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ABSTRACT 

These three lectures deal with several aspects of the Yang-Mills 

quark gluon theory of strong interactions. An overview is 

followed by a plunge into the physics of electron positron annihilation 

into hadrons. Looming large in this discussion are the newly discovered, 

long-lived mesons. The role of these new heavy hadrons in the quark 

gluon model is examined. It is suggested that they are heavy quark 

antiquark bound states and that their properties could provide a rather 

clear and simple experimental handle on the underlying field theory. 

NOTE 

At the time the lectures were being given and written up (July 

through September i975), the experimental situation with respect to the 

new particles was developing and changing rapidly. At the risk of giving 

the published version of the lectures a somewhat acausal character, I 

have incorporated a discussion of some of these developments. 
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LECTURE 1 

1. INTRODUCTION 

There now exists an attractive and viable candidate (really a class 

of candidates) for a local quantum field theory of the strong interactions. 

The elementary fields in the strong interaction Lagrangian are quarks 

and vector gluons. Very little is known about most features of this theory, 

For example, it is not at all clear how to calculate the ground state 

properties of hadrons or even to ennumerate the spectrum of physical 

states. Nevertheless, its short distance behavior is well understood 

and its long range structure is very tantalizing. This structure suggests 

the possibility that the theory contains long range forces that might 

permanently confine quarks and gluons to the interior of physical hadrons. 

The discovery 4,2 of heavy, long lived J 
P 

= i- hadrons within 

the last year is an important development for the quark gluon theory 

of strong interactions. It means that new, heavy quarks must be 

included in the model. ’ Furthermore, the new particles should provide 

us with an important new experimental handle on the dynamics of the 

model. By this I mean that their features should reflect the properties 

of the underlying field theory more directly than the other hadrons. 

This is due to the large mass of the new quarks and their subsequent 

nom-elativistic bound state motion. 

These three lectures are intended to be a survey of the Yang-Mills 
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quark gluon theory of strong interactions with special emphasis on the 

role of the new hadrons. I will occasionally digress into related matters 

such as weak and electromagnetic interactions but the main thrust will 

be strong interaction dynamics. In the first lecture, I will describe the 

model and discuss renormalization, the renormalization group and 

asymptotic freedom. Lecture II will begin with a discussion of quark 

mass renormalization. The remainder of this lecture will be devoted 

largely to electron positron annihilation into hadrons. The computation 

of the total cross section behavior in terms of the underlying quark gluon 

field theory is discussed and sources of possible perturbation theory 

breakdown identified. In Lecture III, particular attention is paid to 

the breakdown in the vicinity of a heavy quark-antiquark threshold. The 

possible role of asymptotic freedom in explaining the narrowness of the 

new hadrons is examined. I will review the status of the heavy quark- 

antiquark bound state as a nonrelativistic system and look at the spin 

dependent forces and the role of the Bethe-Salpeter equation. 

2. A DESCRIPTION OF THE MODEL 

I will assume that the strong interactions are described by a 

local, renormalizable quantum field theory of quarks and gluons. The 

Lagrangian is 
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z = - i Fa FaPY + $ (i@ - mo) + 
W” 

where JI is a set of quark fields coming in several flavors, u, d, s 

along with one or more heavy quarks. Each flavor comes in three 

colors 4,5 and color is taken to be an exact SU(3) gauge symmetry. Thus 

each quark color multiplet has a single mass and the colored vector 

mesons remain massless. F a 
CL” 

is the gauge covariant curl and D 
P 

is the covariant derivative 

(Dp+ jn = a,& - ; g A; ( xajnm q~ m (2) 

where + m is one of the color triplets. The symmetries of the theory 

are determined by the bare mass matrix mo. Each flavor has its own 

electrical charge and the colored gluons are electrically neutral. I 

will always assume the existence of at least one heavy quark c . There 

may be others, but in the discussion of e’e- annihilation, I will espouse 

the view that only the c quark is operative at present energies. 

Many of the properties of the colored quark model have been 

discussed by Eritzsch, Gell-Mann and Leutwyler . 
5 

The emphasis 

in these lectures will be on the short distance structure of the model 

and I will devote most of the remainder of this lecture to introducing 

the essential ideas. Reference 5 is a good introductory overview of 

the model for those of you unacquainted with it. 
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3. RENORMALIZATION 

The quantization of Yang-Mills theories has been discussed by 

many people. A recent lucid treatment is that of Lee and Zinn-Justin6 

who develop the Feynman rules and discuss regularization and Ward- 

Slavnov identities. The Feynman rules are shown here in Fig. 1. Higher 

order computations (one or more closed loops) are best done using the 

dimensional continuation scheme’ as a regulator. I will occasionally 

be looking at higher order diagrams but only for the purpose of 

examining general features. It will not be necessary to do explicit 

computations requiring the explicit use of dimensional continuation. 

By power counting, the theory is renormalizable so that a finite 

number of counterterms is sufficient to define ultraviolet finite Green’s 

functions to all orders in perturbation theory. We thus have a perfectly 

satisfactory theory of Green’s functions, all of which are calculable 

and finite as long as the external momenta are kept away from mass 

shell. In that limit, which unfortunately is the relevant limit for 

exploring particle structure and constructing the S-matrix, the theory 

is plagued by infrared divergences. It is easy to see, for example, that the 

quark gluon vertex diagram of Fig. 2a behaves like log (p2 2 
-m )in 

the limit p2 = pe2 - m2. Similarly, the gluon self-energy graph of 

Fig. 2b behaves like ( qPyq2 - 9cpJlog q2 + 9 q terms in the limit 
PV 

q2 - 0. On the nth loop level, therewill be n log factors and unlike 
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QED, the true infrared structure of the theory is unknown. In the next 

lecture, I will take a quick look at what little is known about the infrared 

structure and its speculated connection to quark confinement and the 

physical particle spectrum. 

