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ABSTRACT 

We investigate the possibility of fermion confinement in a manifestly 

chiral invariant theory. In particular we study the nonlinear u-model in 

one time and one space dimension, and demonstrate that it is equivalent 

to the massive Thirring model plus a free massless scalar field. We find 

an exact, time independent, classical solution to the massive Thirring 

model. This solution is characterized by a fermion confined in a self- 

generated potential. In the u-model analog of this solution, the chiral 

phase changes rapidly in the region of the confined fermion, and has two 

different constant limits on either side of this region. We also consider 

the case in which the mass of the pseudoscalar meson is small but finite, 

and find an approximate solution which displays both PCAC and fermion 

confinement. 

Alfred P. Sloan Foundation Research Fellow. Permanent Address: 
Physics Department, University of Illinois, Urbana, Illinois 61801. 

e Operated by Universities Research Association Inc. under contract with the Energy Research and DeVelOpment Administration 



-2- FERMILAB-Pub-75/22-THY 

1. INTRODUCTION 

In the quark confinement schemes recently proposed and studied 

at MIT and SLAC, 1 
the origin of the partial conservation of axial vector 

current (PCAC), and the unique role of pions as Goldstone bosons are 

obscure. 
2 It seems in fact apparent that these models are incompatible 

with the notion of spontaneously broken chiral symmetry as the foundation 

of current algebra and the related lore. 

This paper reports on our initial results in studying the possibility 

of fermion confinement in a theory which is manifestly chiral symmetric. 

To simplify the mathematics involved in such a complex physical problem, 

we chose to study first a truncated o-model2 in one time, one space 

dimension. This model turns out to be equivalent to the massive Thirring 

model. 
3 

To our surprise, an exact, static solution corresponding to a 

confined fermion is obtainable by elementary means in the classical 

version of this model. We give here a brief description of these results. 

The chiral symmetric model we consider is a pseudoscalar, 

isoscalar meson 0 coupled gradiently,to a massive fermion $ ~ The 

equations of motion of this model are 

@(ape - &GY,Y~N = 0 , 

(iB - m - + y,~llape)+= 0 . 

This model, with isospin, was studied by Norton and Watson, 4 
Feynman, 

5 
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Gell-Mann and Levy, 6 m connection with PCAC. In two dimensions, it 

turns out to be equivalent to the massive Thirring model (with the fermion 

field x) and a free massless scalar field s : 

a2s = 0 

[ifi - m +($)2GiypX)yJX= 0 

The nature of the classical static solution may best be described in terms 

of the chiral model variables 0 and +. The variable 6 approaches two 

different constants as x 4 i-m and -m ; the transition from one value to 

the other occurs rapidly in a region of spatial extent of order l/m . Thus, 

is substantial only in this region. This in turn creates a potential in 

which the fermion + becomes trapped, so that the wavefunction jl also has 

a range of order i/m . The total energy of the system is finite and less 

than m, while the energy of the trapped fermion goes to zero as 

1 2 
( ) z -= - 

We have also considered the case in which the mass of the 

pseudoscalar meson is finite, so that we have the PCAC relation: 

aYAy = fp”e , 

Av = +qY5Y,++ favs . 

While the model is no longer soluble exactly, and is not equivalent to 
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the massive Thirring model plus a scalar field, we have established that 

the nature of the fermion confinement is not altered for small p . In 

particular, we are able to give an exact expression for the change in the 

total energy valid to order p . 

The rest of this paper is organized as follows. In Sec. II, we 

discuss the connection between the c-model, pseudoscalar gradient 

coupling model, and massive Thirring model.Section III gives the exact 

classical static solution of the massive Thirring model, which is interpreted 

in terms of the chiral models in Sec. IV. Section Vdiscusses the case of 

a small, but finite pseudoscalar mass. In Sec. VI, we give a list of 

problems and avenues for future research. The appendices deal 

with issues outside the central theme of the paper. Appendix A includes 

a discussion of the connection between the o-model and the massive 

Thirring model in the quantum mechanical limit whereas Appendix B gives 

a more precise description of what we mean by the classical limit in a 

theory with fermions plus a discussion of the extention of the model to the 

several fermion sector. A brief review of the application of variational 

techniques to the present problem is given in Appendix C. 

