4m2) tt -4m217,’ 
' G'do 1' 2 1 2 = =5 

(2V) 2 

6 

4: 

j'dtL idt2 t 

qm2 4m2 
tlt2 c 2 

(3.6) 

Eq. (3.4) gives the discontinuity of the usual partial wave 

amplitude F(J,t) across the four-particle threshold. The amplitude 

F(J,JL,J2,nLSn2, t,tL,t2) is the helicity partial wave amplitude for 

two spinless particles to go to a particle of mass tL, spin JL, 

helicity n L plus a particle of (t2,J2,n2). F4- of the same arguments 

is the helicity partial wave amplitude of the analytically continued 

six point function. 
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We now focus on the "kinematic factor" A in (3.4). It con- 

tains the fixed pole at J = n-l. This is the singularity GPT 

expected to be present in order for the two Reggeon cut to appear 

in F(J,t) when continued to complex J. GPT did not try to find 

the exact form of this continuation. They essentially tailored 

their assumptions on how to continue the sums in (3.4) to achieve 

the expected results. Since their work there has been considerable 

insight into the technical problems associated with analytic con- 

tinuations of multiparticle amplitudes in angular momentum as well 

as helicity. 
45 

For our purposes it is enough to know that the GPT program can 

be Carried thnough although we shall need the exact form of the con- 

tinuation of (3.4) to complex J. This has been given by White 21 and 

we follow his development. TO continue F(J.J1.J2,nL.n2,t,tl,t2) away 

from integer J,Ji, and ni we must introduce signature as well as 

labels > or ': telling us whether we have continued ni into the 

right or left half helicity planes. We will collect these various 

labels into an index n and refer to them only when essential. 

The signature labels naturally refer to continuation in J-n, 

.- 
call the signature 7: Ji-ni,jri: n. 

I' 
T:. The signatures T,T~,T 2 for 

J,JL,J2 are 

T = T TL’ T2’ , T1 = 1 Tl’ , ? 7 ’ r2 = 2 T* . 

(3.7) 

The contribution to the discontinuity in (3.4) from "1, n2 z 0 is 

now written 
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- sin ;(J-;) 
Jdp 7 J 

dnldnZ 

16 7;=*1 CJ 

r 74- 
t: ~(J.n)F~(~.n)F- _ _ (J,n) , (3.8) 

Ji-ni=O 2 

where ,j = (J,J l,J2), 2 = (nl,n,). L = (T,T~.T~,T~',T~'), and 

f = F , ;; yrl _ 

Clearly the sums over nl and n2 in (3.4) have been converted to a 

contour integral over the contour CJ. Fig. 3.6 shows the projection 

of c J in the n1 plane at fixed n2 and for fixed n1 it would have the 

same form in the n2 plane. That the contour is asymptotically parallel 

to both the nl and n2 imaginary axes ensures that the integral con- 

verges and that the problem of divergent helicity sums in this context 

is avoided.46-48 At integer J the two series of poles shown by crosses in 

Fig. 3.6 come together and pinch the contour CJ. The double integral 

over n 1 and n2 develops a pole because of the pinching of the contour 

by the three sets of poles in the integrand coming from the factbors 

of sin 5(nl-T;), sin 5(n2-+;), and sin $(J-n-7). 

The pole of the integral is cancelled by the "signature factor' 

sin q(J-f), which multiplies the integral and thus singles out the 

pole residue as the value of (3.8) at integer J. This residue 

contains just the requisite finite sum over helicity amplitudes. 

We can now study the two Reggeon cut which arises from the 

presence of Regge poles at J. = cti(ti), with signatures TV, L 

in the Ji channels. Poles occur at ni = ai in the term with 

Ji-ni=O in (3.8) provided yi = + 1. As shown in Fig. 3.6 these 
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poles lie on opposite sides of the CJ contour to the pole of A at 

J = n-l. 

Therefore, unless there is a compensating "nonsense zero" in 
7 r4- 

either F-(J,n) or FG _ _ , 
II 

(J,n) - - there will be a pole in the helicity 

integral at J = al(tl)+cx2(t2)-1 as a result of the pinching of 

the Regge poles and the nonsense pole. For there to be no 

nonsense zero J = nl+n2-1 must be a wrong-signature nonsense point. 

This requires 

7=+1 + 
, I 

T = TlT2 

and since 

we must have 

T = r1r2 . (3.11) 

This is the S-matrix origin of the rule that the signature of a cut 

is the product of the signatures of the Regge poles building the 

cut. 

Is0 

to (3.8) 

blating the contribution of the pole at J = czl (t,) + "2(t2)-1 

, and taking T = r 1 2 = T = +1 for simplicity, we obtain 

(3.9) 

(3.10) 

T4- 
2 -77 4 sin ; J j'dp 

A' ~JL)R;~(J,~) F; (Jr_". t) 

sin $cyl(tl)sin $x2(t2) (J-crl(tl)-~2(t2)+1) 
(3.12) 
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where A' (J,z) is the residue of A(J,n) at the pole at J=nl+n2-1 - - 

and R&(J.t) 
T 

is the double Regge pole residue of Fn(J,J1=n1,J2=n2, 

nl, n2) . Note that we are using the fact that the Regge trajectories 

acquire imaginary parts at the lowest thresholds in the tl and t2 
r4- 

channels so thatF 
.- 

?I 
is not singular at Jl=ol(tl),J2=c2(t2), but 

instead has poles at Jl=u!;(tl), J2=a;(t2). 

(3.12) already resembles (3.1) and we can improve the 

resemblance and simplify (3.12) by using two-particle unitarity 

in the t, and t2 channels. It can be shown that we may write 
I 

2 
(3.13) 

in (3.12), where NiIi(J,t) is defined from R& (J,t) by factorizing 
-_ 

off the two-particle/Reggeon vertex functions, if we replace the t 1 

and t2 integrations in j'dp by contour integrals enclosing the two- 
T4 

particle thresholds in those channels - see Fig. 3.7. fl is 
r -"I 

simply the analytic continuation of N" 
-"I! 

around the four-particle 

thresholds in the t-channel. If we make the further simplification 

of absor~bing +,/;;T into Niv we obtain for 1mFCJ.t) 
-_ 

t n2 4: 
sin(; J) i 

X(t,t1nt2)>" 
dtldt2 

At*t1,t2) +J.t+J.t) 
-_ 

t sin+,(tl)s+a2(t2) (J-al (t,) -a2 (t2)+1) 
(3.14) 

(3L2) is now clearly analogous to (3.1) except that the Reggeon- 

particle "fixed-pole" at J=a(tl)-1 has been replaced ‘by the two- 

Reggeon fixed-pole at J = CI~(~~)+CK~ (t2)-l- 
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The Reqqeon-particle branch-point occurs in (3.1) when the 

fixed-pole hits the end-point of the tl-integration - this gives 

a branch point at 

J = oc((dT-m)2) - 1 (3.15) 

There are various end-point singularities generated in (3.14) but, 

apart from the two-Reggeon branch-point, they are not singular on 

the physical sheet of the full amplitude near t=O. 49,53 
The two-Regqeon 

branch-point is generated when the pole at J=crl(t1)+02(t2)-1 is 

tangential to the integration boundary at A(t,t,,t,)=O. The 

position of the 'branch-point can therefore be formed by solving the 

Landau equations 

a 
,,@,[a,(tl) + cr2ct2j1 + p2h(t,tl,t2)) = 0 

1 

-g+Plbi (t,) + a2 (t,) 1 + p2x ct. tl, t,) ) = 0 
2 

(3.16) 

(3.17) 

together with the conditions 

J1 - al(tl)-cl2 (t2)+l = 0 , x(t,t,.t,) = 0 . (3.18) 

If the two Regqe trajectories are identical, the solution of these 

equations is tl=t = t 
2 4' with the branch-point occurring at 

J = aJ2) = 2or($) - 1 . (3.19) 
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For non-identical trajectories the branch-point trajectory will be 

more complicated. 

Since the integration in (3.14) is two-dimensional and the 

trajectory functions are complex for tl,t2 > 4m2, it is not 

straightforward to take the two-Reqgeon cut discontinuity in (3.14). 

However, (3.14) becomes much easier to work with if we analytically 

continue it to t e 0. 50 The details of this continuation are 

complicated but the net result is that if we extract the "threshold" 

behavior of < n(J,t) at A(t,tl,t2) = 0 by writing 
- - 

N;&J,t) = C7 
[A ct. tl, t2) 

-- F!! 
(J.t) [ t (3.20) 

then we can simp 'ly rotate the integration contour in (3.14) to the 

region X (t, tl, t2 ) < 0 and write 

1 
[h(t,tl#t2)l =, i[-A(t.t,,t,)l' . (3.21) 

(For the purpose of studying the two-Reggeon branch-point we can 

ignore the fact that the original contour encircled the positive 

5 and t 2 thresholds.) For t < 0, then we obtain from (3.14) 

1 

?~2~4! 
j- 

X4 
dtldt2 [-A (t, tl, t2) I-+ 

7 74 
c- c- 

w sg -_ (3.22) 

si+yl (t,) sin-$x2 (t,) (J-y (tl) -a2 (t2) +i) 

If the trajectory functions are real for negative tl and t2 then the 

collision of the pole at J=oL(tL)+02(t2)-1 with A(t,tl,t2)=0 is now 



straightforward 
T 74 

- see Fig. 3.8 - and if C- and C- are 'both non- 
9 olg 

singular at J = CL~ we obtain from (3.22) 

T 74 

discJ F(J,t) =-*sin$J U7dtLdt2 
&(J-aL(tL)-e2(t2)+L)C- C 

"17 fw -_ -- (3.23) 
2 41 XC0 [-A (t,tL,t2)I'si+Lsin~cY2 

The discontinuity we have taken is 

discJF(J,t) = F (J - ic,t) -F (J + ic,t) (3.24) 

since the sign of this discontinuity is the sign of the contribution 

of the cut to the total cross-section. 

To obtain the complete discontinuity across the two-Reggeon cut 

we should actually multiply (3.23) by a factor of six. Firstly 

F(J,JL,J2,nL,n2) is symmetric under nL,n2 - -nL, -n2 and so we obtain an 

exactly similar contribution from that part of (3.4) in which 

nL,n2 c 0. Also the phase-space Idp we have used is that for four 

identical scalar particles. This was for simplicity, but it means 

that the same Reggeons can appear in channels defined by regrouping 

the four-particles to define new angular momentum states. Since 

there are three possible ways of pairing four particles, by repeating 

the foregoing analysis using different angular momentum states we 

obtain two more distinct contributions to the two-Reggeon cut. 

By considering the exact form for the J-plane continuations of 

the parts of (3.4) for which nL>O, n2<0 or nL<O, n2>0 we can show 

that no two-Reggeon cut is generated. " Essentially this is because 
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the helicity-Regge poles and fixed-pole lie on the same side of the 

helicity contour and cannot generate a pole at J=aL(tL)+a2(t2)-1. 

The next problem is to take account of the presence of the two- 
T 

Reggeon branch-point in C- 

J=*, 

u,,(J,t). C;; (J,t) will ‘be singular at 
-- 

rather than J=cy T 
c ' when t >L6m , and we shall exploit this. 

T 
To study the branch-point in C" 

a77 
(J,t) we have to use the unitarity con- 

-- 
dition for F(J,JL,J2,nL,n2). The four-particle threshold discon- 

tinuity formuLa that has to be partial-wave projected is 42,43 

~-~TJ=-&~f (3.25) 

Proceeding through the analogous steps to those above we are finally 

Led to study the two-Reggeon cut in a four-Reggeon amplitude 

M ctcc,(J,t) - shown pictorially in Fig. 3.9. This amplitude is defined 
-- 

as a double fixed-pole residue of a four-Reggeon amplitude defined by 

factorization at Regge-helicity poles. (The fixed-poles occur at 

J=o;(t;)+02(t>) - 1 and J=al(tL)+a2(t2)-L, and the Regge-helicity 

poles occur at Ji=ni=oi(ti) i=1,2,1:2'.) To study the two-Reggeon 

cut in M oa I we have to go to the discontinuity relation for the 

eight-point function 42.43 

(3.26) 

The procedure of projecting (3.23) and (3.24) onto partial-wave 

and continuing to complex helicity and angular momentum involves 

even more complicated expressions than those we have already consid- 

ered,21 mainly because of the proliferation of variables and indices. 

Therefore we shall not attempt to give the full details of the 
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manipulations of these equations, but instead illustrate only the 

formal structure that is used. We can write (3.14) in the form 

F(J) - F4(J) = N(J)T(J)N4(J) (3.27) 

where N(J) E c (J,t) and r(J) is a formal expression for the 

integration in (3.14) which generates the two-Reggeon cut discon- 

tinuity given by (3.23) From (3.25) and (3.26) we obtain 

analogous equations to (3.27) 

N(J) - No = N~(J)T(J)N(J) (3.28) 

M(J) - M4(J) = M4(~)T(~)~(~) (3.29) 

The appearances of the same r(J) in all three of (3.27)-(3.29) is 

vital. (3.27) - (3.29) are initially obtained for t 2 L6m 2 and 

ReJ > Ree 
C’ 

If we continue them to ReJ < Reac and use * to denote 

a * i< prescription in the J-plane with respect to the cut we 

obtain from (3.29) 

M(J*) - M4(J) = M4(J)T(?)M(J*) (3.30) 

From which we obtain 

dM(J)=M(J+)-M(J-)=M4(J)T(J+)bM(J)+M4(J)6T(J)M(J-' ) (3.31) 

and so 

(L-M4(J)r(J+))6M(J) = M4(J)6r(J)M(J-) (3.32) 

= (L-M~(J)~(J+) )M(J+)~~(J)M(J-) (3.33) 
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which has the solution 

6M(J) = M(J+)GT(J)M(J-) (3.34) 

Similarly we can obtain 51 

6N(J) = N(J+)dl?(J)M(J-) , (3.35) 

and OF(J) = N(J+)ST(J)N(J-) . (3.36) 

For t<O br(J) is given by (3.23) (apart from the factor of six ) and 

so writing out (3.36) in full 

discJF(J,t) = -1 sin$J Jdtldt2 
25 xc0 

6(J-r~(tl)-~2(t~)+L)C$J+,t)C~~!J-,t) 
-_ -_ 

[-A (t, tl, t2) lBsin!& (t,) sin$z2 (t,) 

(3.37) 

It is clearly straightforward to write out detailed versions of 

(3.34) and (3.35) giving the discontinuities across the two-Reggeon 
7 I 

Cut in NtV(J,t) and MtU$J,t). 
-- --- 

There are several important properties of (3.37) which we 
r 

should note. The most immediate point is that since C" is 

real-analytic C:T(J;t) 
7 %?I 

(J.t) 

is the complex-conjugate of C C1,,(Jft) and 
-- 

so the sign of the two-Reggeon cut discontinuity is determined. If 

both o! and "2 
1 

are Pomerons so that in (3.37) 

J- 2a(t) - 1 - e(t) - 1 for t - Q , (3.38) 
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the integrand is positive definite and the overall 

negative sign persists. A detailed analysis 50 shows that this 

negative sign can be traced to the fact that the "signature factor" 

sin :(J-nl-n2-[+-(;;++;)]) in (3.8) is evaluated at a nonsense 

wrong-signature point where it gives - 1. 