Because of the infrared divergences, the renormalized Green’s 

functions must be defined by subtracting away from mass shell. A 

convenient way of defining the renormalized coupling constant g (M) is 

in terms of the gluon propagator and the iP1 three gluon vertex at a 

symmetric Euclidean point. This is shown in Fig. 3. Each of the 

external line factors symbolizes the object ) where d(k’) appears 

in the transverse part of the complete gluon propagator 

-i(g 
IIV 

- kpkvik’) 1 d(k2) - ia kpkV/k4. 
k2 

The Ward-Slavnov identities5 

assure us that g(M) can equivalenty be defined using say the quark-quark- 

gluon vertex. 

I have so far considered only wave function and coupling constant 

renormalization. Mass renormalization and the question of how to define 

the renormalized quark masses is equally important but it is best to 

return to that after a discussion of the renormalization group and 

asymptotic freedom. 

4. THE RENORMALIZATION GROUP AND ASYMPTOTIC FREEDOM 

The ideas of the renormalization group7 and the property of 

asymptotic freedom* underlie much of what I will say about e’e- 
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annihilation and the physics of cc bound states. The renormalization 

group is really the subject of Dr. Crewthetis lectures and all I intend 

to do is to outline the n&ions that will be essential in lectures 2 and 3: 

A renormalization mass M must be introduced to define the theory 

perturbatively. On the other hand, the physical content of the theory 

cannot depend on the choice of M and it is both possible and convenient 

to move it about. The existence of the renormalization group is the state- 

ment that a shift in M can be reabsorbed completely into multiplicative 

resealings of field strengths and the coupling strength g(M). This 

feature of any renormalizable theory is most usefully expressed in 

terms of the partial differential equations of the renormalization 

7,9 group . 

These provide a framework for discussing both infrared and 

ultraviolet asymptotic behavior of the theory. This is in general a 

nontrivial problem precisely because of the essential presence of M. 

Even when the quark masses can be neglected the naive use of scale 

invariance is impossible. Perturbation theory is plagued by arbitrarily 

high powers of logarithms involving M which can sum up to modify the 

naive dimensional predictions. The differential equations of the 

renormalization group provide a framework for discussing these 

modifications, which depend on the properties of a given field theory. 

One such modification is asymptotic freedom. 

A field theory is asymptotically free if g (M) - 0 as M - m . 
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The deciding one loop calculation reveals that the color SU(3) gauge 

theory is asymptotically free providing that N 5 16. Recall that N 

is the number of quark flavors. As M -t a, g*(M) * l/log M. indicating 

that the short distance structure of the theory can be calculated 

perturbatively in terms of a small coupling constant. Since this is only 

an asymptotic theory, the question of when the small coupling regime 

is reached can only be answered experimentally. The experimental 

applications of asymptotic freedom are very limited since very few 

experimental quantities depend Only on the short distance structure of the 

theory. The most direct experimental application is inelastic lepton 

scattering. The momentum transfer dependence of the structure function 

moments can be shown, by the use of the Wilson operator product 

expansion, 
10 

to depend only on short distance structure. Approximate 

Bjorken scaling of the structure functions can then be explained by 

asymptotic freedom providing that for M > 1 or 2 GeV, 

(Y&M)? g2 (M)/4rr << 1. This establishes the scale for the onset of 

the weak coupling region. 

Some of the dynamical considerations in the next two lectures 

will involve some unconventional uses of asymptotic freedom. For this 

reason, it is important to understand in some detail the limitations on 

its use. Why is it difficult to experimentally isolate short distance 

behavior and thereby allow the use of perturbation theory? The coupling 

constant g (M) has been defined in the deep Euclidean region (M > i-2 GeV) 
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so that it is small. The Green’s functions of the theory can be calculated 

as a perturbation expansion in g (M) providing that this small coupling 

constant really is the appropriate expansion parameter. This will not 

be the case if large dynamical factors accompany each power of g (Ml. 

This can happen only if the object being calculated is sensitive to dimensional 

factors (such as a momentum or a mass) which are much smaller than 

M. The dynamical factors are typically powers of log(p /M)where p is 

the small momentum and if they accompany each power a g(M), then 

the true expansion parameter is not g(M) but instead of g appropriate 

to the smaller momentum scale. If this scale is less than a few hundred 

MeV or, say one GeV to be conservative, 2 must become strong and 

the use of perturbation theory is impossible. 

This then is the restriction on the use of asymptotic freedom. 

With M taken greater than one or two GeV, g (M) is small but 

perturbation theory can be used only if small (< 1 GeV) dimensional 

parameters do not crucially enter the calculation. This is the case for 

example with deep Euclidean Green’s functions and the leptoproduction 

structure function moments. In the later, -the Wilson expansions must 

be used to disentangle the large dimensional parameters (momentum 

transfer and M) from the small ones (mass and binding energy of the 

target nucleon). The disentangling or elimination of small dimensional 

parameters will be of great concern in the next two lectures. 
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5. THE CHOICE OF FLAVORS 

The fourth quark flavor was given a raison d’etre long ago in 

the classic paper of Glashow, Iliopoulos and Maiani. 
11 

This is the 

celebrated GIM mechanism for the suppression of AS = 1 weak neutral 

currents. 
12 The fourth quark whose role in the strong interactions I 

will be discussing, could well be the GIM quark. That is, it could 

enter the weak currents as prescribed by GIM and have an electrical 

charge of Z/3. It is to be emphasized, however, that this is not necessary. 

No commitment to a particular theory of weak interactions need be made 

for the discussion of the color gauge theory of strong interactions. 