II. o-MODEL AND ITS RELATION TO THE 
MASSIVE THIRRING MODEL 

As a starting point we consider the Lagrangian of the chirally 

symmetric u-model’: 

PC = $[iB-g(&iny5)] ICI+ + [(aWd2 + (al*Ti’] 

- $ (02+T2-f2j2 (1) 
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where the isospin dependence has been neglected for simplicity, and 

unless otherwise specified, we will confine our analysis to the classical 

theory. The Lagrangian is invariant under the chiral transformation: 

o+ucoscr+rrsina , 

n+-asinu+rcoscu , 

+- exp(ioy5/2)+ , 

cy constant D (2) 

It is useful to redefine the fields as o+ iv = pe 
S/f 

and +’ = 

exp(iy5 0 / Zf)+, so that the Lagrangian is now 

Yo= Icl’ (Sgp- $ y5y’l(ape))+ l 

+*(a pj2 + f(fj2(apo) 
2 H 22’ 

P 
- Z(P -f ) . (3) 

The equation of motion for the field p(x) is 

gp + Hp(P2-f2) = -g$ ‘v + ($) (all0 )’ e 

2 2 
Inthelimit H-m, p =f, and we obtain formally the “nonlinear” 

7 
o -model : 

yo’ = G*(ifi-m- Z?rv,v~(a~e))~~+t(~~e)' 

where m = gf . The nomenclature “nonlinear” is re; ac 

we write the above Lagrangian in terms of the + field 

2: = JI (ib-m eiy5’ ‘f) ++ + (aWe j2 

(5) 

lily understood if 

(5.) 
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The Lagrangian (5) is invariant under the transformation 

from which follows the conservation of the axial vector current: 

ACI= &5Y,+- fape * (7) 

Equation (7) is just the equation of motion for the field 8 . The fermion 

equation of motion is given by 

( 
ifi -mm 1 

2f u54?aF~) JI # = 0 1 

In the following we shall consider only one time, one space 

dimension. With this restriction, it turns out that Eq. (5) is equivalent 

to the massive Thirring model. 
3 

To see this connection, we introduce 

a new scalar field s(x) by 

AI-“= +$‘y,yqf -f$e = cpYaS . " (9) 

This “curl” representation of AI-’ is always possible because the axial 

current is conserved. Since the curl of the axial current in this model 

is simply related to the divergence of the conserved vector current 

$ ‘y’$‘, we have 

e$A” = a2s = 0 (10) 

i.e., the field s describes a free massless scalar field. We may 

substitute Eq. (9) for ape in Eq. (8) and obtain, using the identity 
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(y5yP*) (y5YJ = -(up) (Y,) ’ 

[ 
i$-m + 1 (Q$f)y’l $I’ + -+ 

4f2 1 ~p(aps)v = 0 o (11) 
2f 

The last term (aus)v’+’ can be eliminated by the transformation 

v - x = exp(-i s(x)/2f2)C’ , and we are left with the equation of motion 

of the massive Thirring model: 

(i a - m + A2Xv’xy,)x = 0 

A=$ . (12) 

The free scalar field s and the Thirring fermion x are completely 

decoupled. That is, the chiral model of Eq. (5) is equivalent to the 

Thirring model and a free boson term. The equivalence of the two 

theories in the quantized form is elaborated in Appendix A. 

Since we focus on confined states of a fermion in the following, 

we choose s(x) = 0 and $’ = x . 

III. EXACT CLASSICAL SOLUTION OF THE 
MASSIVE THIRRING MODEL 

We shall now present an exact, time independent solution of Eq. (12) 

in the fermion number one sector in the classical limit (See Appendix B for 

a discussion of the classical limit), which is, to our knowledge, the only 

known exact solution of the massive Thirring model. The solution we will 

present corresponds to a localized (confined) fermion field. 

The Lagrangian which corresponds to Eq. (12) is 
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2 
Y= i(iB-m)x +$(XY,X)~ 

with the Hamiltonian density 

2 
SF X(i yiai+m)x - $ (XY~X)~ o 

Assuming the existence of a static solution, the two component 

spinor x(x, t) will be written as x(x)exp(-i Et), and with 

x(*m) = 0, 
- 1 
XY x = 0 

(recall a(Xy’x) = 0), the equation of motion may be written as8 
P 

(i y”ylD’+myo- k2xtx)x = EX ~ (13) 

