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ABSTRACT 

The impact parameter structure of several two-component 

multihadronic production models is studied in the framework of elastic 

initial state absorption. Models in which both the diffractive and the 

non-diffractive mechanisms lead to increasing cross sections are used 

to exemplify the nonlinear nature of absorption. It is found that 

absorptive effects may result in a large range of impact parameter 

structures. On one hand, diffractive components barely distinguishable 

from nondiffractive components are encountered and on the other hand, 

absorption may lead to a “splitting” of the pomeron into peripheral 

diffractive processes and central nondiffractive processes. 
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I. INTRODUCTION 

Phenomenologically it has been established that high -energy 

multihadronic production proceeds through two mechanisms. I” The 

first is the dominant nondiffractive component which is of a multiperipheral 

nature and leads to decreasing n-particle production cross sections 

“,CS ). The second mechanism is of a diffractive la:at-e and may involve 

pomeron exchanges in a multiperipheral manner leading to asymptotic 

energy independent cn,(s 1. 

It has further been experimentally observed that the total cross 

section, 0 
tot’ 

3 increases with energy. This behavior is reproduced in 

4 5-8 
various theoretical models. A particular class of such models, 

invokes s channel initial state absorption to achieve an increasing 

otot consistent with unitarity. However, these models usually 

involve only one production mechanism at a time. 

In this work we attempt to investigate the features of various two 

component models in the presence of absorption. Each component 

was constructed to lead to an increasing u tot’ 
The nonlinear nature 

of absorption may induce additional structure when the two components 

are combined. 

In Sec. II the initial state elastic absorption procedure is reviewed 

with emphasis on those of its properties which will be utilized latter. 

Two production models 6,7 that include absorption are reviewed in 
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Sec. III, they will serve as representatives of the diffractive and 

the nondiffractive components. In Sec. IV we analyze a simple two- 

component absorption model, a classification of the possible solutions 

is preformed by characterizing the different unabsorbed overlap 

functions with the help of two parameters; the coupling constant and the 

radius of the apparent unitarity violation. It is shown in Sec. V that this 

classification survives essentially unchanged in a more complex two- 

component model based on the models presented in Sec. III. A case 

in which the nonlinear effects lead to an interesting structure in impact- 

parameter space is pointed out. They result in peripheral diffractive 

processes and central nondiffractive processes. In Sec. VI we conclude 

by surveying models in which diffraction is treated perturbatively. 

II. THE ABSORPTIVE PROCEDURE 

The application of multiperipheral dynamics to hadronic production 

processes has had considerable successes. Attempts have been made to 

describe both components of multihadronic production in terms of t- 

channel iterations. Multi-Regge exchanges (or elementary exchanges) 

have the short-range characteristic of the nondiffractive component and 

consequently predicted the scaling of the inclusive cross sections and 

the logarithmic increase of the average multiplicity of the produced 

particles. A multiperipheral scheme incorporating the exchange of an 

exclusive pomeron is able to account for and predict many of the 
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properties of high and low mass diffractive excitations. 9 However, it 

has been realized 
10 

that the multiperipheral scheme does not have built 

in s-channel unitarity constraints. In fact, elastic amplitudes constructed 

via unitarity by both pomeron and nonpomeron exchanges may violate the 

Froissart bound and the approximate constancy (up to log s factors) of 

the measured total cross sections must be traced to a special value of 

the coupling constant. 

In order to overcome this difficulty, a way to tame any multi- 

particle output function was suggested 
8,6 as follows: The unitarity 

equation in b (impact parameter) space has the form: 

Im Tel(s,b) = (Tel(s.k)12 +Tinel(sjb) ’ (1) 

where T. lnel is the inelastic overlap function which is the sum of all 

inelastic production at a fixed b. - Caneschi8 has suggested that Ti;lel 

as calculated from any model should be replaced in the unitarity 

equation (Eq. 1) by Tinel. Tine1 is related to T lnel through: 

Tinel 
(s, b) = f(S)T i;lel b, b) > (2) 

where S is the S-matrix. Assuming that the elastic amplitude is purely 

imaginary 

T,l(~,b-) = iA (s, b) , (3) 

the unitarity equation becomes: 
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A =A2 + f(S) Tiiel . (4) 

Once Ti;lel is giventhis constitutes an equation for the elastic 

amplitude. A rather large class of functions f(S)’ would insure that 

for any Ti;lel, A(s, b) is always mapped in between the unitarity bounds: 

In a multiperipheral model one may try to associate the presence of 

f(S) with absorptive corrections, in particular with initial state elastic 

rescattering. In this case f(S) may have the form 

f(S) = 1 - 2A . (6) 

This suggestion neglects both inelastic diffractive absorption channels 
11 

and final state rescattering corrections. 
12 However, this over-simplified 

procedure not only restores unitarity but also allows for a self-consistent 

6 
pomeron. We will thus persue the results following from this type of 

implementation of absorption. 