There are by now many reasons for considering the possibility 

of even more than four quark flavors. In my opinion, none of these 

are yet as compelling as the theoretical (GIM) and experimental (new 

particles) evidence in favor of the fourth quark. Nevertheless, when one 

begins to contemplate the behavior of aTOT (e+e- * hadrons ), the strange 

and wonderful things being discovered in the high energy neutrino 

experiments and the arcane problems of triangle anomalies in weak and 

electromagnetic interactions, a natural if not profound question emerges: 

Why not? Indeed, a variety of models incorporating additional heavy 

quarks and/or heavy leptons have already been constructed. A lucid 

review of this work has recently been given by R. M. Barnett. 
13 

For 

the remainder of these lectures, I will assume that only the fourth 



-12- FERMILAB-Lecture-75/02-THY 

quark c is playing a role in the current e+e- experiments. As we 

shall see, dTOT is too large at high energies to be explained by only 

four colored quarks. A possible explanation for the increment is 

the production of heavy leptons. This mechanism might also be the 

+ - 
origin of the p e events, recently discovered at SPEAR. 

14 
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LECTURE II 

6. MASS RENORMALIZATION 

The strong interaction Lagrangian (11 has a bare quark mass 

matrix m 0’ From the point of view of strong interaction phenomenology, 

it is reasonable to assume that it is a God given parameter in the strong 

interaction Lagrangian. The question of where it comes from is very 

interesting but very likely a deeper problem than strong interaction 

physics. Its origin is surely connected with the ultimate unification of 

the fundamental interactions and the breakdown of weak and electro- 

magnetic symmetries. 
15 

Our strong interaction Lagrangian is an effective 

Lagrangian. It can be used in isolation up to energies A above which 

the weak and electromagnetic interactiors become comparable to the 

strong. 
16 

If the effective weak and electromagnetic Lagrangian is 

renormalizable (a Riggs-gauge theory for example), A will be well 

above attainable laboratory energies. 
17 

I will assume this to be the case. 

It is useful to think of m. as a renormalized mass matrix defined 

at the Euclidean momentum scale A. The effective mass matrix at 

laboratory energies will be related to m,(A) by renormalization effects 

due mainly to strong interactions since the weak and electromagnetic 

interactions stay small below A. The question of how to define these 

laboratory renormalized masses is a matter requiring some thought, 

especially since the quarks may be permanently confined inside color 
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singlet hadrons. One can imagine defining a mass matrix m(M) 

at a sliding Euclidean scale M, 18 which approaches m. as M -c A, which 

stays nearly equal to m. through the weak coupling region down to one 

or two GeV, and which finally becomes some appropriate constituent 

quark model mass below one GeV. In the weak coupling regime, m,(M) 

may be experimentally accessible 
19 

but its connection to the constituent 

masses is obscured by strong coupling effects. 

In the case of the charmed quark, it is possible to define a useful 

constituent mass in a precise field theoretic way. As we shall see, this 

relies on the fact that this mass sits in the weak coupling region and that 

binding energies are small. A convenient, but by no means unique, 

scheme is the following. A renormalized mass matrix m is obtained by 

the common resealing mi = ZmOi . Then Z is adjusted so that for the 

c quark, mc is the threshold of a cut in the propagator to any finite 

order of perturbation theory. Wave function renormalization must be 

done off shell as discussed in Lecture 1. Then as pz -mz , the c quarks 

propagator will behave like 

1 

p2- rnz 
[log(p’ - rnE )I n 

where n is the order of perturbation theory. This completely imitates 

quantum electrodynamics but, unlike that theory, the threshold behavior 

to all orders is unknown due to infrared instability. Nevertheless, we 
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shall see that mc, defined in this way, is experimentally accessible in a 

way that light quark masses are not. The experimental significance of 

the light quark masses as defined here is obscure but that isn’t important 

for the heavy quark computations I will describe. 

A crucial ingredient in some of our applications of asymptotic 

freedom is the rapid onset of the weak coupling regime. In particular, 

perturbation theory becomes possible well before the heavy c quark can 

be excited. For Euclidean momenta on the order of mc, perturbation 

theory can be used although mc will play a prominent role and the result 

will be far from scale invariant. This takes some getting used to since 

the familiar short distance applications of the renormalization group 

are to an energy region well above all the mass parameters. The onset 

of the weak coupling region at about 1 GeV is determined by the light 

quark and gluon sector of the theory. 

7. mTOT(e+e- - HADRONS) AND ASYMPTOTIC FREEDOM 

The most direct application of asymptotic freedom to e*e- 

annihilation is a dispersive constraint on the total cross section. The 

hadronic vacuum polarization tensor H pv(S) = kpvq2-qpClv) X n(q’) can 

be calculated” perturbatively for space like q2 less than -1 GeV2. 

Since this is a deep Euclidean Green’s function, the light quark masses 

can be scaled to zero and II becomes a function of dimensionless 

2 
ratios involving q , mc and the renormalization mass M: 
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n[q2/M2, mE/M’, g(M)]. The absence of sensitivity to the light 

quark masses (the small dimensional parameters) is insured by the mass 

singularity analysis of Kinoshita. 
21 In effect, the external momentum 

provides an infrared shield insuring the existence of the limit m + 0. 
9 

n(q2) is related to the total cross section by the dispersion relation 

2 
rl(s2) = y 

ds R(s) 

0 Sk - q2) 

where 

(3) 

(4) R(s) E 3s - aTOT (e+e- - hadrons) 
4W2 

2 
and s = ECM . 

This can be used to put a bound on the total cross section behavior. 
22 

This is an important and useful fact but I want to go on to a more 

speculative use of asymptotic freedom. 