The next point we note is that the signature factor sin ;J 

in front of the integral in (3.37) ensures that the branch-point 

is not present (as a fixed singularity) in the physical t-channel 

partial-waves - that is F(J,t) evaluated at even integer J. 

Another point is that the factors sin +Y 1, sin S ct 2 lead to 

the generation of the Reggeon-particle branch-point in (3.37). 

It is generated when a1 or cy2 = 0 (tl or t2 = m*), x(t,tl, t,) = 0, 

andJ=(Y +CY 1 2 
- 1. Because of this the two-Reggeon cut is able to 

shield the Reggeon-particle cut from the physical sheet of the 

J-plane when t - 0, so that the Reggeon-particle cut does not con- 

tribute to the high-energy scattering 

A further point with important physical significance is that 

(3.37) shows that the cut discontinuity is entirely controlled by 
r 

the fixed-pole residue of N" (J,t). This residue has been defined 
w -- 7 

in terms of the J-plane continuation of F-(2,5) by first continuing 
4 

to Regge poles at Jl=nl=al(tl), J2=n2=a2(t2), and then to the 
7 

fixed-pole at J=~I~+cY-~. However, we can also regard N" w(J,t) as 
-- 

the Froissart-Gribov projection of a momentum-space helicity 

amplitude which describes the scattering of two particles into two 

Reggeons - see Fig. 3.10. This amplitude AO:(M2,t) is commonly 

referred to as the maximum helicity-flip amplitude. This is because 
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in the t 1 and t 2 channels nI=J 1 and n2=J 2 would be the maximum 

values n 1 and n 2 could take if J L and J2 were physical spins. 

(In the symmetric notation we have used, if nL is defined as the 

helicity of the JL - state then, -n2 must be defined as the 

helicity of the J2 - state.) 

The Froissart-Gribov projection of AE((M2,t) satisfies the 

usual Froissart-Gribov formula (omitting 71 Labels and the sig- 

nature labels associated with c( for simplicity) 

No(J.t) = & YdzOJ 
ff1+cL2 

--z 
0 

&l+o* 

z 
(z)ImAcL(z, t) + & j'dzQJ (-2) ImAa (z, t) 

0 -m 
(3.39) 

z being the center of mass scattering angle. At J=CrL+02-1, 

oL+c12 
QJ 

al+" 
(2) = (2-l) 2 * , and since it is 

Cfl+cl 
Fa(M2,t) = (2*-L) 2 * Ag(z,t) (3.40) 

which has no ‘kinematic singularities at z = r 1, the second integral 

in (3.39) can be first written as an integral around the left-hand 

cut of F (M*, 
Tz 

t) and then transformed to an integral over the right- 

hand cut using Cauchy's theorem. Thus we obtain the usual expres- 

sion for fixed-pole residues of helicity amplitudes 

Ng(j = olL+02-1,t) = $ J'dzImFo(M2,t) . 
z 0 - 

(3.41) 

Now the Reggeon particle imaginary part is experimentally 

accessible in the single particle inclusive process shown in 
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Figure 3.11. In the regime where s - m with t and M2 fixed, the 

inclusive cross section measures ImFD!(M2, 0) given in (3.41). 

Inclusive cross section data provides us with a phenomenological 

52 handle on the strength of the discontinuity across Regge cuts. 

Our final point about these formulae for the two Reggeon cut 

concerns the phase space. In the neighborhood of oi-J-l which is 

the regime of the 2, all factors besides the phase space are smooth. 

The phase space integration is two dimensional so we take advantage 

of this by defining two vectors ti for each momentum transfer 

ti = +Q. Further we note that the delta function on J can be 

written 

6 (J-cc1 (tL) -a2 (t,) +I) 

= 6(1-J-(L-aL(;L)) - (L-a,G,))) ' (3.42) 

which encourages us to write Reggeon energies Ei = L-oi(q) and 

E=l-J. The discontinuity across the two Reggeon cut in F(E.4) is 

then (absorbing signature and such factors) (see Figure 3.12) 

N(E+iC,E - L,qL,E2, ~2)N(E-if,EL,<L,E2,<2) 

where N is the Reggeon particle amplitude as 

This discontinuity formula is identical 

(343) 

shown in Figure 3.12. 

to that given by 

(2.32) with n=2. It suggests that we treat the Reggeon as a quasi- 

particle living in two space and one time dimension carrying energy 
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E(i) = 1 - a(i) when it is on the "mass shell." In this sense 

(3.43) is (apart from the negative sign) an ordinary unitarity 

relation giving the two quasi-particle intermediate state con- 

tribution to the imaginary part of F(E,<). Note that we do not 

associate an energy with individual particles, instead pairs of 

particles are treated as sources of E and i for Reggeons which 

then propagate. Similar relations can be written for N(E) and 

M(E) appearing in (3.35) and (3.36). Perhaps the best viewpoint 

on the Reggeon field theories is that they are a compact device 

for providing automatically the correct phase space structure for 

Reggeons and satisfying these Reggeon unitarity relations. 34,53-55 

It is also possible to discuss the solution of (3.34)-(3.37) 

using "S-Matrix" methods rather than the field-theoretic methods 

which are the subject of this review. Such methods are likely to 

be limited in use to the situation where only a small number of 

Regge cuts need be considered. This may well be the situation for 

the weak-coupling f: (if it exists) but is clearly not the case for 

the strong-coupling p. (The reader is referred to the next section 

for precise definitions of weak and strong coupling.) We shall 

not discuss these methods here, but instead refer the reader to 

Refs. 51 and 55-57 for a detailed discussion of this subject. 

The treatment we have given here of the two-Reggeon cut can 

20.21 be extended to all multi-Reggeon cuts. The N-Reggeon cut can be 

studied through the 2N unitarity integral. As we have seen the 

four-particle unitarity integral is sufficiently complicated to 

handle technically and the higher unitarity integrals are worse. _ 

However, we can illustrate the general structure by looking briefly 

at the three-Reggeon cut (more details can be found in the GPT 
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paper). We analyze the six-particle unitarity integral using 

partial-wave amplitudes corresponding to the coupling scheme shown 

in Fig. 3.13. The three-Reggeon cut is generated by Regge poles at 

Ji = ni = ui(ti) i = 1,3,4, together with nonsense wrong-signature 

poles at J2 = n3 + n4 - 1, J = nl + n2 -1 in the amplitude with 

J2 = n2(=n 3 + n,). A fixed-pole is then generated at 

J = al(tl) + cr3(t3) + a4(t4) - 2 . (3.44) 

When this fixed-pole is tangential to the phase-space boundary at 

t4 - t': - t$ - t$ = 0 , (3.45) 

the three-Reggeon cut is generated. For identical trajectories this 

occurs at t+ = 1 t' = tt = t/3, giving a branch-point at 3 

a,(t) = 3CY(U9) - 2. (3.46) 

In general the N-Reggeon cut is generated 'by N Regge-pole 

N-l nonsense wrong-signature poles giving a fixed-pole at 

J = aL(tl) + --- aN(tN) - (N-1) 

which collides with the phase-space boundary at 

ts _ $ - --- -t$ = 0 

and, for identical trajectories gives a branch-point at 

CL b’) 
C 

(t) - 1 = N [cr(t/'N2) - l] 
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To obtain the total discontinuity across the N-Reggeon cut it 

is, of course, necessary to add the contributions from all possible 

partial-wave coupling schemes. The form of the discontinuity is 
. . 

analogous to (3.37) being expressed as an integral of a sum of 

products cf two multiple fixed-pole residues - one evaluated above 

the N-Reggeon cut and one below (boundary values of cuts in sub- 

channels must also be specified as for momentum space unitarity) 

The most important point is that the discontinuity can be 

expressed as the N - (quasi-)particLe contribution to the quasi- 

unitarity relation for the scattering of quasi-particle Reggeons. 

The sign of the N-Pomeron cut is (-ljN-l ‘because the cut is 

generated by (N-l) nonsense poles and there will be (N-L) factors 

of -1 coming from the corresponding signature factors. 

The extension of Reggeon unitarity to production processes is 

complicated by the necessity to perform helicity as well as angular 

momentum continuations. Reggeon unitarity will initially determine 

Reggeon field theory rules for production processes when all 

azimuthal angles (the conjugate variables to helicities) are large. 

For 2-N processes the azimuthal angles cannot be taken Large in the 

physical region and analytic continuation must be used to obtain the 

rules.58 However, for inclusive processes this is not necessary and 

it can be shown that Reggeon unitarity determines the Reggeon rules 

for the triple Regge limit of the one-particle inclusive cross-section 

in a straightforward way. 59,60 

Finally we mention briefly some technical points that we have 

glossed over in our derivation of the two-Reggeon cut discontinuity 

formula. Firstly, because of physical region singularities of the 

six-point function in channels overlapping the tl and t 
2 channels, 

the amplitude F(J,JL,J2,n 
1'" 2,t,tl,t2) will not be a single analytic 

function of tL and t 2 throughout the physical region. This problem 
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can be eliminated by using the Steinmann relations together with a 

multiple dispersion relation to separate out that part of the 

amplitude having singularities in the tL and t2 channels. Secondly 

it can be shown that even when we separate out that part of the 

amplitude, the Froissart-Gribov amplitudesF i(.J,_", only satisfy 

the Carlson condition as a function of J for-part of the physical 

region ranges of tL and t2. Fortunately we can cover the whole 

physical region 'by using all possible partial-wave coupling 
7 

schemes. Further the region in which Fy)(J,n) does satisfy the 

Carlson condition includes the region where the two-Reggeon cut 

is generated. 

As a final point we note that if the Pomeron has ap(0) = 1, 

then op(t) will have a complex part for t < 0 and so we cannot 

write the two-Pomeron discontinuity as a real integral for t < 0, 

as in (3.37). Therefore, there will be no range of t where the 

discontinuity can be expressed as a simple real integral. However, 

in a perturbation solution of the discontinuity formulae (such as 

the Reggeon field theory) which begins with bare analytic trajectory 

functions, perturbative unitarity will involve real discontinuity 

formulae. 
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IV. THEORETICAL DEVELOPMENTS IN REGGEON FIELD THEORY 

(a) Opening Remarks 

This section is devoted to a discussion first of the g pole 

and all its cuts ta-ken by themselves, and then the consequences of 

those p interactions for the structure of secondary trajectories. 

It is useful to begin by explaining why the p and its interactions 

must be studied first. The essential reason is contained bacjc in 

Equations (3.47)-(3.49), for the position of branch points in J. 

‘Xhen one has multiple exchange of p with o(O) = 1, the cuts and 

pole collide at t=O. This is certainly true for P's alone. It is 

equally true for one secondary trajectory with oR(0) # 1 when it 

is exchanged in the t-channel with any number of P's. In that case 

the cuts and pole collide at t=O at J=cR(0). 

The notation developed in Section II is useful in this regard. 

There we learned that in the Reggeon unitarity relations a two- 

momentum q and an "energy" E=l-J were conserved for each Reggeon. 

For Reggeons on shell the E,q relation is 

E(q) = L - ol(;) (4.1) 

so that E(0) = 0 for the P. This is just the E,q relation of a 

quasiparticle with no ener,gy gap. Every other Reggeon has an energy 

gap of A=l-ff(0) ‘I 0. The addition of any number of P's to some 

exchange process in the t-channel, then, does not alter the threshold 

for that process in the E plane since at ;=O a zero energy quantum 

may be added. The addition of any other trajectory to an already 

existing t-channel exchange alters the threshold (position of branch 

point) because finite energy, A, is required at zero momentum. ALL 
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this is analogous to the positions of thresholds in conventional 

quantum field theory when massless particles are present. The P 

is analogous to a massless particle, and the solution to the 

problem of the J plane singularity arising from multiple p cuts 

is the solution to an infrared problem. 

Now we understand how the thresholds of multiple p exchange 

stand out and further we see why in the case of g alone the 

thresholds all occur at J=l (E=C)) at t=O (&O). From a physics 

point of view it is useful to recall at this juncture the sig- 

nificance of J=l, t=O before we go on to the p itself. The 

Froissart-Gribov formula for signatured partial wave amplitudes 

gives us a connection between the absorptive part of two body 

amplitudes AB - A'B' and the t-channel partial wave amplitude 

F(J.t). Schematically, 

F(J,t) = ; Tds s-J-l Abs TABdAaB,(s,t). (4.2) 
1 

Furthermore it is icnown for a variety of processes, called diffractive, 

that 

(4.3) 

with o(O) y 1, fi small, and gAA, or hBB, numbers which depend only 

on the properties of A and A' or only 311 B and B' respectively. In 

short, the behavior of diffractive amplitudes 

1. is almost energy independent; (Y(O) ^1 1; 

2. shows factorization of vertices as expected from an 

elementary t-channel exchange. 
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On further inspection of the amplitudes which have diffractive 

behavior one learns 

3. no quantum numbers are exchanged in the t-channel. 

From an operational point of view this is the Pomeron. --- Equation 

(4.3) translates into the J plane as 

F(j.0) = 'AA' hBB' 
(4.4) 

that is, a branch point at J=a(O)=l whose detailed nature governs 

the behavior in log s of elastic or quasi-elastic cross sections. 

