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I was asked t o  t a l k  about high energy photon experiments 

a t  Fermilab. 

There a r e  two high energy photon beams a t  Fermi ~ a t i o n a l  

Accelerator  Laboratory. The f i r s t  one t o  come i n t o  opera t ion  

was t h e  wide band photon beam. A group of p h y s i c i s t s  from 

Columbia, Cornel l ,  ~ a w a i i ,  I l l i n o i s  and ~ e r m i l a b  observed $/J 

production1 i n  r e a c t i o n s  induced by photons and neutrons from 

t h i s  beamO2 This morning T. OnHalloran discussed t h e  neutron 

experiment. I w i l l  concent ra te  on t h e  r ecen t  r e s u l t s  i n  the  

photoproduction experiment conducted i n  t h i s  same beam. The 

o t h e r  photon beam is  a high energy e l e c t r o d t a g g e d  photon beam. 

Let me f i r s t  t a l k  about t h i s  beam. 

Taqqed Photon Beam 

Over t h e  p a s t  year ,  a high energy electron/ tagged photon 

beam has  been i n s t a l l e d  and brought i n t o  opera t ion  i n  t h e  Proton 

Eas t  Area a t  Fermilab. The f u l l  f a c i l i t y  has  been used s i n c e  t h e  

end of  June f o r  high energy photoproduction experiments by a 

group from Fermilab, Lebedev, Santa Barbara, and Toronto. Figure 

1 shows schemat ica l ly  the  layout  of t h e  f a c i l i t y .  A Be t a r g e t  

i s  used t o  produce a n e u t r a l  beam. Photons a r e  converted t o  

e l e c t r o n s  i n  a l ead  r a d i a t o r .  The e l e c t r o n s  a r e  t r anspor ted  over 

300 m t o  t h e  tagging system where they h i t  a r a d i a t o r ,  produce a 

bremsstrahlung beam, and a r e  bent  i n t o  1 2  l ead  g l a s s  counters .  

I n  t h e  l ead  g l a s s  counter  hodoscope, t h e  e l e c t r o n  energy is 
measured t o  tag  the  photons. 

The e l e c t r o n  beam has been tuned from 40 G e V  t o  225 GeV 

with 300 GeV protons  inc iden t  on the  Be t a r g e t  and i s  now 

running a t  90 GeV with a 400 GeV proton beam. Prel iminary 
measurements of the  photon f l u x  a r e  c o n s i s t e n t  wi th  t h e  ca lcu la ted  
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f l u x ,  shown i n  Fig. 2, wi th in  a  f a c t o r  of two. The p ion  con- 

tamination has  been crudely  measured t o  be below 0.4% a t  115 

GeV. The tagging system has been tuned with 40, 90 and 115 GeV 

e l e c t r o n s  with a  0.2% r a d i a t o r .  The momentum acceptance of  t h e  

e l e c t r o n  beam is  + 4 1/2% and thus dominates t h e  tagged photon 

energy reso lu t ion .  The f a l s e  tag  r a t e  a t  115 GeV is - 0.3%. 

A t  115 GeV,  t h e  e l e c t r o n  beam h a l o  con t r ibu tes  only  a  

small  f r a c t i o n  of t h e  f a l s e  tag  r a t e .  The f a l s e  t ag  l e v e l s  

of t h e  system a r e  a l ready s a t i s f a c t o r y  f o r  t h e  most demanding 

experiment i n  t h i s  regard ,  t h e  photon t o t a l  c ross  s e c t i o n  t o  be 

measured during t h e  coming year.  

The tagging range i s  approximately 60% of  t h e  bremsstrahlung 

spectrum. I n  t h i s  "clean" mode of opera t ion  with a  2.0"k r a d i a t o r ,  

photon f luxes  a r e  about 1% of t h e  e- f luxes.  A t  t he  p resen t  time, 

t h e  f a c i l i t y  i s  opera t ing  i n  a  high i n t e n s i t y  mode with a  20% 
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r a d i a t o r  y ie ld ing  tagged photon f luxes  of about 10 /pulse. The 

occasional  second photon from t h e  th ick  r a d i a t o r  i s  de tec ted  and 

sub t rac ted  by t h e  experiment. Fa lse  t a g s  (meaning no photon) a r e  

about 1 1/2%. 