R(s) appears to be flat from ECM = 1 GeV to ECM = 3 GeV and 

may again be flattening out above 5 to 6 GeV. 23 In the lower region, 

R(s) = 2 so that it is given quite nicely by the parton model with the 

nine light quarks. The parton model calculation is zeroth order 

perturbation theory directly in the time like region as indicated in Fig. 4. 

Since quarks and gluons have not been seen and may never be seen as 

physical particles, can this be justified. 7 In the language of the parton 

model, one simply says that once the probability for the creation of the 

qq pair has been correctly computed, the final state interactions that 
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produce the physical hadrons occur with probability one. They do not 

affect the total cross section. In the remainder of this section and the 

next, I will use the property of asymptotic freedom to give some 

quantitative justification to this direct use of perturbation theory in the 

time like region. There are sources of perturbation theory breakdown 

however, and I will discuss them in Sec. 9. 

There are three energy regions to consider. 

I. Low energies, Light quark masses negligible but the heavy 

c quark cannot be excited. 

II. High energies. All quark masses negligible. 

III. A transitional region. 

I will first consider the use of asymptotic freedom in regions I and II 

and consider how the perturbation expansion could break down. Then I 

will look at the transitional region III. Here the perturbation expansion 

surely breaks down and we shall look in some detail at the way this 

happens. 

To examine regions Ior II in low orders of perturbation theory, we 

can set the masses of the operative quarks equal to zero. The zeroth 

order (parton) contribution is shown in Fig. 4 and we have R (‘) = x Q! 

.th i i where Qi is the charge of the i quark. This gives R(O) = 2 below charm 

threshold and R(O) = 10/3 in the 4 quark GIM model. To see whether 

this result is reliable, we examine the higher orders. The second order 

contribution is shown in Fig. 5. An explicit calculation for zero quark 
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mass gives R(s) through second order. 

,(2) (s) =z Q2 
3 as(M) 

i I+? 4rr (5) 

This result is taken directly from electrodynamics. 
24,25 

The only 

modification is the factor of 4/ 3 in second order which comes from 

an SU(3) color sum. Since as(M) CC 1 for M > 1 GeV, the second order 

term is a small correction. 
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8. MASS SINGULARITIES 

It is important to understand the simplicity of the second order 

result before going on. In doing so, we shall encounter the essential 

property of the theory which underlies the use of perturbation theory 

at timelike as well as spacelike momenta. R(s 1 is dimensionless and 

could therefore be a function of dimensionless ratios of E cM, quark 

masses mq and the renormalization mass M. There is no M dependence 

through second order since no renormalization subtractions need be done. 

The overall divergence is absent since an imaginary part is being taken 

and the subgraph divergences in graphs (5al and (55) cancel through the 

electromagnetic Ward identity. Explicit M dependence will enter in 

the next order. 

The absence of explicit quark mass dependence (the existence of 

the limit m - 0) is insured by the same mass singularity theorem of 

Kinoshita 21: 26 
that underlies perturbation theory in the Euclidean 

region. Thus no small dimensional parameters enter the calculation to 

this order and R(s) remains constant. Perturbation theory seems to be 

converging. 

The application of the Kinoshita theorem to oToT(e+e- + hadrons) 

is particularly straightforward. The idea is that any graph contributing 

to n(q) is finite when all internal masses are taken to zero since the 

external momentum provides an infrared cutoff. This is true for timelike 
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as well as spacelike q2 and in the time-like case, it applies to the 

absorptive as well as dispersive parts. The sum of the contributions 

+- 
to OTOT(e e - hadrons) corresponding to the different Cutkosky cuts 

of a single Feynman diagram will be free of mass singularities. This 

is a generalization of the Block-Nordseick analysis in quantum electro- 

dynamics to a situation with self-coupled massless fields. Individual 

contributions will contain mass singularities leading typically to terms 

like log ECM /mq or logarithmic singularities due to the masslessness 

of the gluons. However, they will cancel in the total cross section. 

Let me make a list of a few general remarks about ,the mass 

singulary theorem before going on. 

1. It applies only to renormalizable theories. It has been 

21 
proven for all except Yang-Mills theories and I have checked in 

low orders that the theorem is true. I am assuming here that it is 

true to all orders, 
27 as in other renormalizable theories. 

2. It is applicable to any properly defined total transition 

probability. In general, however, there are mass singularities associated 

with the incoming lines and these must be treated carefully. 21 For 

e+e- annihilation the initial line is a single off shell photon and there 

are no mass singularities. 

3. It says nothing about partial transition probabilities. In the 

case of e+e- annihilation into hadrons, it can be applied only to the total 
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cross section. In particular, it completely leaves open the question of 

quark confinement. To answer this question, one would have to look 

at more than cTOT. A constraint would have to be put on the final 

state to force the macroscopic separation of the qq pair. A confining 

theory would presumably lead to zero in this case. However, such an 

investigation would inevitably lead to the presence of small dimensional 

parameters such as the inverse qi separation length or the energy 

resolution of the quark detector or perhaps mass shell singularities of 

the type discussed in Sec. 6. Perturbation theory is not likely to be 

useful. 

In fourth order and beyond, renormalization subtractions become 

necessary and R(s) picks up s dependence in the form of powers of 

log s/M’. They remain inocuous until s becomes much larger than M. 

It is then sensible to express the perturbation expansion in terms of a 

2 (s) appropriate to the larger energy scale. As s - m, g’(s) - I/log s 

and the parton model result is approached from above. I will imagine 

keeping M fixed at around 3 GeV. Then for a sizable energy range, 

log s/M2 is of order one and it isn’t necessary to introduce a sliding 

component constant g(s 1. The perturbation expansion will converge as 

long as there are no mass singularities and this is insured to this order 

and beyond by the Kinoshita analysis. It is important to be able to scale 

all the light quark masses to zero. It is also possible to scale mc to 
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zero in region III although this isn’t always appropriate and certainly not 

necessary since mc > 1 GeV. 