The following explicit representation of the 2X2 y-matrices will be used: 

y” and y 
5 

= y”yl =* 2 * 

With this choice of y*s, it is consistent to describe a bound state x , 

satisfying Xuix = 0 , as a real spinor, i.e., 

x= u 
0 v ’ 

u, v real s 

In this representation we have 

x+x =u2+v2 , 
and 

C m- h2(u2+v2) 
1 

u + $ = Eu , 

d” t -- 
dx -m-A2(u2+v2) v = Ev . 1 (14) 
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To simplify these coupled equations, we transform u , v into n I ~3 

through 

u = q cos $3 , 

v=qsinr#l~ 

Equations (14) then reduce to 

-=E-mcos2mt A”,” d4 
dx 

Lk.? = 
dx 

-mqsin 26 . 

Eliminating the variable x , one finds 

d 2 

s 
iEn ‘$n4 - Fr: cos = 0 

from which it follows, for a localized solution d:+m) = 0 ( ), that 

2 
E + k I;? - m cos 2$ = o . 

Substituting Eq. (16) into Eq. (14a) and integrating, one finds 

o(x) = tan-‘(qtanh KX) 

where 

r7” (x) = 
2(m-E)/A’ 1 

2 
cash KX l+p tanh21zx 

m-E p=- 
m+E ’ and i-“l~ 

(15) 

(16) 

(1 W 

(17b) 

(note E < m corresponds to a confined solution). The normalization 

condition appropriate to the fermion number = 1 sector iwe consider the 

question of more fermions in AppendixB ). 

dx x +x = f 
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leads to the single eigenvalue 

A2 2 
E=mcosy; P=tan’$; 

A2 
K=msin- 0 

2 (18) 

Note that, in order to restrict ourselves to only the positive energy fermion 

states, we must require 
2 

A 5 r. This constraint is a standard re~;lt ‘,;; tk,e 

usual Thirring model. 

The various possible densities ix , iv”x = xt x , and ii y5x 

(recall Xvfx = 0) are: 

xx = ,“cos 2b = 4m sin2(A2/4)(1-tan2(A2/4)tanh2Kx) 

A2cosh2Kx(1+tan2(A2/4)tanh2Kx)2 
(19a) 

,+, = q2 = 4m sin2(A2/4 ) 

A2cosh2Kx(l+tan2(A2/4)tanh2Kx)2 
(1%) 

Xiv,x =n2sin2$= 
8m sin2(A2/4)tan(A2/4)tanh KX 

A2cosh2Kx(l+tan2(A2/4)tanh2Kx)2 
(f9c) 

In order to confirm that this exact, classical solution is consistent 

with our initial assumption that it describes a “bound” state, we must 

exhibit the expectation value of the classical Hamiltonian 

<H> = ldxax) = E +$ jdx(x+x)2 . (20) 

With the results given in Eq. (19) it is straightforward to evaluate <H> 

and find 

<H> = F sin X2/2 (2.1) 

Hence for 
2 

A + 0, <H>+m (i.e., a free, massive fermion) but for finite 

values of A2 , <H> < m as required for a bound state. The existence of 

this exact, time independent classical solution is, in itself, an interesting 

and new result deserving further study within the context of the massive 

Thirring model. 
8 

However, in this paper, we prefer to return to the 
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original c -model and discuss the implications of this solution in that 

framework. 

IV. CONFINEMENT SOLUTION IN THE o-MODEL 

It is straightforward to translate the fermion solution presented 

in the previous section into the language of the “nonlinear” o-model of 

Eq. (5). Since our central topic is the existence of minimum energy, 

localized states, we shall, as mentioned earlier, set the free scalar 

field, s(x), to zero for all x . In this case $ ‘(x) = x(x) and we can 

solve for the chiral phase, 8 (x). from Eq. (9). This simplifies to give 

de= 
dx (2.3 

Integrating and choosing 0 (x) to be antisymmetric about x = 0, we find 

(A=&) 

8 = -4f tan -‘[ta.n(+)tanh kx] , (23) 

where K = gf sin(l/8f2) ~ Note that 0 = -4f 4 as seen from Eq. (17a). 

According to Eq. (9), 

where s is a free field. Since we have let s = 0 , it follows that B is 

not an independent variable, and is given in terms of the fermion variables. 

The fact that the chiral model (5) describes an interacting fermion field 
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and a free boson field persists in the quantized case, as discussed in 

Appendix A. 