I would now l i k e  t o  d i scuss  the  wide band photon beam 

experiment. 

Wide Band Photon Beam 

The photons a r e  obtained from a 0-mr n e u t r a l  beam which is 

produced by t h e  i n t e r a c t i o n s  of 300/380 GeV protons i n  a  30.5 

crn Be t a r g e t .  The y-to-n r a t i o  is  improved by a  f a c t o r -  of 

roughly 200 above t h e  y-to-n r a t i o  a t  production by pass ing  

t h e  beam through 34 m of l i q u i d  D2. With t h e  primary proton 

energy of 300 GeV, .the photon spectrum at t h e  experimental  

t a r g e t  is  shown i n  Fig. 3 .  

The d e t e c t o r ,  which i s  shown i n  Fig. 4 ,  c o n s i s t s  of a  

mult iwire  p ropor t iona l  chamber magnetic spectrometer and a p a r t i -  

c l e  i d e n t i f i e r .  The spectrometer magnet M 2 ,  which has a  f i e l d  

i n t e g r a l  of 20 kG m, bends t h e  t r a j e c t o r i e s  of charged p a r t i c l e s  

v e r t i c a l l y .  The magnet a p e r t u r e ,  which is  61 cm high and 40.6 cm 

wide, determines t h e  acceptance o f  the  spectrometer.  





F i g .  3 Photon energy spectrum a t  photon t a r g e t  with the  
cryos ta t  f i l l e d  wi th  l i q u i d  D 2  





Scint i l la t ion  detectors T, AB and AW, as shown i n  Fig.  5, 

cover most of sol id angle not covered by multiwire proportional 

chambers. The counters T are placed t o  detect recoiling protons 

and the counters AB and AW covered forward cone. 

The par t ic le  ident i f ier  consists of an electron (and photon) 

calorimeter, a hadron calorimeter, and a muon ident i f ier ,  as shown 

i n  Fig. 6. The electron calorimeter i s  made up of an upstream 

and a downstream shower counter hodoscope. Each hodoscope i s  

s p l i t  into two identical halves which are separated horizontally 

from each other by 10 cm, i n  order to  allow the beam and the + - 
copiously produced e e pairs  t o  pass through. Each upstream 

hodoscope counter contains s ix  layers of lead and p las t i c ,  and 

each counter of the downstream hodoscope contains sixteen layers 

of lead and plast ic .  A layer i s  composed of a 4.8-mm thick p las t ic  

s c in t i l l a to r  and a 6.3 mrn thick Pb sheet. 

The hadron calorimeter consists of twenty-four 4.45-cm s tee l  

plates  interleaved w i t h  6.3-mrn sheets of p las t i c  sc in t i l l a to r .  

A 15-cm square hole allows the beam t o  pass through the calori-  

meter. The muon ident i f ier  consists of a s t ee l  shield which i s  

60-cm thick, and an 18-element ver t ica l ,  22-element horizontal 

sc in t i l l a t ion  counter hodoscope. 

The photon beam intensi ty i s  monitored continuously by a 

26-radiation length Wilson quantameter.. A t  regular intervals ,  

the photon spectrum i s  determined by measuring the t o t a l  momentum 
+ - 

of e e pairs  produced i n  a 0.04-radiation length lead target. 

During the calibration runs, the target i s  inserted i n  the 

photon beam in front of a horizontally bending dipole magnet MI 
+ - 

which opens the e e pairs  so that  the i r  momentum can be 

measured in  the multiwire proportional chamber spectrometer. 

Events which have two or more tracks and which sa t i s fy  

any of the following requirements are recorded on magnetic 

tape: Two or more muons i n  the muon ident i f ier ,  two or more 

electrons i n  the electron calorimeter, one electron and one muon, 

and, f ina l ly ,  any event which deposits more than a preset amount 

of energy i n  the hadron calorimeter. 







For each event ,  a l l  p o s s i b l e  t r a c k s  a r e  recons t ruc ted  from 

t h e  mult iwire  propor t ional  chamber h i t s .  

Let me now d i scuss  the  important c h a r a c t e r i s t i c s  of  a 

v a r i e t y  of d i f f e r e n t  f i n a l  s t a t e s ,  beginning with events  which 

possess  a dimuon i n  t h e  f i n a l  s t a t e s .  