The mass singularity theorem has apparently justified the use of 

+ - 
perturbation theory for uTOT(e e + hadrons 1. The parton model is 

the dominant, zeroth order contribution and higher order corrections 

can be calculated. The second order result (5) is in fact a good fit 

to the total cross section from one to three GeV since with cus(M) = 0. 25, 
28 

,(Z) (s) = 2. 2. Above the transitional region tECM > 5. 5 GeV), Rts 1 

is again flat and equal to about 
23 

5. This clearly indicates there is 

something going on in addition to,or in place of, the excitation of 12 GIM 

quarks. An attractive possibility from several points of view is the 

production of heavy leptons. 
14, 29 

As far as the quark sector is concerned 

however, it seems both experimentally and theoretically that perturbation 

theory could be a reliable tool for the total cross section. 
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9. SOURCES OF BREAKDOWN 

The theoretical situation isn’t nearly that good. There is a rather 

obvious source of perturbation theory breakdown that appears in higher 

orders . In the Euclidean region, the Kinoshita analysis assures us that 

the internal masses any diagram can be scaled to zero. Since the 

light quark masses are assumed to be small ( << 1 GeV), this is an 

appropriate thing to do for momenta well above 1 GeV. In the physical 

region, however, the perturbation expansion contains branch points 

corresponding to nominal multiple quark thresholds. If quarks are 

confined, these thresholds disappear in favor of physical particle 

thresholds when the theory is saloed to all orders. Nevertheless they 

are there in finite orders and it is only appropriate to scale m - 0 in 
9 

a given diagram if ECM is well above as the nominal quark thresholds 

of that diagram. 

For any value of ECM. diagrams exist (perhaps in very high order) 

which contain thresholds at or above ECM. This is the source of a new 

small dimensional parameter--the distance to nearby nominal quark 

thresholds. This will no doubt cause perturbation theory breakdown in 

high orders and it is probably connected to the formation of the physical 

particles. In Ref. 3, some plausibility arguments are given that the 

high order effects average out to be a small contribution to R(s) but 

this has not been proven. In the next lecture, I will assume that because 
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of the convergence of the perturbation expansion in low orders, R(s) 

can indeed be computed perturbatively in regions I and II. 

There is a way to avoid the multiple threshold singularities and 

yet to improve upon the dispersive constraint (4). n (q’) can be 

calculated in the complex q2 plane with Re q2 > 0 provided that Im q2 

is taken non-zero and large enough to shield from the singularities 

of the physical region. With Im q‘ > 1 GeV, there will be no sensitivity 

to small (< 1 GeV) dimensional parameters and perturbation theory can 

be applied. The dispersion relation for (q’) then leads to a prediction 

for R(s) averaged over a region of order 1 GeV. 
30 

It must be given by 

the parton model computation. 

It remains a problem to understand why the parton model works 

on a much more local levels. The experiments average over energy 

intervals on the order of 1 MeV and the parton model works well from 

1 to 3 GeV. The use of perturbation theory locally for R(s 1 is not fully 

justified but I will assume that it is possible unless an obvious breakdown 

appears in low orders. 
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LECTURE III 

10. cc THRESHOLD BEHAVIOR 

Recall from the last lecture that away from the transitional region, 

perturbation theory converges through low orders. This consequence 

of the Kinoshita analysis was used to give some justification to the use 

of perturbation for c TOT’ 
In the transitional region, on the other hand, 

the breakdown of perturbation theory is immediate, coming already at 

second order. 

The second order computation of R(s), (Eq. 5) is easily generalized 

to include the heavy quark mass. The result is 24, 25 

R(‘)(s) = 

light 
quarks 

I t+g 
30~ CM) 

4ll 

(6) + c 2 2 Qi 6 (s-4 mc )v 
3-v2 
2 I 

1 + + as (Ml f(v) 

heavy 
quarks 

where v is the velocity of the heavy quark or antiquark, v = A - 

3-v2 

4mzls. 

The overall heavy quark factor v 2 is just s-wave phase space and 

it approaches 1 as m -t 0. 
C 

The function f(v) is complicated, involving 

combinations of Spence functions, but it is well represented (to * 1 percent) 

by an interpolating formula due to Schwinger: 
25 
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f(v) = 5 +E(+L, (7) 

This formula is exact in the limits v -c 0 and v - 1 and as v - 1, 

f(v) - 6 in agreement with the zero mass calculation. 

TT As v -t 0, f(v)*ZJ. This behavior comes from graph (5a) and is 

a consequence of a Coulomb-like final state interaction. In nth order, 

1 
n uncrossed gluon exchanges give n factors of ; and the perturbation 

expansion breaks down. In the limit v -r 0, these leading terms are just 

the expansion of the nonrelativistic Coulomb enhancement factor 
25 

lr 
5j- “s v 

i--i& 
I* COUL(O ’ 1 2 

= 4 77 
3 sv I+ coUL(m)12 ’ 

(8) 

representing the increased probability for cc production in an attractive 

Coulomb field. This breakdown of the perturbation expansion for small 

v is connected to a breakdown below E CM = 2 mc. There, the sum of 

uncrossed gluon exchanges is responsible for the formation of positronium - 

like bound states. A typical contribution below threshold is shown in 

Fig. 6. 

If this were the only breakdown of perturbation theory, the uncrossed 

ladders could be summed as in QED and one could perturb about that 

result. There is, however, a more serious perturbation theory breakdown 

due to the Yang-Mills infrared structure. As threshold is approached 

from above or below, the typical momentum transfer flowing through 
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exchanged gluons decreases. This means that the higher order corrections 

to these lines become more and more important, increasing the effective 

coupling strength. When the typical exchanged momentum becomes less 

than about one GeV, the theory becomes strongly coupled and the per- 

turbation expansion breaks down. 