The optical theorem relates the behavior of elastic amplitudes 

to total cross sections: for (4.3) we have 

UTAB(S) - gAAhBB ' a(O)-l(log SIB , 
s large 

and we icnow from the Froissart bound that 

a(O) 5 1 , 

(4.5) 

(4.6) 

and 

p s 2, when (Y(O) = 1 . (4.7) 

The experimental behavior of amplibudes then chooses 01(o) = 1 as 

the point where we ought to concentrate our attention. The result 

of summing all colliding cuts at J=l will be to determine the fine 

structure in J at J=l and thus the log s behavior of cross sections. 

Furthermore any singularities in J away from J=l will give contrib- 

utions to cross sections which are negligible by powers of s when P 
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can be present: that is, vacuum quantum numbers are allowed in the 

t-channel. So we turn our attention to the problem of a P singu- 

larity in the J plane which lies at J=l at t=O. 

(b) Formulation of the RFT 

We have learned in Sections II and III that Reggeons propagate 

in two space, x, and one time, r, dimensions. These are conjugate 

to the two momentum, ci< and energy, l-J, and are actually the impact 

parameter and rapidity of the Reggeon. The RFT describes this by a 

field amplitude q(G,r) for finding the Reggeon at z and 7. In the 

absence of interactions the Reggeon field satisfies the SchrGdinger 

equation 

i & cP(X,T) = (l-a,+ ;))(P(kT) I 

where m,(q) is given by the choice of bare energy momentum relation; 

i.e., the non-interacting Reggeon. This function aa is a priori 

at our disposal; it specifies the nature of the p or other Reggeon 

before interactions are accounted for. We must turn to physics to 

help us here. 

The appropriate physics is the connection between bound states 

in the t-channel and large s behavior in the s channel. Fifteen 

years ago it became clear that the Regge pole at J=a(t) represents 

a bound state of hadrons whose mass squared has been continued from 

rn: ) 0 to the value t occurring in the scattering process, and, at 

the same time, whose spin JB has been continued to rw(t).61 This 

connection between bound states and crossed channel large s behavior 
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is one of the deep attractive features of Regge theory. Now, what 

is important for us is that it follows from t-channel partial wave 

dispersion relations that a(t) is analytic at t=O unless at t=O 

there is a collision of this pole trajectory with some other sin- 

gularity in the J-plane. 61 For a Reggeon in isolation, then, one 

expects a(t) to be regular at t=O. For the purposes of our present 

concern, which is the behavior near s=O, J=l, we may expect that 

the non-interacting Reggeon is adequately represented by 

a0 (4) = a0 - cfo%2 I (4.9) 

where CY 0 and CI ' 0 are parameters which it may be possible to extract 

from a detailed knowledge of the way in which a Reggeon is constructed 

in the "correct" underlying field theoretic or S-matrix model. The 

free energy momentum relation is then 

EC;;) = ao'i2 + (l-a,) , (4.10) 

which is l&e a non-relativistic quasi-particle with mass gap 

(l-ao) = A0 and mass = (Zcr,')-'. The mobility of a Reggeon in x.7 
-1 space depends on its effective mass (2cro') , and the smaller ao’ , 

the less mobile is the Reggeon. Since cy' is known to be smaller for 

p by about l/3 compared to, say, the ,o trajectory, we may expect the 

P to be very ponderous. If we now associate a field with this Reggeon, 

the free action will be 

AO = ~d2xd7<~O(;;,7) , (4.11) 

with 
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-0 
’ ;i,+c;,,, *;i’cp(;;,7 

the Lagrangian density. 

,) - A,q+(h&~) (4.12) 

The next issue is the interaction. 

To determine what interactions are allowed we turn to models 

which generate Reggeon interactions. In Section II (p3 field theory 

models were studied to extract the RFT rules. Other natural models 

in which to examine this question are multiperipheral and dual mode 

or perhaps more realistic field theories. In each of these it is 

possible to have four and five and higher point p interactions as 

well as the simplest triple P coupling discussed before. Four P 

couplings arise, for example, in a Q3 field theory, where the P is 

generated via ladder graphs.as in Figure 4.1. Here two P's can 

scatter, or one p can make a transition into three P's. 

In any given model each N p coupling, N=3,4,---, is in general 

a function of the energies (l-Ji) and momenta of the P's involved. 

This means that if we are to incorporate directly the content of an 

underlying theory into a RFT, we will have to construct a field 

theory which is both non-local and involves an infinite number of 

coupling functions, one for each independent n P - m P transition. 

For 4 p couplings, for example, we will have two independent 

functions 

2 
-14 G.?;) = Sd2x d'r 1 1" 

f- 
- (a (X3s’3h(“4,T4) + h.c;Fl(;-+rl,...;-;4,r-r4) (4.13) 

1s 

+ cpf(;; ,'Tl)~+(~2,'2)"("3,T3)'P(X4"1)F2(~-~l,~-~l,.. .x-x - -4,'-r4) 
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Unless there is some simplification, we are faced with the 

prescription of an infinite number of arbitrary functions. 

Since we are ultimately interested in the infrared (Ei = 0, 

Gi = 0) behavior of any RFT we write down, as a first step we 

expand each of the coupling functions about this point. We begin 

the discussion by retaining only the first non-vanishing terms. 

This reduces the non-local theory to a local theory with coupling 

constants and maybe a few derivative interactions. This procedure 

applied to 3 p and 4 p interactions gives 

$I(;,T) = - g 

i 
$J+(;,T)$‘+(;,T)Q(kT) 

1 

+ h-c.; 
J 

(4.14) 

C,,(;;,T) + h.c.7; - x41 ~+(%T)2VY(;,T)2 
J (2!)* 

for the interaction Lagrangian. This has improved the situation 

in the sense that we now have a local theory with an infinite 

number of coupling constants. However, there is one more level 

of heuristic argument we may use to eliminate from our preliminary 

consideration any but the 3 P coupling. Essentially we argue that 

to emit and absorb p's inside any diagram of our RFT costs a phase 

space factor dEd2q each time. We are ultimately interested in the 

Ei - 0, Gi - 0 limit of the RFT so each additional phase space 

factor decreases the importance of any given graph. N p couplings 

with N > 3 require more phase space than N=3; therefore, one may 

ignore them. Later in this section we will return to reconsider the 

whole matter of higher point p couplings and derivative couplings, 

and justify this heuristic argument. 
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We must incorporate a final point from Sections II and III 

before we begin the discussion of the various attacks on RFT. 

In those sections we learned that the two p cut carries a minus 

sign relative to the contribution of a single P exchange. A 

graph like Figure 4.2 must contain a minus sign. This is naturally 

incorporated as part of the Feynman rules of the RFT if the 

coupling ho in (4.14) is pure imaginary: X0 = ire. The RFT now 

to be discussed has the Lagrange function 

lro ; + + 

-T-1 
cp 9 9 + h.c. 

The solution of this field theory with an anti-Hermitean interaction 

in the infrared limit is the central problem of RFT. The spectrum 

of the theory determines the Pomeron. This was first written down 

and studied by V. N. Gribov and A. A. Migdal. 62-64 It is with their 

worj, that we now concern ourselves. 

(c) Early Developments in RFT for P 

To review in detail the work of the Leningrad school would be 

a monumental task. Leaving this pleasure to the historians we will 

sjcetch the essential results of their calculations. To begin we 

established some notation that we will employ frequently. 

The objects of primary interest in RFT, as in any field theory, 

are the Green's functions for the m P - n P transition 
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,- 
G( n.m) - (x~,T~~, . . .;m,~y ) = 

m (4.16) 

tOITTtm+(;l.Ty ) . . )u,G .T 
1 m xl 

). .QG,,T~ )) 10) 
n 

where 13) is the no p state. There is no crossing in RFT so both 

n and m must be given. The Fourier transform of G -tn,m) is of 

interest also (Figure 4.3): 

n+m 
6( :E.- C E.)6*( ;;;. 

' j=n+ll 
;i.)G (n.m) 

i=l i=l 1 j=n+l I 
tEi,ii) = 

(4.17) 
,-- 

jd*x dr 
l 5 

..d*y dr 
-lqix1+1E17xl-... +iS ; -iE n+m m 

m yme 
n+mrym ztn.m) - tx YTX1 r...?m,T 

ym) 

The spectrum of the theory is specified by the zeroes of the 

inverse p propagator 

,(l.l) (E,;2) = [G(l. 1) @q2)]-1 . c (4.18) 

It is convenient to discuss the one P irreducible proper vertex 

functions J?'n'm) (Ei,qi) gotten by amputating the external legs of 

the one 2 irreducible part of G tn.m) . rtl. 1) or G(l#l) and rC1'*), 

the 3 P vertex function, are prominent in the analysis of Gribov and 

Migdal. 

In the non-interacting theory G (l,l) taices the value 

GO 
(1.1) cE,;*) = i (4.19) 

E-(yo'<*-& +ic 0 
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where the ie prescription means only retarded propagation. Its 

origin is the requirement that, in the Sommerfeld-Watson integrals 

defining the theory, the integration contour in J lies to the 

right of all singularities in F(J,t). 

When all interactions of P's are summed, the inverse propa- 

gator ta-ices the form 

ir("') (E,i2) = E-~~'~*-A,-G(E,~*) , (4.20) 

where the proper self energy C must satisfy the Schwinger-Dyson 

equation (Figure 4.4) 

= > s s [r("') (,',;2)r(1'1) (E-E', (;-;,J2+ 

* r("*) (E',E-E',q',;;-~~)+(terms due to r(l'") with n ;I 3). 

(4.21) 

The Soviet woricers discussed in detail two possible solutions 

to the RFT we have posed: 

(a) The weak coupling solution, -2 wherein for small E and q 

c w c t&i*) . . <i E,G2> (4.22) 

so that the resulting propagator is very much the same as the un- 

perturbed propagator (4.19) and the p spectrum is a simple pole still, 

constrained now to have A=l-o!(O) = 0, so 

-6O- 



irL1;ll) (E,G2) = 
E,;*=O 

E-ruo1i2 . (4.23) 

This cannot come about if the higher order vertex functions are 

arbitrary since they are linked to l?("') via the representation 

,(1,2) In particular if _ - the three pI vertex function - took on the 

constant value of lowest order perturbation theory, the right-hand 

side of (4.21) would be infra-red divergent. \ ,(1,2) must therefore 

vanish at the infra-red point where all of its arguments are Zero. 

Gribov and Migdal suggested that the zero of r (1.2) should be 

sufficiently strong that the infra-red regions in (4.21) and the 

analogous equation for r (1.2) shown graphically in Fig. 4.5., be 

completely suppressed. This requires the leading behavior of r (1.2) 

to be analytic at the infra-red point, since the only possible source 

of non-analyticity - the infra-red regions - are suppressed in the 

integral equations it satisfies. Therefore 

r(1.2) w.c. tE1,"l~E2."2) = a(El+E2)+b(;l+;2)2 + c(;~~+;,~) , 

+ higher order terms 
(4.24) 

and the detai led form of Y("') is then 

ir(l.l 
W.C. 

) (E,i2) = E-Q~';;* + 
(aE+b~*+CE/ao')* 

16Vfx0 
log (&x!Lo';2-E) 

(4.25) 

(1.2) where a and b appear in Fw c and contributions from further terms . . 
in (4.21) are negligible in the infrared limit. Note that l?(lr3) and 

j7(2,2) are also required to vanish when their arguments 20 

are zero if (4.24) and (4.25) hold. 

(b) The strong coupling solution64 in which for small E and 
-2 
9 

c s c tE,;2) t E.s’* . . 
Al- 

(4.26) 



and both the propagator and vertex function have a scaling form for 

small values of their arguments 

irtl’ 1) -2 -2 
s-c. - - (-E)1-Y&2/(-E)Z), +*)+E)+F 91 

S.C. El -,- - 
(-El)' (-E2)" E2 I 

(4.27) 
where 3y+z-2~=2. In this case the infra-red regions of the Schwinier- 

Dyson equations are not suppressed, 
rtl. 1) 

. . and ri1'c2) 
but instead the Scaling forms of 

. . combine so that these regions scale consistently 

throughout the equations. 

The weak coupling solution leaves the P pole essentially 

) is shifted unchanged. The gap A0 (or intercept of the p pole ezO 

to zero (or Q(O)=l), but basically a pole at t=O is 

The three p coupling function, however, changes quite 

In lowest order perturbation theory one has 

left a pole. 

drastically. 

rcl**) = ro/(2n)3’2 , W.C. (4.28) 

while the fully interacting solution to the RFT vanishes at 

Ei';;i + 0, as in (4.24). Such a phenomenon is possible because 

of the imaginary triple p coupling. Formally,the full r (1.2) is 

defined by an infinite series in r. with terms of alternating 

signs, so a cancellation or extinction of the lowest order term 

is possible at isolated points in momentum space. Physically 

one argues that p exchange is absorptive, a fact which is embodied 

in the imaginary nature of the coupling of three P's, and that the 

sum of all absorptive corrections (Figure 4.5) cancels up the 

leading constant. This solution is also called a quasi-stable 

Pomeron because the rate for the decay of a P into two P's vanishes 

abnormally rapidly as energy tends to zero. This argument of 

Gribov and Migdal 62 was the earliest argument for the vanishing of 

the triple P vertex. 
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The dynamics underlying a quasi-stable p was later studied in 

a ladder graph model in RFT by Bronzan. 65 He wrote an integral 

equation for r cl,*) of the symbolic form (see Figure 4.6) 

3+1.2) = r. + r (1,2) G(l,l)G(l,1)"(2,2) (4.29) 

where V(*'*) is the two p irreducible part of l" (2.2) . It is the 

RFT counterpart of the Bethe-Salpeter irreducible jcernel encountered 

in conventional field theory. The model consisted of approximating 

“(2.2) by the one p exchange graphs of Figure 4.7. This yields 

r11.2) as an infinite series of RFT ladder graphs. The potential, 

“(2.2) , in this model is very singular in the infrared limit. 