1 
From Eq. (23) we see that f (*a) =T- 

4f2 
and the full shift in the 

chiral phase, A f = 
0 

1 
2 , (due to a single fermion) is bounded from above 

1 Zf 
by 2rr since - = 

2f2 
2x25 2~ (the requirement that Er 0). 

The various fermion densities (Eq. (19) ), can also be expressed 

in terms of the initial fermion fields, $= e x - 

Due to the simple relationship between 8 and $ , these densities are 

almost unchanged in going from one fermion basis to the other and we 

shall not repeat the formulae here. One needs to know only that + ‘+=xt x, 

$$= ix and $ y,$= -iy,x with A replaced by 1/2f and m by gf. 

We illustrate the behavior of the chiral phase 0 /f and the various 

fermion densities in Fig. 1 for the values 
1 

- = 3.0, 1.5 andO. and 
4f2 

m=i. Hence the abcissa x is measured in units of i/m . Note that 

the primary effect of varying l/f2 is to change the “size” of the confinement 

region in the spatial variable x . The quantities +‘+ and $+ are very 

similar with $+ being only slightly more narrow. 

In the o-model language the classical energy for this solution is 

given by 

<H> = E + $ dx(axQ)2 = 1 
8gf3sin - . 

8f2 
(24) 

Also note that the fraction of the total energy residing in the chiral field 

(i.e. , the second term in Eq. (24) ) is 
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E 
e <H> -E -z = tan 1/8f2- i/8f2 

<H> <H> 
tan i/8f2 

(25) 

which varies from 0 to 1 as i/4f2 varies from 0 to in ~ 

Returning briefly to the limit, H -cm ,taken following Eq. (4), we 

t 3 see that, for + + a gf , the specific limit discussed in this paper is 

H>> g2 . (26) 

SO that j p-fj <cf. 

To summarize, the exact solution to the nonlinear u-model 

presented in this section describes the classical, static confinement of 

a single fermion within a region where the chiral phase is varying. Said 

another way, the chiral phase variation induced by the presence of the 

fermion in turn produces an axial vector potential in which the fermion is 

bound (<H><m) . Furthermore, the chiral phase change is guaranteed 

to be just such as to insure the local conservation of the axial current. 

In the next section we discuss the effects of breaking this chiral symmetry. 

V. BREAKING CHIRAL SYMMETRY 

Since the observed situation in the physical world does not 

correspond to exact chiral symmetry, it is instructive to consider the 

results of breaking chiral symmetry in the present framework. The 

most straightforward program for accomplishing this is simply to include 

a chiral breaking (“pion” mass) term in the “nonlinear” c-model given 

in (5), 
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L?= $0(iB-m-$y5yv8,0)$’ t+(aVej2 

-+P 2e2 (27) 

Conservation of the axial current is now replaced by the PCAC condition, 

8”AV = fp2e (28) 

with 

A ” = +$*y5y,+’ - fave (29) 

as before. In the presence of the mass term, we are not able to separate 

out a free scalar field by a simple transformation. This indicates that 

the present theory is no longer equivalent to a massive Thirring model 

with a factorizable pion field, and is probably not exactly soluble. However, 

in the limit of small y2 (i.e. , K’<<K~), which is the physically interesting 

limit, the fermion wave function is only slightly modified in the confinement 

region. We can still solve for this wave function, and compute the energy 

of the confinement state approximately. 

The fermion field equation obtained from (27) is not affected by the 

pion mass term, and remains as 

(29) 

Using the representation of the y-matrices introduced in Sec. III, we 

find for 

$I’ = x-v q% real , (30) 

that 
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and 

db -=E-mcos2$-&g , 
dx 

dr) z;i;;= -mnsin 24 , 

(31) 

(32) 

(33) 

Equations (31), (32) are essentially the same as Eq. (14ab). and Eq. (33) 

implies that 0 always damps to zero exponentially outside the confinement 

region. 