Each t r a c k  is  ext rapola ted  back t o  each p lane  of muon 

counters ,  and a c i r c l e  with a r ad ius  2.5 times the  expected 

d e v i a t i o n  due t o  mul t ip le  s c a t t e r i n g  is  computed. Any muon counter  

with a h i t  which overlaps t h i s  c i r c l e  i s  considered t o  be corre-  

l a t e d  with t h e  t rack .  A "muon" t r a c k  is requi red  t o  have corre-  

l a t e d  h i t s  i n  both muon counter  planes.  

The sample of  a l l  events  with two muon t r a c k s  is ex t rac ted .  

The pa ths  of t h e  two muons a r e  ex t rapo la ted  back t o  t h e  t a r g e t  

t o  determine i f  t h e  p a i r  came from a s i n g l e  p o i n t  w i t h i n  t h e  

t a r g e t .  The d i s t ance  of c l o s e s t  approach, the  s h o r t e s t  l i n e  

segment connecting t h e  two t r a c k s  i n  f r o n t  .of t h e  magnet, is 

requi red  t o  be less than 2.5 mm. The ve r t ex  of t h e  event  i s  

def ined  t o  be t h e  midpoint of  t h i s  l i n e  segment. I t  must be 

loca ted  w i t h i n  20 cm of the  t a r g e t  along t h e  beam d i r e c t i o n .  

The momentum of each t r a c k  is computed assuming t h a t  t h e  

magnetic f i e l d  is uniform. The momentum r e s o l u t i o n  i n  t h e  l i m i t  

of a uniform f i e l d  i s  ca lcu la ted  t o  be ~ P / P  = f 0.03 ( ~ / 1 0 0  G ~ v / c ) .  

The raw mass spectrum f o r  a sample o f  60 events  wi th  momenta 

g r e a t e r  than  80 G ~ V / C  i s  shown i n  Fig. 7. The two p r i n c i p a l  

f e a t u r e s  of  these  d a t a ,  which can be seen r e a d i l y ,  a r e  a pre- 

ponderance of  events  a t  low mass, c h a r a c t e r i s t i c  of  muon-pair 

product ion by t h e  Bethe-Heitler mechanism, and a peak a t  3.1 
2 

G ~ V / C  . It should be poin ted  ou t  t h a t  t h i s  sample was not 

r e s t r i c t e d  t o  two t6ack events .  The width is c o n s i s t e n t  wi th  

our  experimental  r e so lu t ion .  The d a t a  w e r e  a l s o  taken with t h e  

photon t a r g e t  c l o s e r  t o  t h e  magnet t o  ob ta in  events  wi th  momenta 

between 50 G e V  and above. The combined d a t a  sample, which has  

102 even t s ,  was used t o  produce t h e  t d i s t r i b u t i o n  shown i n  + - 
Fig. 8. The t d i s t r i b u t i o n  f o r  t h e  T T f i n a l  s t a t e  wi th  a mass 

of t h e  rho  meson has a l s o  been s t u d i e d  and shown i n  Fig. 9. The 
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Fig. 7 Dimuon invariant mass distribution observed above 1.2 GeV 



F i g .  8 Observed t distribution for events in 3.1 GeV resonance 





rho  d a t a  can be f i t t e d  very w e l l  wi th  the  sum of two exponent ia ls ,  

one with a s lope  of -- 60 GeV -' which is  c h a r a c t e r i s t i c  of  t h e  

coherent  s c a t t e r i n g  from t h e  Be nucleus,  and t h e  o t h e r  with 

a s lope  o f  -- 10 G ~ v - ~  which i s  c h a r a c t e r i s t i c  of  s c a t t e r i n g  

from s i n g l e  nucleons i n  Be. One can a l s o  s e e  t h e s e  same 
2 f e a t u r e s  i n  t h e  t d i s t r i b u t i o n  of t h e  3.1 G ~ V / C  resonance. The - 2 f i t t e d  value of t h e  s lope  i s  approximately-  50 and -- 2 GeV . 

There a r e  two p r i n c i p a l  sources  of background i n  t h e  

determinat ion o f  t h e  I# c r o s s  sec t ion .  