Then (4.29) can hold only if l? (1.2) vanishes as E. 1* Gi - 0 from 

almost all directions, as in the weak coupling solution. There is 

also an infinite number of new p poles in G (1.1) all of which 

accumulate at E=O. This last result shaices one's confidence in the 

weaic coupling solution. It is true that bare vertices have been 

used in Fig. 4.7, so V (2.2) is probably overly singular. On the 

o~ther hand, if (4.24) holds, and complete vertices are used in 

Fig. 4.7, V(*'*) is non singular, and there is no reason for r (1.1) 

to vanish. Either way, the weaK coupling solution does not occur 

in detail in this model. 

The weak coupling solution is subject to other difficulties. 

One line of argument notes that if the fs. is a pole passing through 

j=l, t=O, then the vanishing of T (1.2) , which may be demonstrated 

in marvelous generality using tools which blossomed in the study of 

inclusive reactions, 17 requires the vanishing of large numbers of 

other g couplings at t=O, 18 including the coupling to particles 19 

which is supposed to set the scale for asymptotic hadron total cross 

sections. 
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This apparent disaster has been circumvented by arguments by 

Gribov66 and by Cardy and White. 53.67 The former examines the vertex 

function for two hadrons and a p when the hadrons are considered as 

composite systems. He finds that there is a very neat cancellation 

due to p interaction with the constituents so that the particle- 

particle-P coupling need not vanish at t=O. One of the conclusions 

he draws, however, is that all hadron cross sections must be 

asymptotically equal as well as constant. If this is indeed the case, 

then the asymptotic regime where this takes place is a long way away. 

Cardy and White pointed out that if, as in Bronzan's model, an 

infra-red singular V (2.2) was responsible for the zero of l? ("*) then 

the decoupling arguments based on the relation of pole contributions in 

inclusive cross-sections 7 via the inclusive sum rules, would not go 

through. This is because the singular potential will also contribute 

to the vertices appearing in cut contributions to the two-particle 

inclusive cross-section. Consequently the cut contributions are en- 

hanced and not suppressed relative to the pole contributions. The sum 

rules can no longer be used to relate pole contributions. Therefore 

the vanishing of the triple-: vertex no longer requires the couplings 

of the p to other Reggeons or to hadrons to vanish. 

A further point noted by Cardy and White was that if the complete 

two particle/two E amplitude is separated into its one P irreducible 

and reducible parts then the one p irreducible part satisfies the same 

integral equation as l? cl,*) , that is (4.291, except that the inhomoge- 

neous term is different. Therefore an infra-red singular V (2.2) will 

also produce an infra-red zero of the one 2 irreducible amplitude. The 

leading contribution of the two p cut to the total cross-section then 

comes from the one g reducible amplitude - that is the cut couples 

through the pole and factorises, hence 

OTAB (s) - qAApgBBp(1-y2/10d + ‘1 ,,,,‘.,z ) . - - (4.30) 
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However, as noted above V (2.2) 1s only singular in Bronzan's model 

when vertex renormalisation is ignored. In fact since we have no com- 

plete weak coupling model we cannot say whether a singular v (*'*) is the 

answer to the decoupling problems. If it is, it seems that the higher- 

order P couplings must play an essential role in producing the 

singularity. 

The weak coupling or quasi-stable solution to the p problem in 

RFT is attractive for a number of physical reasons: (1) It is 

rather simple. (2) It has an immediate implication for the detailed 

processes in the s-channel which produce it; namely, some sort of 

generalized ladder or multiperipheral graph. The single particle 

inclusive spectrum will have a rapidity plateau and the cross 

sections for n particles, On(s), will be more or less that of the 

multiperipheral model with small corrections due to the two p exchange 

c"t.36 One may hope to parametrize the cut in terms of a small 

number of undetermined constants. Since the weak coupling solution 

satysfies t-chanrtel unitarity and apart from the decoupling problem 

seems to be otherwise self-consistent, it is certainly attractive. We 

will argue, however, that the weaic coupling "solution" is not the solu- 

tion to the problem set by Eq. (4.15). 

The strong coupling scaling solution was not favored by 

Gribov and Migdal. 62,64 Their argument began with the observa- 

tion that near E=i*=O, one has 

iri';:')(E,z*) = -c(E,i2) . 
. . (4.31) 

Let us accept Eq. (4.31) and then examine Eq. (4.21) together with 

the Schwinger-Dyson equation for r (lt.2) . We now substitute 

r(l,l) 
S.C. 

_ "r'l, 1) = -rtlnl) 
S.C. S.C. * This transforms the Schwinger-Dyson 

equations into those for a strong coupled field theory with 

Hermitean coupling. (The role of Eq. (4.31) in this is that when 

it holds, changing the sign of r (1.1) 1s equivalent to changing 

the sign of c.) For the Hermitean theory we can invoke the Killen- 
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Lehmann representation to learn that Iml? Cl,11 has a definite sign. 

The sign is such that the contribution of Fig. (4.9a) to (rTAB is 

negative. Clearly this is unacceptable and were this the way a 

strong coupling, scaling form for r (l,l) (E,S2) is in fact achieved 

by the RFT we consider, one would be forced to reject it. 

Development beyond the work of Gribov and Migdal has been 

possible because there is an alternative infrared behavior to 

that of Eqs. (4.22) and (4.26): 

G(E,;~~) = E-~~'~~-AG-'J(E,~~), 

cr(E,q2) << E,i2 . (4.32) 

The bare P pole is extinguished, and a stronger singularity is 

present i, G("') at E=i2=0. This singularity represents the 

confluence of the p pole and cuts at E=i2=0. (For G2#0, there 

is still a p pole.) Note that the weak coupling solution has a 

pole as the leading singularity at E=12=0, while the Gribov- 

Migdal strong coupling solution, Eq. (4.31) has a weaker sin- 

gularity than a pole. We now turn to what may be termed "recent 

developments" of RFT to see how Eq. (4.32) emerges. 

(d) Recent Developments in the RFT for the Pomeron 

In the work of Gribov and Migdal 62-64 it was assumed that the 

interacting Pomeron has A=l-a(O)=O. Because there is no energy gap, 

one must either sum the full perturbation series to learn the 

infrared behavior of r (n,m) , or have compelling arguments for any 

omissions. Faced with this, Gribov and Migdal studied the 

Schwinger-Dyson equations for the complete proper vertex functions. 

The solutions they found were therefore not calculated directly 

from the Lagrangian, Eq. (4.15), but were based on self-consistency 

conditions. 
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There is another way to calculate the infrared behavior of the 

RFT which avoids perturbation theory in the three-g coupling. This 

approach uses the constraints of the renormalization group to yield 

the allowed forms of the r (n.m) in certain regions of Ei,qi phase 

space. This approach was used by Migdal, Polyakov, and Ter-Martirosyan, 

and by Abarbanel and Bronzan. 34 In describing it we will use the 

notation of the latter authors, although the Soviet results are iden- 

tical where they overlap. 

The philosophy of the renormalization group approach to the 

study of quantum field theories is described at some length in 

summer school lectures by Coleman 68 and by Abarbanel.6q He~re we 

confine ourselves to the outlines and concentrate on the results 

for the P. 

Our RFT has in the Lagrangian of (4.15) four parameters: 

the scale of the term involving ar, which is taken to be 1; the 

slope parameter oo"; the bare mass gap Ao; and the bare coupling 

constant r 0' When the full proper vertex functions are evaluated 

they again may be parametrized in terms of four numbers: 1, a', 

A, and r which replace the bare parameters. These four numbers 

are specified by the value of r("') and its E and z2 derivatives 

and the value of l?(lr2) at some convenient, but arbitrary, point 

of E,q space. We follow Ref. 34 by taking Ei=-EN<O, and gi=O as 

this point. Physics dictates that a change in EN - EN + 6EN must 

have no consequences for the physical content of the RFT. We can 

compensate for the change in EN by the substitutions 

bEN a’ 3 Q’ f < - bEN 

EN 
,A- A + @JN l 1 - 1 f Y -,andr-r+ 

EN _. 
86EN/EN' which are chosen in such a way that the vertex functions 

computed from our Lagrangian are unchanged. 
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How is this done in practice? The fields cp which enter the 

Lagrangian have their scale (normalization) altered by the inter- 

action so that the unrenormalized 'p, becomes 

cp(X,T) = 2 4 (PJET) I (4.33) 

while CL' 0 ' *01 and r ,~ become a', A, and r respectively. The rLnern) 

expressed in terms of v) 
‘U 

are functions of c( ' , 
0 no, r. and a possible 

cutoff to define the integrals in perturbation theory. The r b,m) 

expressed in terms of p are functions of c1', A, r and E N' The 

relation between them is 

r( n.m) - (Ei,qi,a',A,r,EN)=Z (ni?n)'2~~n~m)(Ei,~i,ao',Ao,ro,~) 

(4.34) 
where h represents some form of cutoff. (n,m) Since ru has no 

knowledge of EN, it must not change when E - E N f bEN. r( , n,m) 
N 

however, must satisfy 

a 
+ r)(r,cY')a z + 

a 
C(r,cx') - 

ao!' 

_ (n+m) 
2 Y(r,a')!F(n'm) (Ei,ii,o' ,L,r,EN) = 0 . (4.35) 

This clearly puts a constraint on the way the parameters can enter 

r( . n,m) 

The P problem requires A=O=l-o(0) for the fully interacting P -- 

This, as in the earlier Soviet worir, is tajcen as given and is not 

derived. Clearly this requirement demands a special relation between 

cto , x0, and AS. We will return to that relation. For the moment, 

however, we imagine that this relation can be and has been arranged, 

and continue to se& the consequences of a theory with A=O. 

The solution to the constraint (4.35) - jcnown as the renormaliza- 

tion group equation - is 
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r( n'm) ([Ei,qi,g,&,EN) = +n'm) (E&G(-log&G'(-1ogE) I 

O & - exp J ~' B-9 r(;l(log5'))1 , 

-log< 

where we have introduced the dimensionless coupling 

g=*EN 
-% ; 

and the auxiliary functions G(Q) and z'(q) satisfy 

- = -BG(q)) , g(o)=g 
dr) 

(4.36) 

(4.37) 

(4.38) 

and 

1 dg'(T)) = 1 _ <(G'(q) .9(q) 1 
= zG(q)). ;;' (0) =a' 

ii' (q) drl 6' (q) 
(4.39) 

In these we find the crucial function j3(g) which measures the 

response of the dimensionless coupling constant to a change in the 

normalization point. 

The utility of the renormalization group approach is now 

explicit. We want to study l?(Ei,ii) .as Ei-0 or in (4.36) as 5-O. 

This means we need to icnow z(n) as n=-loge - f @J. For this we 

need to know b(G(n)). The key observation is that if b(g)=0 at 

g=gl, say, then g(n) approaches gl since dy/d? vanishes there. 

Whether q goes to gl as n - i - depends on the slope 6, = $ g 
1 

For the infrared, n - + 13, limit, we require fl, > 0. In this 

case 
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g(-logE) = 91 + (g-g1)C 
81 (4.40) 

as 5 - 0. 

The .(n'm) are constrained by Equation (4.36) to then have the 

form 

I-( n'm)(Ei,;i,g,rr',EN) 
{EN iC2 -n-m)+ 

= C E !- 
y 

(4.41) 

\ 
' 911 

where 
n 

E= C Ei (4.42) 
i=l 

and C and C I 

For &l) fY 

are some constants while 'p, m is an unknown function. 

this means 

(4.43) 

C-E :1-Y (9,) !: cao18 42 z (gl) 
CE -' 

/EN; 

Y N\ENj cpl,ll EN '=, #91 1 
\ I 

which is precisely the scaling form suggested in the earlier strong 

coupling solution. 

Now we have to inquire into the possible values of gl. Suppose 

gl=o; then the theory is a free theory in the infrared limit and 

r(gl) = 0 while z(g,) = 1. This is the weak coupling or quasi-stable 

P. If g1 # 0. only the strong coupling solution is chosen. From a 
-a 
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computational point of view, then, the nature of the P reduces to 

the study of the zeroes of B(g) and the evaluation of y(g1) and 

2 (g,) . This is a task not much less complicated than solving the 

full RFT. There are two modes of attack which we know. One is 

likely to be unreliable: the second is complicated in procedure, 

but likely to be reliable. 

The first technique is to use perturbation theory to learn 

B(g). In lowest order we need the graphs shown in Figure 4.5 and 

4.8 which yields 

:9(g) = - C4iD) g+Kg3 , K>O, (4.44) 

when the phase space has D space dimensions. This b(g) has a zero 

with positive slope at 

2 4-D 
91 =4K . (4.45) 

If D = 4, then gl would be very small and having evaluated only 

the lowest graphs for j3(g) would be extremely reliable. Physics 

requires D=2, however and the accuracy of keeping only these graphs 

is at best problematic. 

Indeed, only the graphs shown lead to 

-y(gl) = + l/6 = 0.17 , (4.46) 

and 

25 (91) = 13/12 = 1.08 (4.47) 
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for D=Z. To next order in an expansion in 4-D it is found that 70,il 

-v(g1) =( 12 
1 4-D )+ I%]~/+ log 4 + g] + . . . (4.48) 

and 

z(g ) = 1 
1 log ; + 2; + . . . 

i 

or 

and 

(4.49) 

-7 (9,) = 0.38 , (4.50) 

2 (g,) = 1.18 . (4.51) 

It would seem, therefore, that this series in 4-D or equivalently in 

2. 
g1 is unreliable at 4-D = 2. Such series expansions are employed 

in statistical physics for the critical indices in second order phase 

transitions. It is possible that the 0((4-Dj3) terms might be small, 

but we know no way to be sure except by direct (laborious) calculation. 

From this procedure, then, one has definite, albeit unreliable, values 

for y and z. 

If one reformulates RFT on a lattice, then one can envision 

using techniques developed in statistical mechanics to evaluate 7, 

and z directly in two-dimensions. 72-74 It has been possible to show 

that if there is an infra-red stable fixed point of the type dis- 

cussed above, -y S z s 2; so the Froissart bound is satisfied and 

(5 <cl 74 
et tot. Numerical calculations of y and z are presently in 

72-74 progress. 