Denoting Tine1 by M, and substituting Eq. (6 ) into Eq. (4 ), one 

obtains: 

A =A2 +(1 - 2A)M. (7) 

This equation can be explicitly solved for A: 

A= ;2,+,- 
C d 4M2+1. 

I 
(8) 
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This solution has the following properties: 

a) It obeys the unitarity constraints (Eq. 5) for every h. 

b) If the inelastic overlap function increases indefinitely at 

a fixed b as a function of S, A reacts by approaching the value 5. 

A(Q)----); +&,)+ c 1 
M+m ‘- i6M3(s,b) 
(s +m) 

At each b where unitarity was threatened the scattering process is 

characterized by complete absorption. However, the absorption 

procedure does not insure that the’Froissart bound will be respected. 

The short-range nature of strong interactions must be manifest in’ 

the input overlap function M to insure that. 

c) In order to study the behavior of the inelastic processes after 

absorption one has to specify the manner in which the absorptive factor 

subdues an increasing M. 

1-2A--+‘- 
M+m 4M 

(10’ 

Thus, the absorbed inelastic overlap function’s contribution to the 

total cross section is given by: 

(I- 2A)M (11’ 
(s +m) 
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We will make an extensive use of Eqs. (10) and (11). 

d) The elastic cross section is given by 

A2 --+ i- 

M-m 
C 

1 
2% + 

1 

-I* i6M2 
(12) 

(S) (0) 

In this scheme the elastic and inelastic cross sections approach a common 

limit as M- m ; however, the next-to-leading term in the total cross 

section will always originate from the elastic scattering. 

e) With the help of Eq. (81 one can study the behavior of the 

absorbed n particle production cross section which is given by 

o,(s,~) = (G - 2M)MnIs,b), (13) 

where M,(s, b) is the unabsorbed contribution of the n-particle production 

to the inelastic overlap function at a fixed b. This result can be 

simplified by the approximation of Eq. (10 ). However, when M is 

of order unity, so is the absorptive factor. 

Thus given a certain model for the inelastic overlap function, one 

can find the detailed structure of the model after absorption has taken 

place. 

In order to clarify the effects that absorption has on the basic 

features of multiperipheral models two models 
627 were already 

investigated. We next review these models which will later be utilized. 
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III. TWO ABSORBED MULTIPERIPBERAL MODELS -- 

A. A self-consistent diffractive model 

The t-channel iteration of a fixed pole at j = 1 leads via unitarity 

to a pole above one in the elastic amplitude 

A,,(j,t =O)=zg" = j _';_', I 

(j - 1 P 

where g is a (positive) coupling constant. This result neither respects 

unitarity bounds nor is self -consistent. Finkelstein and Zachariasen’ 

have shown that in the framework of the absorptive procedure one can 

obtain a self-consistent pomeron. One assumes that only the pomeron 

is exchanged in the production proc:ess and it is given~ by an expanding 

black disk of a radius ROY (Y is the total rapidity). 

is (RiY’ - b2) 
T = 

el 2 

(Its j plane structure is 

T(j,t) = 1 
c (j-iJ2 - Rit 

J 

3/2 ‘) 

(45) 

(16) 

Calculating the n particle overlap function one obtains: 

- 0 

n 
m,(Y,b) = !$ (3n - 5)! 

f&Y2 - b’). (17) 

The total overlap function is found to be: 13 
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M(Y,b_) = 

where 

= g 
513 2-2/3 

CD 3 
(19) 

Once M is calculated, one can solve Eq. (7) for A,I. One finds that 

it is indeed given by Eq. (15)to first order, the pomeron is self-consistent. 

Using Eqs. (lo), (i3), (18) one finds on(Y,b) to be: 

On(Y>b’ = (3n-5)! 
exp [- ($)i’3~R~Y2-b$ (RiY’-b’). 