F i r s t  w e  must determine what f r a c t i o n  of  t h e  events  a r e  

produced by hadrons i n  our  beam, Our measured c r o s s  s e c t i o n  f o r  

f by neutrons i n  t h i s  beam and t h e  known r a t i o  of  photons t o  

neutrons al low u s  t o  determine t h a t  t h e  number of even t s  i n  

t h i s  experiment induced by neutrons is  c o n s i s t e n t  wi th  zero. 

The o t h e r  source of background is  t h e  photoproduction of t h e  

$ '  (3700) and i t s  decay i n t o  Jr (3100) + X with t h e  subsequent decay 

o f  t h e  $ (3100) i n t o  two muons. 

We have observed two events  which are 

y + B e +  I$' (3700) + ..,. + L) $(3100) + n + n- 
4 w+.- o 

Based on Monte Carlo c a l c u l a t i o n s ,  w e  p l a c e  an upper l i m i t  

from t h i s  source t o  be 15% o r  l e s s .  

Based on 102 events  and c o r r e c t i n g  f o r  geometric acceptance 

and e l e c t r o n i c  deadtime, w e  measure: 
+ 

a(y+Be I$+.... ) B(Jr -. ~ 1 -  p-) = 20 2 5 nb/nucleus . 
W e  a l s o  determine: 

H e r e  N i s  a nucleon. This c r o s s  s e c t i o n  was determined by f i r s t  
do determining d i f f e r e n t i a l  c r o s s  s e c t i o n  a t  t = 0 (y+Be - 

2 
*+Be] I t=o and then d iv id ing  by A , A being t h e  atomic number 
of  Be nucleus. 

If w e  assume t h e  v a l i d i t y  of vec tor  dominance and t h a t  t h e  

forward s c a t t e r i n g  amplitude is pure ly  imaginary, w e  o b t a i n  f o r  



the gN total cross section 

a(Ji~) 1 mb. 

While these assumptions are reasonable for other vector meson 

photoproduction processes, we have no evidence for their 

validity in this case. 

In order to determine $N interaction strength without 

making the above assumptions, we have made a preliminary study 

of the A dependence of the photoproduction cross section of the 

. Limiting the g events to the small momentum transfer region 
2 + - + - (-t < 0.07 GeV ) ,  we observed 10 Ji 4 p p. and e e events in the 

reaction y+Pb 4 g +  ... . We would expect to see 11 events if 
a ($N) = 0 mb, 5 if a ( g ~ )  = 15 mb, and 4 if a ($N) = 30 mb. 

Obviously, we cannot draw any conclusion about the magnitude of 

u($N) based on our present data. In these calculations, we have 

used 2.71 fm for the Be radius and 5.66 fm for the Pb nucleus. 

Conclusions 

1) We observed photoproduction of $ (3100) and (3700) . 
2) The g(3100) is photoproduced diffractively on the Be 

nucleus. 

3) We find o(gN) -- 1.0 mb if we assume vector dominance 

and that the forward scattering amplitude is purely imaginary. 

New Particle Searches - 
In this section, we will discuss the search for new 

particles which we have made with .our detector. Although we will 

discuss our search in terms of charmed particles (in a generic 

sense) and heavy leptons, the objects could be any particles 

with similar characters. 

We do not know the magnitude of the cross section of the 

reaction y + Be 4 C + + . . . , but we will try to guess. In 

Table I, we list the total and elastic cross section of vector 

mesons, p ,  w ,  @, and g. In calculating these quantities, we 

make assumptions that vector dominance is valid and the forward 

scattering amplitude is purely imaginary. For p ,  w ,  I$, these 

assumptions are known to be approximately valid. From Table I, 

we observe that the ratio of elastic to total cross sections is 



TABLE I 

Total  
Cross 
Sec t  i on  

E l a s t i c  
Cross 

Sec t ion  



10-15% f o r  p ,  w ,  @ and is  only 2% f o r  4 .  Most of  t h e  t i m e ,  

t h e r e  i s  no @ i n  t h e  f i n a l  s t a t e  i n  the  i n t e r a c t i o n  of  @ with 

nucleon. We a l s o  know t h a t  I/J i s  not  coupled s t rong ly  t o  

ord inary  hadrons. Therefore,  it is  p o s s i b l e  t h a t  most of t h e  

time, $ breaks up i n t o  c + when i t  i n t e r a c t s  with nucleon. 