I can estimate the width of the transitional region inside of which 

the Yang-Mills infrared structure leads to a breakdown of the perturbation 

expansion. For ECM above 2 m 
C’ 

a measure of the typical momentum 

transfer <k> is <k2> = i (E,&- 4 m,2). If <k> is to be less than one 

GeV, then EsM C 4 (rn: + 1 GeV2). Below ECM = 2 mc, the typical 

momentum transfer in a graph like the one in Fig. 6 is <k> = Jrn,” - EzM/4. 

In a Coulombic theory, this is just the Bohr momentum at each bound 

state. Thus if we take ECM = 2 mc - $(+ asJ2mcL 
n2 

, then <k> = 

i(+cus)mc +- . The entire range in E:M inside of which the typical 

momentum transfer is less than one GeV is thus 

A(ECM 
2 ) = 2ECMAECM = 8 GeV2 . (9) 

With ECM = 3-4 GeV, ~33 cM 2 1 GeV. In the absence of some 

careful higher order calculations, this can be taken only as an order 

of magnitude estimate. The experimental curve for R(s ) 23 suggests / 

the transitional region to be perhaps a factor of two larger than this. 

It extends from ECM = 3 GeV to ECM = 5 GeV. 

Beyond ECM z 5 GeV, perturbation theory should again be applicable. 
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R(s ) will be given, through second order, by E q. 6 with as replaced by 

the running coupling constant i (s 1: 

c!(s) = 
1 + $is log s/M2 ’ 

(10) 

If the GIM model were correct, the approach to iO/ 3 would be quite rapid. At 

ECM = 6 GeV for example, we find R(s) = 3.5 l 0.2 where the estimated 

error comes from the uncertainty in the value of as and from the uncalculated 

higher order terms. Beyond ECM = 6 GeV, the rate of decrease is very 

slow and in fact R(s) should remain nearly constant through ECM = 9 GeV. 

This results from an interplay between the slowly rising two particle 

phase space factor and the slowly decreasing (Yts ). The experiments 

+- 
clearly indicate that the GIM model is not the entire description of e e 

physics above ECM = 3 GeV. 
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11. c; BOUND STATES 

If one or more of the cc bound states lies outside the strong 

coupling transitional region, then it will be essentially Coulombic. A 

simple way to see if this is the case for the J(3.1) is to estimate the 

Bohr momentum kg = +($ as)mc. For as 5 0.25 and m 5 2 GeV, 
C 

kg 5 300 MeV and with momentum transfers this small, the effective 

coupling strength associated with the binding will be large. Thus 

the J(3.1) cannot be Coulombic. With distances as large as about one 

Fermi being important, the long-range confining forces are already 

playing a role. Computations in terms of the underlying field theory 

must be replaced by more phenomenologicsl considerations. 

It is important to point out that a heavy quark-antiquark system 

becomes more Coulombic as the quark mass increases. The Bohr 

momentum is determined by the equation 

k B =$($ns(kB))mQ 

and if m Q is large enoughso that kg > 1 GeV, cus(kB) will be small 

(5 0.25) and the QQ ground state will be Coulombic. For mQ 1~ 6-7 GeV, 

this is the case and all the ground state properties (in particular the 

hyperfine splitting) are computable. What better reason could there 

be for building the next generation e”e- machines than to look for a 

truely Coulombic hadron? 
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A great deal of phenomenological work has been done on the 

CE system. 
31,32,33 

The essential ingredient of this work is non- 

relativistic motion. Despite the fact that the CS bound state is non- 

Coulombic, there is good evidence that it remains non-relativistic 

and loosely bound. The first generation of this work 
32.33 

used a spin 

independent Schroedinger equation formalism with an effective long 

range CE potential. A popular choice for this effective potential 

includes a Coulombic short distance piece, a linearly rising long range 

piece and a constant V. to represent intermediate range and spin- 

dependent forces. 

4/3 Ly 
V(r) = V. + ar - r ’ . (12) 

The linearlong range growth has been suggestedby several theoretical 

considerations 
34 

but it has in no way been derived from the underlying 

Yang-Mills field theory. 

Two important things have emerged from this work. Firstly 

there is the consistency check that the system is indeed nonrelativistic. 

From fits to the leptonic width of the J(3. 1) (the wave function at the 

origin) and the J(3. 1) - $(3. 7) splitting, all groups agree that 

a/m ’ -cc 1. 
C 

This qualitative feature is almost certainly independent 

of the specific form of the confining potential. 

Secondly, there are quantitative predictions. In addition to the 

J(3.1) and +(3. 7), other levels are predicted: 
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1. Additional radial recurrances, the recurrance at 4. 2 GeV 

being the first. The 4. 2 is already quite broad, sitting well above the 

threshold for the production of a pair of “charmed” mesons, (c q) and 

(Ccl). 

2. Pseudoscalar partners of the J 
PC 

= i-- vector mesons, the 

’ .--.I2 rl,, qc , They can be reached by magnetic dipole transition 

from the vector states. 

3. Four intermediate P-wave states centered at around 3. 5 GeV. 

Their quantum numbers are J PC = o++ , Iif, Zfi 
+- 

and 1 with the even 

C states reachable by electric dipole transitions from the $(3. 7). 

4. D-wave states in the neighborhood of 4.1 - 4. 2 GeV. These 

can mix with the + (4.2) and this might offer an explanation for the 

structure emerging in this region. 
23 

Fine structure involves the spin 

dependent forces and is more difficult to predict. Of particular 

interest are the J(3.i) - nc hyperfine splitting and the splittings 

among the P-states. I will return to a discussion of spin dependent 

forces in Section 13. 