Here let us comment on the physical implications of the 

existence of a zero of R(g) at gl # 0. First of all, of course, 

we have the scaling form which is similar to the strong coupling 
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solution of Gribov and Migdal. 64 Indeed, the weak coupling or 

quasi-stable p would appear to be out. There is a very sig- 

nificant difference, however, since in the present solution r (ltl) 

is not equal to -G, but has the value -CJ, where (J is small, as in 

(4.32). By computation, the problem of negative total cross 

sections does not arise. Second, even though the bare Pomeron 

pole is extinguished there is a moving pole, on the trajectory 

a(t) = 1 + ct 
l/z (gl) 

(4.52) 

This can be shown either by a perturbative evaluation of 'pl 1, 25,34 

or by a more accurate evaluation using the full power of the 

renormalization group.60 In either evaluation of z(g,) given above, 

z(gl) > 1, so any trajectory has a cusp at t=O. Third, when one 

couples particles back into the theory, one finds a hierarchy of 

contributions to (J TAB(s) for AfB - anything (see Figure 4.9): 

afy(s) ^’ gAgB (logs) 
-Y (9,) 

(4.53) 
S-m 

- fAB(logs)-l + kAB(logs) 
-2+y (gl) 

+ . . . 

It is important to note that the dominance, by powers of logs, of 

the generalized "pole" graph of Figure 4.9a. yields a factorized 

asymptotic total cross section. Since -r(gl) > 0, this cross 

section rises. 
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(e) Secondary Trajectories and Multi-Pomeron Corrections 

Having in hand a theory of the p by itself it becomes quite 

natural to asj, what will be the structure of partial wave ampli- 

tudes with quantum number exchange or, lice the p', with n(O)<l. 

This has direct application to experimental fact in the case of 

the I) trajectory with e,(O) x l/2 since experiments on v-p - lion 

for a large range of incident beam momentum show an s and t 

dependence consistent with the exchange of a simple ,o Regge pole 

with trajectory 7 

qt) = + + t/(y2 . (4.54) 

Also in the case of Fermion trajectories there is the long standing 

problem of parity doublets - we will come to this. 

Since the exchange of any Reggeon with crR(0) c 1 requires an 

energy gap E(0) = l-s(O) > 0, the important processes which 

determine the singularity near J = oR(0) are one Reggeon-multiple 

p exchanges. All such processes have an infinite number of 

thresholds at E=l-~~(0). If we restrict ourselves to triple 

couplings by phase space or simplicity arguments, then only graphs 

such as Figure 4.10 will occur and we have two couplings: r. from 

our earlier work and a Reggeon-Reggeon-P (RRE) coupling which must 

be pure imaginary for the same signature reason. Because Reggeons- 

with oR(0) < 1 are to occur only once, their number operator is 

conserved and we may solve for the coupled P-Reggeon Green's func- 

tions as all 2 energies = 1-Ji-0 and all shifted Reggeon energies 

Fi = r&&(o)-Ji-o. 
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First we consider the case of Boson trajectories (P, A 2' pn w 

or what have you). This was studied in the early Soviet work by 

Gribov, Lenin and Migdal. 75 They rather casually treated the ratio 

of slopes for the p and Reggeon and neglected the triple p coupling 

altogether. This latter point is certainly in the spirit of the 

quasi-stable p. They found that by using a "Ward identity" they 

were able to determine almost on dimensional grounds that an 

originally linear Reggeon trajectory 

%o(t) = cyRO + Go t (4.55) 

was strongly modified by the RRP interaction to 

OR(t) = c+(O) f inn , (4.56) 

or if there were no RR: coupling but only a RRE quartic coupling, 

the resulting trajectory was 

c+(t) = crR(0) + + - Ct/(logt)S. (4.57) 

Both these solutions are at best true in the weak coupling case. In 

the case of strong coupling no solution was presented. 

The renormalization group approach 76 does not presuppose the 

absence of a triple P coupling; indeed, it is a crucial element. 

From a field theory of P's and Reggeon one finds scaling laws for 

the Green's functions as before. There turn out to be three zeros of 
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thebeta function for the P-Reggeon vertex which could yield the 

infrared behavior of the coupled P-Reggeon vertex functions. Two 

of these yield Reggeon trajectories which have cusps at t=O. One 

gives a linear trajectory, with renormalized intercept and slope, 

near t=O 

s(t) = s(O) + + + o(t2) (4.58) 

which in light of the experimental facts on l7N charge exchange is 

an attractive result. The amplitude, for charge exchange for 

example, would read in this last case 

TABhAsBo (set) ,,, gAA8Rct)gBB’Rct) ’ 

tsmall 

. (e 
-inoR 

+ TR) (logs) -YR 
(4.59) 

where 7R is the Reggeon signature and +(t) is given in (4.58). 

The index vR is in the expansion about D=4 described above 

-YR = l/12 . (4.60) 

In any case it is not unreasonable to expect yR to be small in 

magnitude. This leaves the result of the boson trajectory with 

all P corrections in fine shape as far as experiment goes. It 

is quite surprising that the collision of all the multiple P 

cuts has so mild an effect. 

The problem of Fermion trajectories is enormously more 

complicated in detail although it conceptually is the same as 

the boson secondary trajectorye7' The icey experimental fact is 
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that fermion trajectories are essentially linear in the Mandelstam 

variable u appropriate for backward scattering 

clF(U) = g,(O) + + u 8 (4.61) 

and since both positive and negative parity trajectories must be 

present to maintain the Mandelstam analyticity of the scattering 

amplitude, both trajectories would seem to be present. Only 

trajectories carrying either positive or negative parity are known: 

never, both. A successful theory of Fermion trajectories must, 

therefore, avoid these parity doublets. 

Starting with the standard p theory described before and 

positive and negative parity trajectories of the form - 

c+(O) + $4 + ao; u ’ (4.62) 

one finds, thro,ugh the usual renormalization group procedure, a 

renormalized trajectory almost linear in u - - -* Furthermore for u < 0 

in the scattering region both parity poles are on the physical sheet 

of the J plane. For u , 0 in the regime where particles lie on the 

Regge trajectories, one of the parity partners slips onto an 

unphysical sheet through the P-F cuts. Both important observed 

properties of fermion trajectories are thus achieved. An "unnatural" 

aspect of the treatment of fermion trajectories is that the fixed 

points in the space of coupling constants are only conditionally 

stable. This means that the results we have stated only if there 

is a certain relation among the couplings and slopes. 
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The results of the calculations of the multiple 2 corrections 

to secondary trajectories, by their accord with observed facts 

give support to the solution to the p problem by itself. To test 

any of these in detail is difficult because of the present un- 

certainties in the actual values of the indices such as y, not 

even to mention the experimental problems in differentiating among 

various variations in log s. Clearly the whole pa&age has an 

attractiveness and coherence which is quite pleasing. 

(f) Higher Point p Couplings 

In setting up the RFT as summarized in the Lagrange function 

(4.15) we briefly discussed and then ignored four and more point P 

couplings as well as derivative couplings. An heuristic argument 

based on phase space was given for this. It is possible to make a 

stronger case. Within the context of the weak coupling or quasi- 

stable p, Gribov and Migdal were able to use ordinary perturbation 

theory to evaluate corrections to their leading p structure. 62 

Here the phase space arguments are both correct and persuasive. 

Typical of the results obtained are the corrections to the inverse 

propagator as given in (4.25) where a linear trajectory is modified 

by a t210gt correction - a harmless addition. 

In the case of the latter day renormalization group strong 

coupling solution, as discussed above, the problem is again non- 

perturbative. Migdal, Polyakov and Ter-Martirosyan gave a number 

of arguments why four point and higher and derivative couplings 

would become negligible in the infrared limit. 25 Abarbanel and 

Bronzan showed that when the triple P coupling vanishes, the fixed 
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value of the renormalized four 2 coupling is zero, so that the p 

is weak coupling. 78 This is consistent with the notion of a 

dominant triple p coupling. 

Finally Brewer and Ellis demonstrated that the simplest 

derivative couplings were harmless in the infrared limit. 79 

Basically the task of each of these calculations was to show that 

the effective coupling constants, lijce the G(t)) of the three P 

case, for higher point or derivative couplings were driven to zero 

in the infrared limit while the triple p coupling approached the 

same zero g 1 of R(g). In short, both the stability of the original 

calculation and the ignorability of higher order couplings - all in 

the infrared limit - were suggested by these exercises. 

A much more complete treatment of this matter was given by 

Jengo and Calucci. 80.81 They considered, at once, an infinite set 

of n p couplings, n = 3,4,...., and all derivative couplings. If 

the Ei,ii phase space integrals were always extended to infinity, 

then such a theory would certainly be non-renormalizable. However, 

since we are here involved with an infrared phenomenon it is natural 

to introduce a cut-off. As we discussed in Section II such a cut-off 

is almost certainly required to consistently extract the RFT from an 

underlying theory. The action of this theory is 

X0 t2 2 

L(2!)2 cp q 

Xl t3 -, + x(cp !D+(a3v+) + x2 

(2:) 
2 (,pt2v2rp+cp202q+) + . . . 

+ . . . . , (4.63) 
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with the prescription that in momentum space all integrals are to 

be cutoff at isi] = A, IEi/ = &;A'. The infrared behavior of the 

theory ought to be independent of the cutoff h. Now one scales 

the cutoffs to IGil = A/A , lEij = aAA2/ B and expresses the scaled 

theory in terms of new constants zh , n o , o , r. , etc. which z" 

are functions of A, B, ao, Ao, . . . . (Scaling the cutoffs, as 

indicated above, is equivalent to holding the cutoffs fixed and 

scaling momenta and energies; thus A or B play the role of 5 in 

(4.361.) 

Carrying out this procedure it is found that if one only 

requires K. to be stable at zero, that is, cro=l, then the 

renormalization group strong coupling solution is reproduced with 

all couplings except Fo, the three P coupling, going to zero in 

the infrared limit. If one puts further constraints on the coup- 

lings, then it is possible to find other solutions to the RFT 

including, strikingly enough, the quasi-stable P. To achieve 

that, however one must essentially require that ro, be specially 

chosen so that it maps into zero under the scalings of the cutoff. 

From the point of view of physics there is no special motivation 

to further constrain the theory in this way. Indeed, if we do so 

and launch upon the pathway of the quasi-stable p, then we are 

plagued with the various decouplings of P. This rather general 

treatment of all couplings at once provides a posterori support - 

for the model Lagrangian of (4.15). 
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(g) The Formal Status of the RFT 

There are two points that are essential to our understanding of 

the solution of the RFT with the Lagrangian of (4.15) provided 

by the renormalisation group. Firstly we need to know that the theory 

is renormalisable in the conventional sense, so that the formalism of 

the renormalisation group is applicable. In particular we would lijte 

to be sure that we can safely set A=O, since this is essential to the 

dimensional analysis used. Secondly we need to icnow how the theory 

can be constructed perturbatively since this is the only way we can 

explicitly checic Reggeon unitarity. These two points are not unrelated. 

In the original study of the RFT it was found useful to generalise 

the two space dimensions to D dimensions. There are two reasons for 

this. Firstly in a general, non-integer number of dimensions all 

Feynman graphs can be defined by analytic continuation from D < 2 the 

ultra-violet divergences are relegated to poles in the variable D and a 

simple regularisation procedure is provided in principle by subtracting 

such poles, with their (real) residues, from the Green's functions in 

which they occur. However, the RFT is actually super-renormalisable in 

terms of simple power counting for D < 4. This means that the subtrac- 

tion of the poles has to be equivalent to an intercept (mass) renormalisa- 

tion and it is not clear then that this subtraction is compatible with 

the A=0 condition. 

The second reason for varying D is that at D=4, a clearly unphysical 

situation, the theory possesses a (broken) scale invariance in separate 

space, x, and "time," r scalings. This manifests itself in the fact that 

the dimensionless coupling constant, g = (r/e *D/4 )E (D-4)/4 
N , has no ex- 

plicit dependence on the normalisation point EN. As a consequence there 

is a zero of /3(g) at gl=O which governs the infra-red behavior of the 

theory. It is this latter fact which motivates the expansion of the theor 

around D=4 in powers of 4-D. 

The poles from the ultra-violet divergences occur at 

4-Dc.2. 
n' n = 1,2,.... (4.64) 
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and a series expansion in powers of (4-D) actually hides the poles since 

1 n 
= -5 - 

n2(4-D) 

4-D-: 4 . . . . (4.65) 

Therefore the expansion of the theory around D=4 sidesteps the problem 

of the intercept renormalisation. In fact for D < 4 the problem of the 

ultra-violet divergences of the theory cannot be separated from the infra- 

red behaviour if we set A=O. The theory cannot be renormalised order by 

order in perturbation theory. This problem has been studied in detail 

by Sugar and White, both for the present RFT, 82.83 and for conventional 

kp4 theories, 82 where the problems are very similar. 

The essence of the difficulty is that for h=O. the intercept 

renormalization counter-term, 6A, has the form 

,D,4 4/(4-D) 
bh = (ro/c(C ) f(4-D), (4.66) 

where f is dimensionless. This follows from dimensional analysis only. 

Clearly :,A cannot have a power series expansion in ro, and any perturba- 

tive construction of the propagator must necessarily involve a re-orderin 

of standard perturbation theory. Sugar and White provided such a scheme 

using renormalization group apparatus. The derivative renormalization COT 

dition on rALP1) is 

& ir:” ‘) (E.0) iEzsE = Z(X,) -1 

N 
(4.67) 

where Z is the wave function renormalization constant and 

XN 
= [ro,";D/414'(4-D) D;l . 