By treating the right-hand side of Eq. (33) as a source, we can 

solve for 0 using the Green’s function, 

0 (22) = 
J 

dx’G(x-x’) $ -& (34) 

with 

G(x-x’) = +A e 
-p / x-xc/ 

21 
(35) 

G(x-x’) = 6 (x-x ‘) ~ (36) 

Differentiating 0 with respect to x , and integrating by parts, we have 

G(x-x’) ran 
3 

7 
J 

dx’ G(x-x’) dx’)2 . (37) 

For small ).L and x in the confinement region, we can replace G in 

(37) by a constant, + & , and obtain 

de?: ’ 2 kw 
dx- -zT” +4f J 

dx’I)(X’)2 = 1 2 LL 
-Tfq +4f) (38) 

which is correct to order P/K and where we have used the normalization 
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condition for n ~ Substituting (38) into (31), we have 

(39) 

Now, Eqs. (32) and (39) are identical to (14a,b) with the energy eigenvalue 

E being replaced by E - fl (and A by -& ). 
8f2 

In particular, the fermion 

wave function + ‘, and equivalently n, C$ , are not affected at all to this 

order of p. . The fermion energy E and the total classical energy <H> 

are modified slightly to 

1 EEmcos-+L 
8f2 8f2 ’ 

(40) 

<H> F 8f2m sin- 
1 + I-r 

8f2 
-. 
16f2 

(41) 

Knowing n, we can compute the chiral phase from (34). For P<<K , 

we have 

1 
O(K) = 5 J [ dx ’ dG(x-x’) dx E x0)’ 

1 = 
-z J 

dx* E(X-x0) e-’ Ix-x’I a~‘)~ 

I -e -pl xl & dx’c(x-x0)r7(xC)2= 6’ (x) 
I I 

‘p=o 

(42) 

where we have approximated e -p( x-x41 by e-‘I xi , and 0 (x)(~=~ is 

the chiral phase obtained in Eq. (23), Sec. IV. Equation (42) reveals 

that the chiral phase damps exponentially to zero for u/ xl>> 1 , and 

varies rapidly, with scale L<< 1 
K )I’ 

in the region of the confined fermion. 

A typical chiral phase variation is shown in Fig. (2) where the values 
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1 
m=l,- 

4f2 
= 3 and p = .14 were used. 

If one uses a chiral symmetry breaking term of the more 

conventional form, q = cc c cos (0 If), the results are substantially the same = f 

as those above for small c (+ 
2 c 

* 7) . The major difference appears in the 

form of the corrections to the energies which in this case are 

E s m cos 1 + s 
1 

8f2 
c Sk- 
f 8f2 

and 

<H> z (8f’m+iJ~!sM--$ ~ 

(434 

(43b) 

VI. PARTING COMMENTS 

We found that the chiral symmetric model (5) is equivalent to the 

massive Thirring model plus a decoupled massless scalar field. As 

shown in Appendix A, this is true even in quantum theory. The spon- 

taneously broken chiral model does contain a Goldstone boson, but it is 

a free field (as can be checked in perturbation theory); the infrared 

9 
problem associated with massless bosons in one space dimension is 

thereby avoided. 

In a broken chiral model, the massive pseudoscalar field is no 

longer decoupled from the fermion (this has also been verified in 

perturbation theory), but the confinement of the fermion field persists. 

Before we can establish contact with reality, however, the 

follow~g questions must be answered: 
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1. Does the same kind of confinement occur in three spatial 

dimensions with a nontrivial internal symmetry? Does it confine the 

right kind and number of quarks? Realistic chiral confinement models 

we can envisage are in some respects very similar to the SLAC bag 

model, except for pions and except with respect to PCAC. 

2. How does our classical solution emerge in a quantized version? 

10 
The recent papers of Goldstone and Jackiw, and Dashen, Hasslacher 

and Neveu 
11 

are important in answering this general question, but we 

have not pursued this problem in this paper. Similarly, we have not 

fully explored the implications for our solution of Coleman’s work on 

the connection between the (quantized) massive Thirring and Sine-Gordan 

models. 
8 

3. Are there solutions similar to the present one but in different 

fermion number sectors (other than the trivial extention discussed in 

Appendix B) ? 
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APPENDIX A 

To show the equivalence of the quantized Lagrangian (5) and the 

massive Thirring model, we proceed from the path integral formula for 

the generating functional for Green’s functions of the former: 

(A. 1) 

t where 5 and 5 are anticommuting fermion source functions. 