W e  can,  then, expect  t h e  c ross  s e c t i o n  of t h e  r e a c t i o n  y + Be  - 
CE + ... may be a s  l a r g e  a s  -- p b / ~ e .  O f  course,  w e  have no 

reason t o  be l i eve  t h a t  t h i s  e s t ima te  is  cor rec t .  + T 
The reac t ion  y + Be - e' + p + V ' S  + ... was used t o  look 

f o r  new charged heavy lep tons  o r  o t h e r  p a i r s  of charged p a r t i c l e s  

which then decay i n t o  lep tons .  The procedure i s  t o  look f o r  

events  which con ta in  only a p, and e of  oppos i te  charge wi th  no 

p a r t i c l e s  o t h e r  than u ' s .  

The c r i t e r i a  f o r  the  event  s e l e c t i o n  are:  

1) There a r e  two and only two t r a c k s  and t h e r e  a r e  no h i t s  

i n  t h e  AB and AW counters  near t h e  t a r g e t .  

2 )  There i s  no n e u t r a l  t r a c k  assoc ia ted  with the  event.  We 

r e q u i r e  t h a t  n e i t h e r  t h e  shower counters  nor t h e  hadron 

ca lor imeter  not  a s soc ia ted  with t h e  t r a c k s  have any 

measurable energy. For a y r ay ,  our  energy c u t  is  1.0 GeV. 

3 )  One of  the  two t r a c k s  is a muon using t h e  c r i t e r i a  we have 

descr ibed f o r  I$ photoproduction. 

We must now determine i f  t h e  o t h e r  t r ack  i s  an e lec t ron .  

Elec t ron  I d e n t i f i c a t i o n  

We de f ine  t h e  following terms: 

E ~ ( ~ )  
= t he  energy deposi ted i n  t h e  f r o n t  (back) shower 

counters  a s soc ia ted  with t h e  t r a c k  , 
HC = t he  energy deposi ted i n  t h e  hadron ca lo r ime te r ,  
P = t h e  momentGm of  the  t r ack  measured by t h e  magnetic 

spectrometer ,  

An e l e c t r o n  i s  i d e n t i f i e d  by two p roper t i e s :  

1) almost a l l  of i t s  energy is contained i n  t h e  shower 

counter ;  

2 )  i t  has a c h a r a c t e r i s t i c  long i tud ina l  shower development. 



I n  Fig. 10 ,  w e  show E/P f o r  e l e c t r o n s  obtained from p a i r  

production. The e l e c t r o n s  have energies  from 7 t o  40 GeV. 

The d a t a  a r e  peaked a t  1.0 with a  FWHM of -- 10%. 
. 

Elect rons  can f u r t h e r  be i d e n t i f i e d  by t h e i r  c h a r a c t e r i s t i c  

long i tud ina l  shower development. The v a r i a b l e  f = E ~ / E  and 

g = HC/P have been s tud ied  i n  t h e  c a l i b r a t i o n  data .  With a  c u t  

o f  g  < 0.2, w e  l o s e  l e s s  than  5% of  the  e l ec t rons .  The d i s t r i -  

but ion  i n  f shows a  c h a r a c t e r i s t i c  broad peak centered  a t  0.4 - 
0.6 f o r  t h e  energy range of 10-50 GeV. The energy dependence of 

t h e  value of  t h e  peak can be removed by t h e  in t roduc t ion  of  f' = 
f Qn(p/22 MeV). Figure 10 shows t h e  d i s t r i b u t i o n  of  f '  f o r  t h r e e  

3.85 
energy regions.  A l l  d i s t r i b u t i o n s  show a peak a t  1.0 with a  

FWHM =1 0.45. A c u t  of 0.5 < f' < 1.5 would keep 95% of  r e a l  

e l e c t r o n s  of  independent e l e c t r o n  energy. 