Eq. (4.67) can be integrated to give 

ir(l'l) (E.0) = -ENxN 7 ds xi2 z (x,) 
-1 

U 
x 

(4.68) 

(4.69) 

with x=xNEN/(-E). When this integral representation is combined with 

the formulae 4 

Z(g) = ew[~dg’y(g’)/B(g.)l (4.70) 
0 

g 
(ro/a’D/4J E (D-4)/4 = g exp[-Jdg’ (g’-‘+ ; @(gr)-l) I 

0 
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which are fairly easily derived from the renormalization group equations, 

we obtain a complete set of equations for calculating r 1,l 
(E.0) given y(g 

and B(g). Provided that S(g) has a zero with positive slope this set of 

equations solves all of the above problems. The infra-red behavior of 
r(l. 1) (1,l) 

u follows immediately and when the representation of ?u 1s com- 

pared with perturbation theory we find 

6A = (ro/aAD'4) 
4/(4-D) = 

s dxN x,211-Z(xN)-L] (4.71) 
0 

which does indeed contain all of the ultra-violet poles (as divergences 

atxN=O). When the equations are generalised to non-zero i2 they can be 

combined with perturbation theory for r (1.2) to provide a complete 

iterative scheme for constructing l? (1,l) in such a way that it always 

satisfies n=O and has the correct infra-red scaling behavior. 

Finally the representation of r (1.1) (E,i2) allows us to show that 

perturbation theory can be used for large (-E) and (-<*) showing that 
p. 1) (E,i2) has a leading p pole and Reggeon unitarity is satisfied. 

Note also that when the representation of 6~ is modified to allow 

for the presence of a cut-off it can be shown that gA is positive and 

so (to the extent that higher P couplings can be ignored) we must have 

‘yO 
> 1 to obtain a renormalised intercept at one. In this case each 

term of the perturbation expansion will appear to violate the Froissart 

bound, even though the sum respects it. 

(h) Ideas about IX,, > 1 

We have seen that the requirement A=0 is met only if ho, rO 

and cr o are related in a special manner. Since this relationship 

is not automatically satisfied, the requirement n=O might be termed 

"unnatural" even thoughit is indicated experimentally. One alter- 

native to this situation is to ask what happens when ii o becomes 

arbitrarily large and negative. In model calculations in which 

an infinite set of cuts is summed, the Froissart bound is not 

violated, even though every individual cut violates the bound. 26,27 

Instead, the new "P" is a pair of branch points at 
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a(t) = 1 * 2k$+o-t)tl* . (4.72) 

The "P" resembles the Pomeron of the Regge-eikonal model 
29,33 

m some 

some respects. It comes from a pole with e. > 1, and in impact param- 

eter space it is a disk whose radius grows Like Lns. However, the disk 

is gray, not black, and total cross sections factorize in the high energy~ 

Limit rather than approaching a common value. UT(S) - (Lns)* has the 

maximum rate of increase allowed by the Froissart bound. This seems to 

be fortuitous because s-channel unitarity is not imposed in RFT. 

On the other hand, it may not be accidental that it is impossible 

to have a renormalized A < O(CX > 1) within the RFT, even though 

s-channel unitarity is not explicitly imposed. A < 0 represents 

a negative mass gap, which is akin to a negative (mass) 2 in 

relativistic field theory. Putting A, < 0 makes perturbation theory 

around cp=O unstable in much the same manner as so-called spontaneous 

symmetry brea-King in conventional field theory. This means one must 

shift the field bp to a minimum of the field potential and compute 

corrections about that. 84.85 The result of such a shift is to produce 

another Lagrange density where the terms quadratic in the oscillating 

field, call it x, are 

i te 
*x=- ix a,x - crAvx+-vx - qOx+x-ao (x +2+X2) I (4.73) 

where a 0 
and TL 

0 are proportional to -A 0 and depend in detail on the 

Lagrangian before shifting. This new "free" Lagrangian has E(G) 

spectrum 

E(q^)2 = (l-cY(z))2 = (11,+c.!;;2)* - 4ai (4.74) 

where when n =2a 
0 0' 

Cl(q) = 1 * 2 
J' -2 

aOaOq (4.75) 

for small i2. This, in general features, resembles the results of 

Refs. 26 and 27. 
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The more general problem of why A=0 or how one can incorporate 

it in a "natural" way into the RFT remains open and inviting. 

(i) Other "Weaj, Couplinq" Ideas 

The idea that the solution to our RFT is strong coupling 

in the infrared limit, namely ,!?(g,)=O, qlfO, has certain unattractive 

features from an aesthetic point of view even though the physics is 

certainly sound. The reasoning is more or less that since we had to 

begin our RFT by a choice of bare trajectory correct near J=L 

and t=O it is perhaps discomforting that we did not reproduce 

that singularity after summing all graphs. To do so would 

require that the o(g) for the RFT must have a zero at g=O which 

governs the infrared behavior, for then all Green's functions 

become the original Green's functions plus small corrections. 

Such a RFT could be said to bootstrap itself near Ei, ii - 0. 

Some examples of such theories have been given by Abarbanel. 86 

One which has the scaling form similar to the Moscow-Batavia 

strong coupling theory is 

-2 
G(lrl) @<2)-L = Ep(l + a0q 

,3p-1) 8 (4.76) 

where the power p is undetermined. This theory bootstraps itself 

in the sense stated above when a constant triple p coupling is 

present. 

A serious fault of these and any other theories which begin 

with non-linear bare trajectories is that demonstrating that 

multiparticle t-channel unitarity is satisfied is a difficult task. 

It should be recalled from Section III that t-channel unitarity is 

nothing less than the foundation of RFT. 
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V. INELASTIC PROCESSES IN RFT 

In this Section we consider particle production processes in 

the RFT. This is a very important problem in its own right, and 

it is crucial for studying the internal consistency of the RFT. 

In constructing the RFT for the elastic amplitude t-channel Unix- 

tarity was built in from the start, but the constraints of s-channel 

unitarity were not. One must verify a posteriori that these con- 

straints are satisfied, and in most cases this requires some 

information about production processes. 

One approach to the problem is to derive RFT rules for the 

production amplitudes and then use the techniques of Section IV, 

to study their asymptotic 'behavior. As indicated in Section II, 

it is difficult to apply Reggeon unitarity to 2-N production 

amplitudes: however, it has been possible to study the asymptotic 

behavior of these amplitudes in the multi-Regge region of phase 

space using the hybrid Feynman diagram procedure. Drummonda7 and 
88 

Campbell have studied hybrid diagrams which lead to reggeon 

graphs with one closed loop, and recently Bartels 
89 

has obtained 

the rules for a general Reggeon diagram. Here we will briefly 

discuss the results for the two-to-three amplitude. 

First, one must identify the counterparts of the signatured 

partial wave amplitudes encountered in the elastic process. We 

refer to the kinematics of Figure 5.1. In the double Regge Limit 

we consider the five point amplitude A5 with s12, s13, s22 - m 

and 
? = Qf, t2 = Qz, and n12 = s12/s13s2S fixed. When we have 

Regge poles ai in the ti channel, study of a hybrid graph as 

in Figure 5.2 leads to 
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with 

"2 cy-cc 

+ '12 '23 2 
i 

e 
-in k~~-ci~) 

c”L-“2 = 
+ TLT2 

sinn (cfL-ci2) 

(5.1) 

The decomposition of AS indicated in Eq. (5.1) is consistent with 

the Steinman reiations, which tell us that A 5 cannot have simul- 

taneous discontinuities in sL3 and s23. The two particle-Reggeon 

coupling fi is real. The two Reggeon-particle couplings Vi are 

real and, in models, are analytic at n12=0. This suggests that 

the appropriate partial wave amplitudes are the generalizations 

of v 1 and V 2' It also suggests that one will require two kinds 

of two Reggeon-particle couplings to build a calcuLus for evaluating 

Reggeon cut contributions to the 2 - 3 process. These expectations 

are borne out by the study of more complicated hybrid graphs: for 

example, those which correspond to the Reggeon graph of Figure 5.3. 

This and fancier graphs yield the form for A5 

A5 = J . g+ 2 6;; s;:-Jl 
t 

tJL5J2-JL V~(J~sJ2~tl't2*sl,) 

=2 Jl-J2 E 
+ s12 sL3 

~ ‘1 
*J2eJl-J2 V2(J .J2,tl,t2,q12)? , 1 (5.2) 

I 

in the double Regge limit. The Reggeon graph rules yields VL and 

"2. 
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Bartels has generalized the above results to the multiparticle 
89 

production amplitudes, A4+n. The only new difficulty is that the 

decomposition of the amplitudes required by the Steinman relations 

becomes cumbersome. However, for processes in which only the P 

singularity is important, one only needs the small E and k 2 behavior 

of the multiparticle partial wave amplitudes. In this case it 

sufficies to approximate the bare vertices and coupling functions 

by constants, and only one independent amplitude enters for each n. 

In some cases the analysis of inclusive cross sections is even 

cleaner than that of exclusive cross sections. For example, the 

RFT rules for the single particle inclusive cross section in the 

triple Regge Limit have been obtained both from the hybrid graph 
60 59 

approach and from the Reggeon unitarity relations. Further work 

on inclusive cross sections is presently in progress. 

Another approach to the s-channel content of a Reggeon calculus 

has been given by Abramovskii, Gribov and Kanchelli 
36 (AGK). They 

bypass RFT by studying the s-channel absorptive part of two-body 

amplitudes directly. Since such absorptive parts are immediately 

related to production processes in the s-channel, we gain directly 

the information desired. However, one must pay a certain price for 

this splendid efficiency since it is necessary to specify how one 

cuts through Reggeons in extracting absorptive parts. The formula- 

tion of AGK assumes that the Reggeon, in particular the P is given 

by a set of generalized Ladder graphs as in Figure 5.4. The cut 

through this P is, up to considerations of signature to ‘be treated 

in a moment, just as in the familiar multiperipheral model shown in 

Figure 5.5. It gives rise to a uniform distribution in produced 
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particle rapidity in the central region for single particle inclusive 

production: it yields multiplicity of produced particles proportional 

to log s. etc. With cutting rules in hand, one may cut up any given 

Reggeon graph to find the contribution to the desired s-channel pro- 

cess. Clearly this method is most attractive when only a small 

number of Reggeon graphs need be treated. As such it lends itself 

well to the so-called weak coupling P discussed in the last section. 

That P is without terribly high regard at the time of this writing 

and summation of infinite sets of p graphs appears rather necessary. 

These caveats exposed we turn to a description of the AGK cutting 

rules and some consequences thereof. 

Given the rules for cutting a _P, AKG argue that the details of 

the basic production mechanism need not be specified. With the 

cutting rules they study the effects on the generalized ladder P 

arising from multiple P exchange and from p interactions. Two low 

order graphs are shown in Figure 5.6 along with the contributions 

to production amplitudes generated 'by cutting them. The features 

revealed in this manner are absorptive corrections to the ladder-like 

production amplitude of Figure 5.5, production from more than one 

(multiperipheral like) chain, and the possibility of large rapidity 

gaps between produced particles. 

One can already make some qualitative statements from Figure 5.6. 

First, if the average number of particles arising from the exchange 

of the basic p is ii 1 = a log s, then ii from the exchange of k non- 

interacting P's will 'be of order kn 1' In the absence of P interac- 

tions then, the multiplicity distribution will be as shown in Figure 

5.7a with u;/uk; = (log sJk-l. P interactions will fill in the gaps 
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and smooth out un to look more like Figure 5.7b. The actual 

possibility of seeing the peaks in on at kn rests on model 

dependent couplings not estimated ‘by AGK or anyone else. 

Furthermore production from k independent _P's is expected to 

give rise to the order of ka particles per unit rapidity interval. 

In individual events one expects to encounter long range fluc- 

tuations in the rapidity distribution. Calculation of 

fluctuation probabilities have been made ‘by AGK for the weak 

coupling P. 36 

The detailed cutting rules depend crucially on the observation 

that for a particular discontinuity to be non-negligible, the cut 

must go completely through any Reggeon in the graph or not cut it 

at all. As an example of this consider the cut of the two Reggeon 

graph of Figures 2.1 and 2.2 as shown in Figure 5.8. In order for 

it to ‘be interpreted as a cut through a Reggeon the rapidity spread 

y across the cut lines must be Large. In that case the particle 

line carrying momentum q will have an enormous mass q* = ey. How- 

ever, it is a basic assumption of the hybrid graph approach that any 

diagram is negligible when a Line carries a Large mass. For small 

values of y the cut is interpreted as passing through the Regge 

(n) vertex functions N . This argument applies to any Reggeon diagram, 

for a partially cut Reggeon Leaves a hanging chain and yields an 

unacceptably Large q* somewhere. 

For diagrams involving the exchange of k non-interacting P's 

the analysis is straightforward. The contribution to the amplitude 

T(s,q2) from k p's is 
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k 
b*(q -z 9, ) Ljzl IL 

-NCk) (q #yl...cLk 11," 

where 
-iTo.(q2) 

Gj (s,qf) = - 
2 7 i 

s 
sin 5 uj (9;) 

(5.3) 

(5.4) 

Cutting through N(k) should have no effect on them. Recall that 

N(2) can be written as in Eq. (3.41) as an integral over the 

Reggeon-particle absorptive part. Since such an absorptive part 

involves only on-shell intermediate states, cutting does nothing. 

For N(k), k Z 2, the argument is more formal, requiring an 

elaborate excursion into Sudakov land. The conclusion is that 

cut N's are the same as uncut N's. 

The s-channel absorptive part of T (k) (s,q,2) is now reduced 

to a combinatorial problem in enumerating the ways of and weights 

associated with cutting 0, 1, . . . k P's in all possible ways. 

Take T(*) (s,q:) for example: 

Abs T(*) (s,qf) = 2 s d2kLL d2k2~L 

(2n)* (2n)* 
b2 (qi-kli-k21) N2 

c"l,'y2 

l ,[GLG; + G2G;] + [AbsGl(iG2)* + iG2AbsGl + AbsG2(iGl)* t 

1 iGLAbsG2] + [2AbsGlAbsG2], , 
J 

(5.5) 

where 
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AbsGi = ImGi = s 
“i 

. (5.6) 

The terms in square brackets result respectively from cutting 

first 0, then 1, and finally 2 2's. Note that for identical 

Reggeons the signs and weights of these contributions are +2, 

-8, and +4 yielding an overall negative two P cut term in the 

elastic process. 

Diagrams involving only triple p vertices can also be easily 

dealt with since cutting across this vertex leaves it unchanged. 

However, the discontinuity across the general nP - mP vertex - n 

cannot be expressed in terms of the vertex itself when nLm > 1. 