We express 4 
I* 

in terms of two scalar fields C$ and o: 

4r= ap4+ E pva”O- G-t Y + . 
5P 

The generating functional (A. i)can be written as 

Zch(c, 5 +) = 
J 

[ d$do d0 ~dll, d$+ 1 
e 

exp i dx au@&3 - t(d”+)’ + $(#c)’ 
I i 

where A 

J 
A2 

+hAl,#$ - XV/.-z A2 (1 + GCi 8-m)+ 

+ 5++ + ++5 1 
(A. 2) 

The functional integration over 0 

is trivially performed, yielding the factor 

ii 6 (3’6 cd) 
x 

The condition a&x, = 0 in general implies 

f4(x) = 2yavbw , (A.31 
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where 2 awiX)=o ~ 

If we define a new variable s(x) by 

s(x) = o(x) + 0 (x) 

and eliminate O(X) in Eq. (A. 2) in favor of s(x), we obtain 

Zch(5,Ct) = j[ds di/ld$+]exp i idx (+Ca,sj2 
2 

- xvpaps + $(i8-m)$+& $v,$$v”$ 

(A. 4) 

The transformation $= e -iXs(x) 
x eliminates the term -XV 8s : 

Zchi;,itl=~[dxdxt:]e-I~x~~(i~-m)x+~;~~x~~~x 
X Iks]exp i~x(i(a~s)2 + E+xe-ixs(x) + ~+~eihs(x)). (A.5) 

Thus, the GreenIs function <T $(x,) **. Ic(xn) $‘(y,) *** 4J+ (Y,)) >ch of 

the chiral model (5) is related to the Green’s function <T 
( 
x (x,) * * . x(x,) 

x+(Y,) of the massive Thirring model through 

<T (WI) - * * 44x,) ++ (Y,) * - * 

=<T(x(xJ -** x(x,)x + (Y,) * - * x +cy,) >Th 1 

x<T e ( 

-i xS(xi) -iAs iAs 
. . . e S-e e 

i h(yn) 
e > (A. 6) 

where s(x) is a free massless scalar field. 



-21- FERMILAB-Pub-75/22-THY 

APPENDIX B 

In this appendix, we formulate the precise meaning of classical 

solutions in models containing fermions. We begin with the nonlinear 

o-model 

S?= Gop(i $-m-k~5Y’8~8)$oP + $(ape)" (B. 1) 

where + 
oP 

represents the fermion field operator. The classical solutions 

to the massive Thirring model will be introduced through the connection 

to the nonlinear c-model. The Lagrange function (B. 1) implies the field 

equations 

(ifi-m- hv,vpape)+ = 0 
oP 

~p(~~-~~op~5vp~op) = 0 . 

By classical solutions to (B. 1) in the one fermion sector, we mean: 

1. 0 is a c-number function. 

2. Express the field operators + and + t as 
oP oP 

4J = +a + . . . 

+z = +gt + . . . 

(B. 4) 

(B. 5) 

t where a(a ) is the annihilation (creation) operator and 4 the 

c-number wave function associated with the lowest energy, 

localized one fermion state. The wave function Ji obeys the 

classical equation, 

(ib -m-xy5ypaFe)+= 0 03.6) 
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I 
dx $+$= 1 . (B. 7) 

The dots in (B. 4) and (B. 5) represent higher frequency fermion 

and antifermion states which we ignore in the classical solution 
12 

3. Replace the bilinear product G 
op $op in (B. 3) by 

$opr *op - <$opr ‘op’one-fermion 

=iJr+ I 

which leads to 

ap(ape-hjlY5Yp+) = 0 . 

(B. 8) 

Equations (B. 6), (B. 7), and (B. 9) specify the classical limits of 

our models with 0 , q, $ t all being c-numbers. It is important to note 

that these equations can be obtained directly from an effective classical 

Lagrange function 

gff = $Ci 8-m-h.v5upape)+ 

+g(apej2 . (B. 10) 

JYKI (B. 10)s 4~. 4+> and 0 are all treated as commuting numbers. The precise 

t meaning of $ (4 ) is given in (B. 4) and (B. 5), and it should not be - 

interpreted as the classical limit of the anticommuting 4 
oP * (In fact, 

* 
oP ’ 

as an anticommuting operator, does not have a classical limit. ) 

By choosing the associated free boson field s(x) = 0 as in 

Sec. II, we have, from (B.9), 
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a’le -x$y5yP+= cl (B. 11) 

and consequently through (B. 6), an analogous classical equation for the 

massive T hirring model, 

(iP-m+A22jiyi”$yw)+= 0 0 (B. 12) 

We define Eq. (B. 12) to be the classical equation of motion for the massive 

Thirring model. This result can be derived from the effective Lagrange 

function 

L2&f = ~Cib-dj,-$i+-fpN2 (B. 13) 

by treating $ as a commuting c-number wave function. Equation (B. 13) 

is the starting point of Section III. We emphasize again that + should not 

be considered as the classical limit of + 
oP 

, but rather it should be 

interpreted as the c-number wave function appearing in (B. 4). 