The recent discoveries of intermediate levels around 3.4 and 

3. 5 GeV and a possible level at around 2. 8 GeV offer a great deal of 

support for this general picture. 
35,36 

The level at 2. 8 GeV could well 

be the nc and the intermediate levels could be one or more of the 

P-states and/or the n’,. A great deal of work will be necessary to 
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to complete the correspondence between the predicted and experimentally 

discovered levels. 

Electric and magnetic dipole transitions have been estimated 31 

or computed 32,37 by several groups. Most of the predicted transi- 

tions are quite sensitive ta the fine structure splittings. For 

example, the transition J(3.i) - nc y varies as (AM)~ where AM is 

the J(3. 1) - oc hyperfine splitting. A rather simple line of reasoning 

(see Section 13) suggested that this splitting might be on the order of 

100 MeV. 
37,38 

In this case, the magnetic dipole width is on the order 

of 2 KeV. If the newly discovered level at around 2. 8 GeV 35 is indeed 

the vc. then the width will be substantially larger. Scaling up by (AlVQ3 

will probably be an overestimate because of corrections to the dipole 

approximation and spin dependence in the overlap intergral. It can be 

no more than about 10 KeV. 39 

The physics of the j, (3. 7) is likely to be much more complicated 

than a CC pair moving in some effective potential. It sits very close 

to the threshold for the production of a (cq) and (eq) pair. Coupling 

to these decay channels can affect the position and decays of the +(3. 7). 

The radiative widths to the P-states seem to be about one order of 

magnitude smaller than the original estimates which neglected 

this effect as well as fine structure. Some recent work has begun to 

take this into account. 40,41 
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12. TOTAL HADRONIC WIDTHS 

Surely the outstanding problem for the cc model of the new 

hadrons is the narrow width of the J(3.i). The Okubo-Iizuka-Zweig 

rule 
42 

which describes the large enhancement of ,$ - KI? over 

$I - T~TTT~ seems to be much more strongly operative here. The hadronic 

width of the J(3.1) is about 50 KeV which is perhaps a factor 10 -4 

below a “typical” width for a hadron of this mass. A mechanism was 

suggested by Politzer and myself3 to explain this fact making use of 

the asymptotic freedom of the model and I want to review the argument 

behind this rather unusual use of asymptotic freedom. It is far from 

air tight but I would at least like to convince you that some analysis 

has gone into it and that it remains a viable possibility. It makes one 

rather striking experimental prediction which I will discuss at the end 

of this section. 

I suggested in the last lecture that if the perturbation expansion 

converges in low orders, perturbation theory can be applied locally to 

the computation of R(s). This is manifestly not the case at the position 

of a resonance but it may still be possible to understand the widths of 

the J(3.1) and nc by the use of perturbation theory. The widths involve 

both a large mass scale (ECM = 3 GeV) and a small one (momentum 

transfer = 300 MeV). and if perturbation theory is to be useful, then 

these two dependences must be disentangled. The part depending only 

on the large energy scale can then be computed in perturbation theory. 
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First of all, recall that the leptonic width of the J is given by 

the expression 

r(J-je)= I+ (O# i6(QcCz)2 4. 

MJ 

JI (0) is the non-relativistic wave function at the origin and Qc is the 

charge of the c quark in units of e. I+ (0)12 ‘f f i o course not calculable 

in perturbation theory but the leptonic width is a measure of this 

probability factor. 

What we suggested3 is that the hadronic width could also be 

expressed as the product of I+ (0) I2 and a calculable matrix element. 

The annihilation of the CC state into some final state consisting of 

light quarks and gluons is shown in Fig. 7. The Bn amplitude is 

defined to be two particle irreducible in the cE channel. The A 

amplitude contains the forces that produce the bound state and it con- 

tains mass singularities since the c and ? lines sit very close to 

p2 = rn:. (Recall from the phenomonological work that the cE system is 

non-relativistic and weakly bound. ) It cannot be calculated perturba- 

tively and it is responsible for the factor / + (0) ( ’ when the subsequent 

annihilation is local. 

If the Bn amplitude can be shown to be insensitive to the small 

dimensional factors, it can be calculated perturbatively. What we 

suggested is that 1 Bn 1 2summed over all final states 5 [ Bnl 2 depends 
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only on the large factors ECM and M (the renormalization mass) and 

can be computed in perturbation theory. An analysis through low 

orders of perturbation theory leads to the following conclusions: 

1. z/Bn12 is free of mass singularities associated with the 

initial lines by virtue of its two particle irreducibility in the CE channel. 

This can be seen most easily for nc decay where the Born term is 

the annihilation into two gluons. It is straight forward to check that 

the two particle irreducibility does indeed shield out mass singularities 

and therefore eliminate dependence on small dimensional parameters 

like p2 - rnf. I recommend verifying this for a few simple graphs. 

2. $(Bn12 is free of final state mass singularities because of 

the inclusive sum. This application of the Kinoshita theorem is 

analogous to the computation of R(s) off resonance. The analysis has 

only been carried to order LY 
6 
S 

and I am currently trying to generalize 

it. 43 

If this analysis is correct to all orders, then the dominant con- 

tribution to J (3. 1) and nc decay is the annihilation into 3 gluons and 

2 gluons respectively. As in the parton model, these minimal constit- 

uent states then evolve into ordinary hadrons with probability one. 