As a result in order to calculate individual contributions to 

s-channel discontinuities from Reggeon diagrams containing such 

vertices, it is necessary to have greater knowledge of the 

vertex than is required to evaluate the Reggeon graph itself. (A 

theory with only triple p vertices as building bLocics for n - m 

transitions is thus quite attractive.) 

The cutting rules were employed by AGK in studying single 

particle inclusive cross sections in the central region. This 

is the regime of the process a+b - c+X where in the center of 

mass frame of a+b, the rapidity y of c is finite as the rapidity 

of a,* a 
of b,yb= - grows large . Taking the 

diagram of Figure 5.9a and cutting it gives the leading contrib- 

ution to the distribution in y and pT, the transverse momentum of 

c: 

da (a+b - c+X) 

W2pT 
= gagbfc (pz) ImG ha-y, 0) 1n.G (y-y,, 0) , (5.7) 
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which is precisely the flat rapidity distribution expected when 

~(0) = 1 for the P. Corrections to (5.7) result from Reggeon 

graphs as in Figures 5.9b and 5.9~. They add up to be proportional 

to 

fc(P$ 
i 

(YaL + (,',,) 

7 

J 
(5.8) 

after a variety of marvelous cancellations. 

It is worth emphasizing once again that results like (5.8) are 

useful only when a small number of Reggeon diagrams make the major 

contribution to some process. The signal of the weak coupling g, 

which allows a small number of graphs, is the appearance of 

corrections as in (5.8) which are only of order aogs,) -' or 

-1 equivalently (rapidity) . 

The corresponding calculations with the strong coupling 2 are 

far more difficult. In this case one must sum an infinite set of 

cut Reggeon diagrams, and as yet no convincing method has been 

presented for identifying the ones which make the leading contrib- 

utions to the inclusive cross section. A start in this direction 
25 

has 'been made by the Moscow group, and by Caneschi and Jengo, 90 who 

consider a theory with both cut and uncut P's. The Russians argue 

that the Leading contribution to the single particle inclusive cross 

section is again given by Eq. (5.7) except that G is now to be 

interpreted as the full p propagator. For large values of y 

ImG(y,O) grows Like yWy, so in this case the rapidity distribution 

is not flat. 

One of the most important open questions concerning the 

strong coupling solution of the RFT is whether the constraints 
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of s-channel unitarity are in fact satisfied. Although a defin- 

itive answer cannot be given at the present time, the preliminary 

indications are very encouraging. First, the Froissart bound in 

D dimensions requires that 

utot s c(logs)= , (5.9) 

where c is a constant. The bound is satisfied for small values of 

c (see eqs. (4.46) and (4.53)), and it will be satisfied at D=2 

provided an infra-red stable fixed point exists. 
74 The crucial 

test must await the completion of the direct calculations in two 

dimensions which are now in progress. 
72-74 

A closely related test comes from the calculation of the ex- 

clusive cross sections in the multi-Regge region of phase space. 

Long ago Finkelstein and Kajantie 
91 

showed that if the P were a 

simple pole with intercept one and if the P-P-particle coupling ,.,- 

did not vanish at zero momentum transfer, then one was led 

directly to a violation of the Froissart bound. The Moscow group 

has repeated this calculation for the strong coupling p and 25 found 

U n+2 ----j cn(lns) 
-a-n8 

(5.10) 
S-m 

where u n+2 is the cross section to produce n-!-2 particles, c is a n 

constant, and to first order in E 

(5.11) 
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so. at least for small values of E, there is no Finkelstein- 

Kajantie disease. The calculation leading to Eq. (5.10) starts 

with a constant bare P-P-particle vertex functions, but because -- 

of the absorptive nature of the P the renormalized vertex function 

vanishes when all transverse momenta go to zero. Similarly when 

one calculates the single particle inclusive cross section in the 

triple Regge Limit, 25.59.60 
a constant bare triple P vertex leads to 

a renormalized one which vanishes when the momentum transfer does. 

For small values of E there is no violation of the energy con- 

servation sum rule. 
90 

Finally Caneschi and Jengo have calculated the moments of 

the multiplicity distribution in models with cut and uncut P's. 

They find no contradiction with the constraints arising from the 

positivity of the partial cross sections. 
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VI. CONCLUSIONS, OUTLOOK ANJI CRITICAL PROBLEMS 

Up to now our discussion has 'been primarily concerned with 

the theoretical development of Reggeon field theories rather than 

with their consequences for phenomenology. There are several 

reasons for this. First, until the development of the Moscow- 

Batavia strong coupling solution it was not at all clear that a 

self-consistent theory of the Pomeron, its self interactions, and 

its interactions with other Reggeons was available, even in the 

RFT. It is an exceedingly doubtful business to do phenomenology 

with so uncertain a foundation. Second, a real feeling for the 

size of p interactions has only ‘been available since the study of 

high energy inclusive processes began at the CERN-ISR and at the 

Fermi National Accelerator Laboratory. We are not going to attempt 

here either a review of or a construction of a phenomenology of 

hadron reactions at very high energies on the basis of RFT, but 

we will indicate what in our opinion are the Lessons we have 

learned that will play a basic role in any such description of 

phenomena. 

The first issue concerns the size of the triple ,P coupling 

and the energy domain in which it is necessary to sum the full 

series of _P graphs. We will concentrate on the graphs in Fig. 6.1 

which we know will contribute to the dominant term in the total 

cross section (see Fig. 4.8). The order of magnitude of the 

corrections to the single P exchange is set by the dimensionless 

parameter go = ri/cciE. In terms of s this means that 

2 
rO - logs 

aO 
(6.1) 
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sets the scale for the convergence of the P series. The best 

estimate of the size of the bare triple p coupling, rU, comes 

from the single particle inclusive experiment A + B - A + X 

(see Fig. 6.2) in the triple Regge region (s, m*, S/h 2 - m with 

t fixed). If the triple P coupling is small, one may use the 

lowest order term in the P series to estimate its size. Under 

this assumption one finds from pp - p + X and pd - d + X data 

that 

(6.2) 

2 
rO and guessing that when 7 Aens = ?$ we will need a large number of 

"0 
terms in the P series, we learn that 

logs = 25 (6.3) 

is where the whole sum given 'by the Moscow-Batavia scaling solution, 

will certainly be necessary. Now the logs values available at the 

CERN-ISR are only 8 or 8.5 at-the most, and at FNAL they range up 

to about 7. At the energies of these devices the full sum of P 

graphs would not appear to be necessary. This conclusion is cer- 

tainly in line with the fashionable phenomenology based on s-channel 

approaches such as the multiperipheral model, which is motivated by 

the apparent "short-range rapidity correlation" nature of production 

processes observed experimentally. 

We cannot completely rule out the possibilfty that the scaling 

solution is applicable at ISR-FNAL energies. If it were, then in 

the calculation of the inclusive aross section the quantity ri/eb 

would be replaced 'by an effective coupling which is independent of 

rO- 
25 This alternative seems unliicely because we expect this 
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effective coupling to be of order of magnitude unity: however, 

this question cannot be fully resolved until we have reliable 

calculations of the critical exponents and scaling functions in 

two-dimensions. Work in this direction is presently in progress. 

When only a few terms in the P series are required for a 

good numerical estimate of the process under study then in the 

smalllogs regime one must face squarely the matter of secondary 

contributions from N P coupling with N > 3 and from possible 

derivative couplings. We know of no way to choose among the 

alternatives which present themselves except by a trial and error 

approach. However, we are encouraged 'by the fact that it has 

been possible to fit the pp. pp. n*p and K*p elastic scattering 

data over a wide range of energies with only a few terms in the 

P series.g2'g3 There is a nice feature to having only a finite 

number of terms to address. In such a case the AGK construction, 

even with its need for a specific assumption on the result of cut- 

ting P's, 40 will be a useful tool in relating specific s-channel 

production processes to the J-plane physics. 

Another lesson that we learned in Section IV was that when we 

required A = l-c(O) = 0, as we desire for the full sum of p graphs, 

the bare gap, 4 = 1-co(O) < 0, so the 'bare P has co(O) z 1. 

(Happily the best fits in Refs.92 and93 also require a,(O) > 1, 

with A0 having the right order of magnitude. g4) In 

ma-king the estimate in Eq. (6.3) we followed the approach 

where the perturbation series was developed using prop- 

agators with the renormalized intercept gap, A = 0. Since 

we expect the bare P to be observable at present accelerator 
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energies, it may be more appropriate to rearrange the perturbation 

series so that the bare gap enters the propagators. In this case 

each term in the series violates the Froissart bound, but the sum 

is constructed to satisfy it. Actually the value of A0 is on the 

order of 5x10 -2 which means a very slow growth in s from any P 

graph. Taking this effect into account we may boldly imagine that 

the estimate in Eq. (6.3) is too large by a factor of as much as 

two. Then the need for the full P series might set in at logs- 12-15. 

If this were to be so, the use of the scaling form for the ,P prop- 

agator might well be an attractive, compact expression to use at 

finite energies. To really be of use, however, we would again need 

reliable values of the scaling indices and reliable knowledge of the 

scaling functions. 

Despite our_ cautious almost pessimistic view toward the utility 

of a Reggeon calculus phenomenology at the present stage of theoret- 

ical development, there have been several attempts at fitting real 

data. Serious evaluation of these, often attractive, phenomenological 

essays is difficult. We pass this task on to the reader by providing 

a few references from which he or she can begin. 92,93,35 

Here we turn our attention to a resume of the ideas covered in 

this article and to a cheerful view of the progress achieved in the 

developments we have reported. We began ‘by recalling the necessity 

of branch points in the J-plane arising from the combination of 

moving poles in J with unitarity. We assumed that the only 'branch 

points were those coming from the presence of multiple moving poles 

in the t-channel. This assumption is actually extremely conservative. 

It resembles almost in detail the experience of many years in locating 
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the position of branch points in the energy planes arising in 

conventional field theories. There, of course, one has a variety 

of dispersion relations and sum rules which allow a direct positive 

assessment of the validity of this assumption. We are not so for- 

tunate here. We are forced to fall back on the (never entirely 

convincing, however persuasive and attractive) observation that 

satisfying t-channel multiparticle unitarity is straightforward and 

natural when branch points arise via moving poles and difficult, if 

possible at all, otherwise. Clearly if there are branch points in 

J arising from other sources, we have missed them. 

We next saw how to obtain expressions for the discontinuities 

across the J-plane cuts from the multiparticle t-channel relations. 

These Reggeon unitarity relations are crucial for an understanding 

of the ,p near J=l and t=O since they lead to strong couplings among 

the multi-; channels whose thresholds all collide at this point. 

In order to insure that the full Reggeon unitarity relations are 

satisfied, we introduced a field theory to describe the emission, 

absorption and propagation of Reggeons. The Reggeon field q(;(,'r) 

operates in a world with two space and one time dimension. The 

'branch points in the J-plane arise naturally as singularities in 

the Feynman integrals of the perturbation expansion of the field 

theory. These singularities represent, as in conventional field 

theories, thresholds for the production of the quanta (Reggeons) 

described by 9. 

When the renormalized intercept gap vanished, we found that 

the RFT exhibited infra-red 'behavior analogous to that of conven- 

tional field theories with massless particles. In this case one 
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could use the renormalization group-to study the behavior of the 

theory near J=l and t=O. When an infra-red stable fixed point 

exists, the Reggeon Green's functions and the total and elastic cross- 

sections satisfy scaling laws which are given in Eqs. (1.41, 

(l-5), and (4.41). We saw that such a fixed point does exist 

in D = 4 - c space dimensions, and attempted to extrapolate to 

the physically interesting case, IX=*. 

How are we to view the field ~(;,7)? Since the Reggeons it 

describes are composite states of the observed hadrons, it 

represents some averaged or mean behavior of the underlying hadrons. 

This mean behavior is Likely to be rather independent of the con- 

stituent hadrons if the distances I;/ and "times" 7 represented in 

the field cp(<,r) are Large compared to the scales of the hadrons. 

The natural scales for hadrons are I';l - (mproton)-' and T = log s E 1 

when s is measured in units of (m j2 So for 1x1 >> (m -1 
proton . proton) 

and T >> 1, the average field may 'be expected to be a good representative 

of the collective behavior of the underlying hadronic matter. Now this 

translates into small momentum, I';\, and energy E for the quanta 

described 'by the field. This is just the Limit where we employed 

our RFT to Learn in detail about P interactions and amplitudes. In 

a sense this is very attractive, and in another sense this is 

terribly disappointing. The latter comes because we are saying that 

in large s, small t processes we will not be Learning about the basic 

structure of hadrons; indeed, we are averaging over the hadron 

coordinates in a grand fashion. 

There is a very persuasive analogy for this point of view. In 

many 'body problems near critical points one describes the free 

energy of the system in terms of mean fields which average over 
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Large blocks of Local, more fundamental coordinates. These mean 

fields interact: their quanta are emitted, are absorbed, and 

propagate. They are the clear analogue of our Reggeon field. 

One never produces the quanta of the mean field as free states 

outside the medium (electrons and ion cores) which gives them 

Life. One never produces Reggeons as free states outside the 

medium (particles acting as sources) which gives them Life. 

At the critical temperature the correlation Length for 

static correlation functions goes to infinity. This as usual, 

is the signal for a long range interaction mediated by a massless 

particle. We. too, have a massless excitation called the Pomeron. 

It provides for infinite range correlations in rapidity, the time 

dimension. The universality of scaling functions and critical 

exponents in the theory of second order phase transitions carries 

over directly into our Reggeon Langauge. We, when cl(O) = 1, sit 

precisely at the analogue of T = Tcritical. This marvelous 

universality means that phase transition phenomena near critical 

points will not teach one about the detailed dynamics underlying 

the observed phenomena. So, too, are we not learning about the 

detailed dynamics underlying the Pomeron by studying very Large s, 

small t elastic amplitudes. 

This brings us to the first of our critical problems now open 

for discussion in Reggeon physics: namely, the s-channel content 

of the theory we have built with quite explicit t-channel unitarity. 