The generalization of our formulation to the multifermion sector is 

straightforward. As an example, we consider the two-fermion sector. 

Then we have, instead of (B.4), 

4 
OP 

=Qlal +$2a2+“’ p (B. 14) 

where $J i and $2 are the wave functions for the individual fermion states 

in the presence of the other fermion. They obey the orthonormality 

conditions 

5 
dx V; y = d ij , i,j = 1,2 . (B. 15) 
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Now, we replace $ & 
oP ‘OP 

in (B. 8) by 

GOP r GOP - <GOP r +op’ 2-fermion 

Then, Eqs. (B. 6) and (B. 9) are changed to 

(iB-mhY5Y’Bk8)I/r = 0 , 1 
i=1,2 j 

ap a% -v ~lY5Yp~l+~2Y5YpJi)~ = 0 L - 

(B. 16) 

(B.57) 

(B. 18) 

In the two fermion sector the “classical” Thirring equation is 

4~~ = 0 , i=1,2 . (B. 19) 

The generalization of these results to the N-fermion state is now obvious. 

In a theory with an internal symmetry (cog. color), the introduction 

of X-fermion confined state with N smaller than the degree of the internal 

symmetry can be handled trivially. In this case, there is no exclusion 

principle to complicate the problem and all fermions are in the ground 

state with the same spatial wave function $(x) ~ 

Gi Lx) = Mx) vi , (B. 20) 

with 

5 
dx$+$= 1 . (B. 21) 

The orthonormality conditions on $ is guaranteed by the proper choice 

of the unit vectors ni in the internal space. We have, for confinement 

states, 
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and 

ape = h 1 $Y5Y,‘4 = NA h5v,+ , 
i 

(B. 22) 

= (i&m+NA2$yk$Y’)$= 0 . (B. 23) 

The fermion wave function is just as in the single fermion case but with 

2 replacement A 2 + NX . In terms of f = Sk , we find the energy of 

N-fermion state as 

EN 
=mcosNA2/2=mcosN/8f2 . (B. 24) 

Note that we must now require 
N 

- < pi to insure positive fermion energies. 
4f2 - 

The total energy for the N fermion case is 

<H> N = m 8f2sin(N/8f2) . (B. 25) 

1 
For 1’0, we have <H> N 

f N 
+ Nm as it should and for the limit - - 

* 2mN 8f2 

2’ 
<H> 

N-7 * 
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APPENDIX C 

We give here a brief summary of a variational estimate of the 

confinement solution which preceded the exact solution presented in the 

text. The following discussion is really an appraisal of variational 

technique in a problem such as this. 

We begin with the Hamiltonian 

H=~(~(~~2+~+(i~oy~$+myo+*~)~} (C.1) 

with the constraint 

5 dx$+$= 1 . 

By the variational principle, we have 

-g C $+A$++ 1 = 0 

f 
0 1 

iy Y 
d dx+myo+(h~-E)]iC=O 

(C. 2) 

(C. 3) 

(C.4) 

where the energy of the fermion E appears as the Lagrange multiplier. 

We seek a trial function which minimizes the total energy H> 0 . 

From Eq. (C.2 ) we find that 

t Fx+A$ $=const=O cc. 5) 

since for a confined solution the left-hand side must go to zero as 

x-*a. We choose as our trial function 

x>x 0 

-x <x<x 0 0 

x-c-x 
0 

CC. 6) 
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and determine the x 
0 which minimizes H > 0 . The parameter 0 

0 

is determined from the integrated form of (C. 5): 

e+) - et+) = -A , 

or 

zoo= A . (C. 7) 

The eigenvalue E is determined from the Dirac equation (C. 4). It is 

a root of - 

A2 E=---+ 
2xO 

jm2 
+ 

E+A2/2xo+m 

E+A2/ 2x0-m 
(C. 8) 

The total energy H is 

cc. 9) 

The solution of Eq. (C. 8) and the minimization of Eq. (C. 9) may be 

effected numerically. 