The e f f i c i e n c y  of  these  v a r i a b l e s  i n  s e l e c t i n g  events  with 

an e l e c t r o n  can be demonstrated by s e l e c t i n g  events  with two 

t r a c k s  which form a ver tex  along the  beam l i n e ,  bu t  not  a t  t h e  

t a r g e t .  One of  t h e  t r a c k s  is  c o n s i s t e n t  with being a  hadron which 

w e  c a l l  a  pion. The o t h e r  t r a c k  s a t i s f i e s  the  c u t  E/p > 0.3. The 

mass of  t h e  two t r a c k s  i n d i c a t e s  t h a t  these  a r e  predominantly 
0 Ke3 decays. I n  Fig. 11, we show the  ~ / p  and f '  d i s t r i b u t i o n s  f o r  

these  events .  We c l e a r l y  observe an e l e c t r o n  s i g n a l  and we 

be l i eve  t h a t  they  a r e  Keg. 

For new p a r t i c l e  searches ,  we consider  events ,  which have a  

c l e a r l y  i d e n t i f i e d  muon and another  t r a c k  which s a t i s f i e s  t h e  

c u t  ~ / p  > 0.3. For these  even t s ,  we consider  the  p o s s i b i l i t y  t h a t  

t h e  e l e c t r o n  is a p ion  which deposi ted a  f r a c t i o n  o f  i t s  energy i n  

t h e  shower counter  and t h e  muon i s  the  product of  a  p ion  decay i n  

f l i g h t .  Considerincj both of  these  t r a c k s  t o  be p ions  a f t e r  

appropr ia t e ly  co r rec t ing  t h e  muon momentum, we p l o t  t h e  mass 

d i s t r i b u t i o n  of these  events ,  a s  shown i n  Fig. 12. W e  observe a  

c l e a r  s igna l .  We make, t h e r e f o r e ,  a  c u t  on t h e  d a t a  sample 

of  Mm > 1.1 GeV. 

For o u r  f i n a l  sample, i n  a d d i t i o n  t o  t h e  Mm c u t ,  we impose 

t h e  c u t  0.5 c F' < 1.5, G < 0.2. For these  events ,  w e  show t h e  



CALIBRATION DATA 

Fig. 10 E/P and f' distribution for three electron energy 
regions from calibration data 
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Fig. 15 Mass distribution of Kolr B induced mainly by KL 
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Fig. 16 Mass distribution of Kolr rr 



beam. We observe a clear  peak a t  Q meson mass. 
The l i m i t  on the production cross section for MC - 2 GeV 

We would l ike to  remark that  the value of the upper l i m i t  is 

smaller than the $ photoproduction cross section. We have not 

computed geometric acceptance for other decay modes. Similar 
- .  - 

l i m i t s  can be placed on C + h0 + ns l  C 4 h0 + nn for  1 < n e 4. 

W e  have also studied the reaction 

4 hadrons 

where V is  a diffract ively photoproduced hadronic part icle .  

W e  select  events which have no h i t s  i n  AW and AB counters. 

We study two, four and s ix  charged par t ic les  and no TO'S i n  
the f ina l  s tates .  The mass and momentum transfer are calculated, 

assuming they are charged pions. The momentum transfer square of 

the two charged par t ic le  f ina l  s t a tes  i s  shown i n  Fig. 9. A s  

s tated before, we see clearly the diffract ive process on Be 

nucleus. Similar momentum transfer distributions are observed 

for four and s ix  charged par t ic le  f ina l  s tates .  I n  order t o  

enhance the d i f f rac t ive  process, we make a cut a t  the transverse 
2 momentum square -t < 0.025 GeV . The mass distributions for  

two, four, and s ix  charged par t i c le  f ina l  s t a tes  are shown in 

Figs. 17 ,  18 and 19, respectively; The dashed curve i s  the 

acceptance of our detector for the phase space f ina l  s tates .  

The events plotted are corrected for  acceptance. We clearly + - + - + - + -  
observe p - sr T and p '  sr n and sr n T -r . We have not com- 
pleted the analysiq t o  obtain the energy dependence of p and p '  

photoproduction cross sections and t o  get the branching r a t i o  + + - + - 
p 1  T / T T sr sr . For the s ix  charged par t i c le  f ina l  

s t a tes ,  we need more events before we can draw any defini te  

conclusions. 

I would l ike  t o  express my thanks to  my~colleagues on the 

experiment . 
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Fig. 17 Mass dis tr ibut ion of two charged p a r t i c l e  f i n a l  s t a t e s  
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Fig. 19 Mass distribution of six charged particle final states 
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