Since the Reggeons reflect an infinite number of s-channel produc- 

tion processes, there is clearly a rich well of information on the 

structure of the Reggeons to be plumbed by the detailed study of 
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s-channel phenomena. We can say thisin a Language rather well 

adapted to the view of the generationof long range correlations 

in rapidity by Reggeon interactions. In the elastic amplitudes 

which have been the primary concern of our report, one probes the 

amplitude for a source (two particles) to emit Reggeons and then 

at a Later time (rapidity) for another set Of two particles acting 

as a sink to absorb them (Figure 6.3). In an s-channel production 

process such as single particle inclusive reactions in the triple 

Regge region there are three times involved log(m * 1 
CFKJ. 6.43 

proton) = ' 

log M2, and log s.,, [The energy scale is aLwaYs m proton ^- 1 GeV/c*.] 

We. by studying this inclusive process, are probing intermediate 

times, which requires the Pcsneron to reveal sane of its short 

range (in rapidity) structure. Other examples of intermediate 

time probes will come directly to mind. Each has its counterpart 

in an s-channel process which is part of the building up of the 

Reggeons. Study of these many time correlation functions should 

provide a systematic method to learn how to put together Reggeons. 

It has the incidental, highly non-trivial attractiveness of dis- 

cussing experimentally accessible s-channel processes. The 

elucidation of these s-channel properties is then an issue of the 

first importance in Reggeon theories. 

Another issue, slightly more elusive perhaps, is that of the 

nature of bare Reggeons. The bare Pomeron is an important example. 

This is the quantity that is probed at present machine and colliding 

beam energies. Its structure is sure t,o reflect the detailed hadron 

dynamics of whatever theory, one chooses as an attractive candidate. 
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We haven't really much of an informative nature to say about the 

building of Reqgeons. Despite decades of clever worjc on the 

matter, the issue of how hadrons bind to form hadrons and Reggeons 

remains open and enticing. The importance of the matter clearly 

transcends the somewhat circumscribed set of problems this report 

has been able to bring out and, indeed, seems a challenging note 

on which to finish. 
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FIGURE CAPTIONS 

Figure 1.1 Exchange of a Regge pole in an elastic process 

giving rise to s CI (t) behavior of the elastic 

amplitude TAB(s. t). The residue of the pole 

factorizes. 

Figure 1.2 Exchange of N Regge poles with trajectory et(t) 

giving rise to a branch point at CL (N) (t)-l=N[n(t,'N2)-11. 

Figure 1.3 The dominant term in the solution to RFT which sums 

all the multi-P cuts. 

Figure 2.1 The hybrid Feynman graph which produces the two 

Regqon cut contribution to the elastic process 

pl + p2 + pi + pi at large s = (p, + p7j2, 

fixed t = (p, - pij2. The blobs represent generalized 

ladder graphs and have power behavior in the'r sub- 

energies; 
2 sl(k 3 1 

for example, fl= [(kl + k2) I - All 

momentum transfers and particle masses are presumed 

to remain : m2, some characteristic finite mass, 

in the dominant region of integration. 

Figure 2.2 The Ragyeon graph contribution to the t-channel 

partial wave amplitude coming from the hybrid graph 

of Figure 2.1. N is a two particle-two Reqqeon 

transition amplitude: G is a Reqqeon propagator. 

See Eq. (2.14) 

Figure 2.3 A hybrid Feymnan graph which gives a three Reggeon 

cut contribution to F(J,qf). 
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Figure 2.4 The Reggeon graph which comes from the hybrid 

Reynman graph of Fig. 2.3. 

Figure 2.5 A hybrid Feynman graph which introduces Reggeon 

interactions. 

Figure 2.6 The Reggeon graph contribution to ~(Jlg~) from the 

hybrid Feynman diagram of Fig. 2.5. The triple 

Reggcon coupling rolo203 appears here. 

~Lx'igure 2 . 7 The simplest contribution to the triple Reggeon 

coupling rQ cL cL . This will appear as a 
123 

building block in more complicated Reggeon graphs. 

Tigure 2.3 A hybrid Feynman graph which gives a three Reggeon 

cut contribution to F(J,q:). 

Figure 2.4 The Reggeon graph which comes from the hybrid 

Feynman graph of Fig. 2.3. 

Figure 3.1 (a) A planar Feynman graph with two Reggeons, 

represented by ladders, in the t-channel. This 

planar graph does not give rise to a branch point 

in the J-plane at CL(~)(~), Eq. (1.2). 

(b) The simplest non-planar Feynman graph which 

does yie~ld the two Reggeon branch point. 

Figure 3.2 (a) A planar Feynman graph with one particle and 

one Reggeon in the t-channel. This planar graph 

does not give rise to a branch point in 3. 

(b) The simplest non-planar graph which does give 

a Reggeon-particle branch point in J. It is the 

presence of a left and right right hand cut in the 

sub-energy slwfiich gua rantees the existence of the 

cut. This Reggeon-particle cut is shielded by the 

tt3 



two Reggeon cut (Fig. 3.lb) in the scattering 

region, t 2 0. 

Figure 3.3 The two particle + one particle + Reggeon graph 

which is contained in the two particle + three 

particle amplitude. The Reggeon is represented 

by a ladder. 

Figure 3.4 The path of continuation in the t-plane to reach 

the amplitude I@ needed in the unitarity formula 

E¶- (3.3). 

Figure 3.5 A set of variables for the partial wave projection 

of the 2 + 4 amplitude needed in the study of the 

four particle contribution to the partial wave 

unitarity relation. J is angular momentum and 

n is helicity. 

Figure 3.6 The contour in the helicity plane required in Eq. 

(3.8) for the four particle contribution to partial 

wave unitarity. 

Figure 3.7 The tl or t2 plane in the four particle phase space 

showing how the ti integration is deformed to 

enclose the two particle threshold. 

Figure 3.8 The position of the factors in Eq. (3.22) in the tl 

t2 plane. The intersection of x(t,tl,t2) and 

J - crl(tl) - cr2(t2) + 1 gives rise to the branch 

point at J = at(t). 
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Figure 3.9 The two Reggeon -f two Reggeon amplitude M (Jrt). 
fY,N’ -- 

Figure 3.10 The two particle + two Reggeon amplitude. The 

net helicity in the t-channel is al(tl) + n2(t2). 

Figure 3.11 The single particle inclusive process in the 

limit s + -, t,M2 fixed. The Reggeon-particle 

absorptive part ImAcliM2 ,O) is measured here. 

Figure 3.12 The discontinuity across the two Reggeon cut in 

the particle partial wave amplitude F(E = l-J, 

t = -1~;12). The vertical dotted line across the 

blob in the left hand part of the figure indicates 

a discontinuity in E for fixed 6 has been taken. 

In the right half of the figure the Reggeons carrying 

?-,w momentum gi are "on-shell" and thus have "energy" 

equal to 1 - ai( The vertical dotted line in- 

dicates this. 

Figure 3.13 The angular momentum (Ji) and helicity (ni) and 

mass (ti) configuration used in studying the six 

particle contribution to the partial wave amplitude. 

This is the way to study the three Reggeon cut 

generated at J = ol(tl) f a2(t2) + cr3(t3)-2. 

Figure 4.1 Four P couplings allowed in a RFT of P's. They 

are abstracted from hybrid Feynman graphs, or the 

multiperipheral model, or any theory having Regge 

poles. 
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Figure 4.2 A Regqeon graph contribution to the elastic particle 

amplitude. This contains the two P cut and must 

contribute negatively to the total cross section. 

We arrange this by writing the triple P coupling 

to be purely imaginary = ir. 

Figure 4.3 The notation for a n+m Reggeon Green's function. 

Figure 4.4 The Schwinger-Dyson equation for the Pomeron proper 

self energy. Gu,l) is the full P propagator and 

r(1,2) is the triple P proper vertex function. 

Figure 4.5 The graphical representation of the triple P 

vertex function T(1'2). 

Figure 4.6 The integral equation for the triple P vertex 

function. “(2,2) is the two P irreducible Bethe- 

Salpeter kernel. 

Figure 4.7 The lowest order contributions to V (2,2) . 

Figure 4.8 The lowest order contributions to r (l,l) . 

Figure 4.9 The hierarchy of contributions to the total cross 

section for A+B+ anything coming from the strong 

coupling, scaling solution to the Pomeron RFT. 

yis the anomalous dimension of the P field. In 

an expansion of the RFT about a scale invariant 

theory y is found (possibly unreliably) to be 

about -3/8. 
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Figure 4.10 Reggeon graphs for the propaqator of a secondary 

trajectory, dotted line, coming from its interaction 

with the P, wiggly line. The P interacts with 

itself. For the usual reasons only triple couplings 

are considered. 

Figure 5.1 Kinematics associated with the double Regqe limit 

of the five point amplitude. In this limit 

s12, s13, s23 -L ~0 with (21, 2 Qi and n12 = s12/s13s23 

held fixed. 

Figure 5.2 A hybrid Feynman graph and itsReqqeon graph contri- 

bution to the double Regge limit of the five goint 

function. Two distinct partial wave terms enter: 

one has simultaneous discontinuities 

s13; the other, in s12 and s23. 

Figure 5.3 A Reqqeon graph with branch points in J 1 and J 2 

n s12 and 

which contributes to the double Kegge limit of the 

2+3 process. 

Figure 5.4 The picture of the basic Pomeron (P) as generalized 

ladder graph. 

Figure 5.5 The cut across the P reveals a multiperipheral 

production process in the s-channel. 

Figure 5.6 (a) Aosoptive corrections to the basic production 

process, production from two chains, and production 

with a large rapidity gap - these amplitudes are 

revealed by the cut of tine two Reqgeon qraph contri- 
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bution to the elastic amplitude. One cuts one, 

two, or zero Reggeons respectively. 

(b) The production processes revealed by cutting 

up the Reggeon graph of Figure 2.6. 

Figure 5.7 (a) The distribution in number (n) of particles 

produced by the graphs with multiple non-interacting 

exchanged P. Figure 1.2 is an example of this. 

(b) The expected smoothing of the u,, distribution 

of Fig. 5.7a which will come from P interactions. 

Figure 5.8 A cut part way through a Reggeon which leaves a 

hanging chain with rapidity spread y. The particle 

line carrying momentum q will have mass q2 CI ey, 

which must be large since a Reggeon is cut. Since 

Large q 2. IS presumed to be absent, so is the partial 

cut of this Reggeon. 

Figure 5.9 Reggeon graph contributions to the 3+3 amplitude 

whose discontinuity in lY2 = Pa + Pb - PC)* gives 

the single particle inclusive distribution 

a+b- c f X in the central region. 

Figure 6.1 Reggeon graphs which contribute to the leading 

behavior of the total cross section. The expansion 

parameter here is (ri/u,!,) log s. When it is of order 

one, the whole series must be summed to give the 

strong coupling scaling solution of RFT. Indica- 

tions are that at present energies this parameter is 

only of order l/8 or so. 

Y 4% 



Figure 6.2 The triple Regge region of the inclusive process 

A + % + A + anything,where one may estimate the 

triple Regge coupling. 

Figure 6.3 Elastic amplitudes study the two time correlation 

function for sources (called particles) to emit 

Reggeons and reabsorb them. The times are 0 and 

log s for the elastic process. For long times the 

scaling solution of RFT is applicable. It 

averages over enormous numbers of s-channel inelastic 

processes and over the hadron coordinates which are 

at the heart of Reggeon building. 

Figure 6.4 Single particle inclusive amplitudes (as in Fig. 

6.2) involve three times: 0, log ML, and log s. 

The study of many time correlation functions 

reveals how Pomerons behave at intermediate times. 

Such correlation functions are equivalent to 

learning about s-channel physics in RFT. 

-119- 



t 
A v 

‘\ 

A 

%*fP 

S cd(t) 

b(t) 

B B 

Fig. 1.1 



A A A 

S 

\ 

. . . 

B 0 

Fig. 1.2 



Fig. 1.3 



Fig. 2.1 

Fig. 2.2 



Fig. 2.3 

Fig. 2.4 



Fig. 2.5 

Fig. 2.6 



E,=I-$&,,a, 

Fig. 2.7 



t-q -Q 
S S 

(a> (b) 
Fig. 3.1 

-m --m Sl 1 Y; 
(a) b) 

Fig. 3.2 



Fig. 3.3 

t - PLANE 

4m*. 9m2 16m2 

Fig. 3.4 



t , 

J 
Q 

t2 

Fig. 3.5 

n, q a,($) 

x x 

X 

-7 *’ 
n,= 

9 
x x x 

HELICITY PLANE 

J-n,-+ 

0 0 0 

t n,=J-n2+l 

Fig. 3.6 



ti - PLANE 

x ~~- 
t TWO PARTICLE 

THRESHOLD 

(x 

Fig. 3.7 

Fig. 3.8 



al 
I 

al 

tY-+ 

Fig. 3.9 

a,(t,) 

a,(+,) 

Fig. 3.10 



t t 

ZERO 
MOMENTUM 
TRANSFER 

Fig. 3.11 



discE F(E,$) 

Fig. 3.12 

Fig. 3.13 



Fig. 4.1 



Fig. 4.2 

E - n+i*qn+l 

E n+m jTfn+m 

Fig. 4.3 



A + 

0 
M 



A 

0’ 

+ 



0 
. 
. 

+ 



(a) 

.) 

g, gs (log s)-y(gl) 

- h,,Oog 
-2+y(g,) 

s) 

Fig. 4.9 



I 
I 

I 
I 
I 
I 

~ 

I 
I 
I 
I 

I 

I 
I 

I 

I 
I 

I 
I 
I 

1 
I 

I 
I 



PI P; 
Fig. 5.1 

Fig. 5.2 



Fig. 5.3 

S-+ 

/ 

I 

Ii 
I I - 

-E 
I I 

/L 
I I 
I I c Fig. 5.5 

Fig. 5.4 



+ 

EA I ul 

I I I 
In 
2 F 



A 
(a> 

-7s 
ti= 
-\i\ 

> ii 2Fi 3ii n 

> ?i 2ii 3ii n 

Fig. 5.7 



Fig. 5.8 

pa+?- pa 
‘b 

gb ‘b 

(a) 

(Ya ,a 

(Yb’“) 

Fig. 5.9 



m 

m 

m 



Fig. 6.3 

r=log M2 -, 
x I- 

0 

d 

Xn 

T 
> 

Fig. 6.4 

q log s 

logs 