For A2 = 3. we find that the minimum of H> 0 occurs at mxo= 1. 5, 

where E = 0.26m, and 

(W variational = 0.76m (C. 10) 

to be compared with (H)exact = 0.67m. Some of the characteristics of 

the variational solution are plotted in Fig. 3, and are compared with the 

exact results from Fig. 1. The variational approach certainly works as 

well as might be expected with such a simple trial function. 



-28- FERMILAB-Pub-75/22-THY 

REFERENCES 

1 A. Chodos, R.L. Jaffe, K. Johnson and C.B. Thorn, Phys. Rev. D10, - 

2599 (1974); W.A. Bardeen, M.S. Chanowitz, S.D. Drell, M. Weinstein, 

and T. -M. Yan, SLAC-Pub-1490 (1974), to be published. See also 

P. Vinciarelli, Nuovo Chnento Letters 5, 905 (1972); CERN Preprints 

TH1934 (t974), TH 1952 (1974); M. Creutz, BNL preprint 18789 (1974) 

and M. Creutz and K.S. Soh, BNL Preprint 19363 (1974). 

2 For summary of the a-model and PCAC see B. W. Lee, Chiral Dynamics, 

(Gordon and Breach, New York, 1972) and references cited therein. 

3W. Thirring, Ann. Phys. (N.Y.) 2, 91 (1958). 

4 
R.E. Nortonand W. K.R. Watson, Phys. Rev. 110, 996 (1958). - 

5 
R. P. Feynman, unpublished. 

6 IM. Gell-Mann and M. Levy, Nuovo Cimento 16, 705 (1960). 

7 
W.A. Bardeen and B. W. Lee, Phys. Rev. 177, 2389 (1969). - 

8 
For completeness we note that there exists a simple change of variables 

which takes the exact solution of the massive Thirring model discussed 

here into the “soliton” solution of the Sine-Gordon equation. In particular 

the substitutions tan $I = 2ip tanw/4 and LY = 2~ casts the equation of 

motion for I$ into 

2 a', t (Y sinw = 0 . 
X 

However this simple connection between the two models appears to valid 

only for the single fermion confinement solution discussed here. The 



-29- FERMILAB-Pub-75/22-THY 

connection between the Thirring model and the Sine-Gordon equation is 

also discussed by S. Coleman, “The Quantum Sine-Gordon Equation as 

the Massive Thirring Model, ” Harvard preprint (1974) 

9S. Coleman, Comm. Math. Phys. 2, 259 (1973). 

10 
J. Goldstone and R. Jackiw, “Quantization of Non-Linear Waves,” 

MIT preprint (1974). 

11 
R. F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. z, 4114; 

4130; 4138 (1974); and to be published. 

12 
This line of argument may be understood in the framework of R. Dashen, 

B. Hasslacher and A. Neveu, Phys. Rev. DlO, 4130 (i974), Section IV, - 

as follows. Their equation (4.18) may be translated into 

d28 -- 
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& I dETry5y 1 d z <x( y”E-iy 1 d 
z--m-Xy5y’a B -‘I x> = 0 
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where the contour c is chosen appropriately to the Q = 1 sector, and 

Tr refers to the trace over spinor indices. As they explain, it can be 

written as 

d29 - 

dx2 
- X$V,(x)y,y,U,(x) +“fermion loop” = 0 
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A 
“fermion loop”= - - 2rci 

cO 

dE Tr y5y1 $ <x j [ y”E-iyf -$ -m-ky,y’8;][ X> 
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with the normalization 

I 
dx UT,(x)Uo(x) = 1 . 

The classical system of equations of motion for U,(x) and 0 (x) is 

obtained by ignoring the term “fermion loop”. 
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FIGURE CAPTIONS 

Fig. 1 Typical behavior of g-model confinement solution. Shown 

all curves for 1 = 3.0, 1.5 and 0.5 with m = 1. 
4f2 

Fig. 2 

Fig. 3 

a) Chiral phase 0 /f. 

b) ++‘u. 

c) $9. 

d) i$u,+. 

Typical behavior of chiral phase when a small mass is 

included for the “pion” field. Shown is the case m = 1 , 

1 
- = 3.0, p = 0.14 . 
4f2 
Comparison of simple trial solution for o-model with 

exact results of Fig. 1. The solid is trial function and 

the dashed line is the exact result. 

a) Chiral phase, elf . 

b) ~J++J . 

c) JJ+ . 
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