The expressions for the widths can be taken over from the corresponding 

expressions for ortho and para positronium decay. 
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r Had(J) = j4W(2 g 2 (a - 91 - cy i; ; 1 
-: 

I- Had(nc) = lw12 ; cr; + . 
m 

C 

(141 

These are zero binding approximations which are subject to relativistic 

and binding corrections. We have estimated that these corrections 

could be as much as 20%. 3 

The J (3. 1) width can be fit by choosing es (3.11 = 0. 2. One is 

then led to the rather striking prediction that the hadronic width of the 

T)c should be a few MeV. If the nc - yy width is a few KeV, 
44 

then 

the yy branching ratio will be on the order of 10 -3 . There is so far 

one experimental number relevant to this prediction, The DESY group 

has reported 
37 

r(J-yq,) Wlc - YY) 
r(J-all) ’ r(n -all) 

-4 
=2x10 . (16) 

C 

In the last section, it was suggested that the J - yn, branching 

ratio might well be on the order of 10%. If this is the case, then the 

yy branching ratio of might well be 10 -3 
. If this branching ratio is 

much larger, then the very small magnetic dipole transition becomes 

hard to understand. 

If the minimal gluon mechanism is wrong, then it is hard to see 

why the q c width should be much larger than the J width. Although 
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no sign of breakdown appears in low orders, it could be that this is 

misleading and that the expansion breaks down in high orders. 45 If 

this is the case, then the decay is described by some other mechanism, 

for example charmed meson intermediate states, 4 -DE - non 

charmed hadrons. 
46 

As long as the minimal gluon mechanism is at 

least an important part of the whole story, the n should be broad. c 

A large width for this state would be an important piece of support for 

the quark gluon theory. 

The application of weak coupling methods to the light hadrons is 

much more speculative. 
47 

The direct channel energies are small and 

the bound states are relativistic. It is nevertheless an interesting 

possibility that these ideas have something to do with the classic 

examples of the O-I-Z rule. 42 
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13. CONCLUDING REMARKS 

Since the cS system appears to be non relativistic, is should be 

easier to deal with than any other hadronic system. The motion of the 

cZ pair is governed by an effective Hamiltonian corresponding to some 

effective Bethe-Salpeter kernel. If this kernel has some simple 

structure in terms of Greens functions, then a connection can be 

established between the bound state properties and the color gauge 

theory which is much more direct than for the old hadrons. Whether 

the dominant part of the kernel is simple enough to do this is not yet 

clear. 

For a Coulombic system, the dominant kernel is single photon 

exchange [ Y ‘1 1 l/k2 [ y,l 2 and this leads to the Breit-Fermi 

Hamiltonian. 48 
The appropriate kernal for the cc system is not apriori 

evident. An analysis of diagrams indicates that any contribution 

to the kernel without internal CS loops is equally important. This 

is because every additional factor of (Y~ (MJ) is accompanied by a 

logarithm of momentum transfer or binding energy. This product 

must be taken to be 0 (1). 

In order to make some numerical estimates, several groups 

assumed a simple form for the cc kernel. Although surely over 

simplified, it seemed to me at least to be a sensible order of magni- 

tude guess. The guess was [y,], D(k2) [$I, with 
2 

D(k ) chosen to 

give the spin independent potential discussed in Section II. 37,38 
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This structure looks like single gluon exchange with a dressed gluon 

propagator. It then must be assumed, for example, that D( k2) - f/k4 

as k-0. 

This assumption fixes the spin dependent forces and the analog 

of the Breit-Fermi Hamiltonian can be written down. Numerical com- 

putations are still underway and it looks as though sensible fine structure 

emerges. The spin-spin interaction goes like l/r 5 . 82 at large 
1 

distances and the hyperfine splitting comes out around 70-90 MeV. 

The experimental number may be larger by a factor of three or four. 
35 

The true structure of the kernel is surely more complicated than 

this. Certainly there is no reason to assume a tensor structure of 

the form [vJ, [v’l,. Even if a dressed single gluon exchange is 

dominant, the vertex corrections each have a Pauli momentum piece 

in addition to the Dirac piece. The truth is probably still more com- 

plicated 49 and CC fine structure measurements are extremely impor- 

tant to get a handle on this structure. 

The fundamental problems remain. Are the colored quarks and 

gluons permanently confined? Can CC properties, much less the pro- 

perties of ordinary hadrons be computed starting from the color gauge 

theory? Absolute confinement is an attractive and widely discussed 

50 
idea . The necessary strongly attractive long range forces could 

well be a consequence of the infrared instability of the asymptotically 

free guage theory. Some quantitative support for this idea has come 



-4o- FERMILAB-Lecture-75/02-THY 

from the lattice gauge work of Witson and Kogut and Susskind 51 

but the way it comes about in a continuum theory is far from 

clear. 

Finally, the existence of charmed hadrons made of a heavy 

quark and one or more light quarks is an inescapable consequence 

of the color guage theory. The experimental situation with respect 

to these states is confused at the moment. 52 They may or may not 

have been seen in several experiments. Since they decay weakly, 

the experimental signature is of course dependent on how the heavy 

quark enters the weak current. Nothing could be more welcome at 

the moment than some strong evidence for the existence of charmed 

hadrons. 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

FIGURE CAPTIONS 

Feynman rules for the pure Yang-Mills theory. The 

conventions are those of Bjorken and Drell. The inclusion 

of the quark propagator and the quark-quark-gluon vertex 

is straightforward. 

One loop diagrams with infrared divergences on mass 

shell. 

A definition of the renormalized (running) coupling 

constant in a Yang-Mills theory. 

The zeroth order, parton model contribution to R(s ). 

It gives R (0) . 2 m the colored triplet model. 

The second order (order as) contributions to R(s ). 

A contribution to aTOT below threshold. Positronium- 

like resonances arise from uncrossed ladder exchanges 

in the c quark loops. 

The transition of a ce pair into a state consisting of 

gluons and light quarks. 
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