(20) 

Integrating over bone can show that on(Y) approaches a constant as the 

energy increases. This significant feature of diffractive processes comes 

about as follows: 

m (Y,b) 
on(y) - ;cy ,,) . J- (7.4 ) 

Over most the integration range mn( Y, b-1 has a power behavior in 

Y (Eq. i7)while M is exponentially behaved (Eq. 18). The only way in 

which the cross section can survive at high energies is to be approximately 

energy independent at those bat which M ceases to be exponentially 

behaved. M will always be of order unity at those bvalues where 

unitarity has not yet been violated. (In this model, at b of the order 

ROY). Thus the question of the survival of o,(Y) reduces to the 
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question of the behavior of mn(Y. b) at b_of the order ROY. In models 

(like this one) which exhibit, a random walk in impact parameter the 

energy behavior of o,(Y) can be traced to energy behavior of the 

length of the random step a). 

In general the dispersion of the impact parameter after n step 

is given by: 

<b2> =na2 . (22) 

In this model one has due to the strong shrinkage: 

(23) 

For each fixed multiplicity n, <b2> increases like Y2, mnW, b) can 

be approximated for this purpose by: 

(24) 

At the critical b -. ROY, where M is always of the order one, m,(Y, b) 

is energy independent and allows for constant cross sections. The 

model also results with a rising plateau and long range correlations, 

for a detailed study of this model, see Ref. 6. 

B. A nondiffractive absorptive model7 

Harari studied production models which may secure the intercept 

of the pomeron at one and simultaneously relate the intercept of the 

nonleading trajectory wR to the internal coupling constant g. The input 

was taken to be: 
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0” exp (- -&-) 
m,(Y. b) = CM n, 

4a2n 
(25) 

where c 2 is the slope 
M 

reflects the external coupling constants and 4a 

of the form factor associated with each vertex. In terms of j-plane 

such an assumption represents the t channel iteration of a fixed pole 

atj =1. 

(26) 

The total inelastic overlap function is found to be 

Ainel (j,t) = x mn(j,t) = 
j-l 

2 . 
n 

j-I-gea t 

(27) 

Approximating e 
a2t 

by its first two terms one obtains: 

WY, !+ 
a2gY 

(28) 

The b range over which unitarity would be violated without absorption 

expands like Y, so it is clear from Eq. (9) that the result is once 

again an expanding black disk. The total cross section increases like 

log2 s. However, comparing the exchange of a cut (E q. 16) to an 

exchange of a pole also situated at one (Es. 26),we find that the asymptotic 

behavior of o,(Y) is drastically changed: 
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o (y)-(gP)n (agY)2 s-g 
n 

s -m n! (gY-n) ’ (29) 

In this case the length of the random step is constant (a2), the 

radius of the violation of unitarity has remained of order Y. Thus 

m,(Y, b) will be a decreasing function of energy at b c Y and the cross- 

section will be a decreasing function of the energy. (This result would 

also hold for a lower exchange with an intercept p as long as its coupling, 

gP3 
is strong enough so that g 

P 
- 2p - 2 > 0). 

This type of energy behavior is one of the dominant features of 

nondiffractive hadronic production. 

Experimentally it has been established that there exist two 

components which are simultaneously responsible for the production of 

n particles. We have just presented two models which have desired 

properties of each of the components. In the first model we have a 

on(Y) which tends to a constant while in the second model on(Y) 

decreases to zero as the energy increases. It may thus be interesting 

to study a model in which both mechanisms participate. Up to now each 

component was investigated independently of its companion. However, 

absorption is a nonlinear process and msy lead to new features in a 

two component model. 
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IV. TWO-COMPONENT ABSORPTION: A SIMPLE EXAMPLE 

It is assumed that two mechanisms participate in the production 

process leading to “unabsorbed” inelastic overlap functions Ml and 

M2’ 
One further assumes that each of the mechanisms separately 

would lead to an increasing total cross section. 

The behavior of the two-component model in the presence of 

absorption is investigated by constructing the total driving term K; 

where K reflects the properties of M1 and M2: 

K=Mt+M . 
2 (30) 

A is then obtained by solving Eq. (7) after substituting M by the total 

K. Since Eq. (7) is quadratic, one expects the model to have a 

different structure than each component separately. 

Severals attempts to build the driving term K and investigate the 

mututal interactions between its components will be discussed. ln order 

to keep calculations as elemenatry as possible, we will deal first with 

a simple example which will nevertheless possess many features of 

more complicated models. 

A large class of overlap functions are roughly characterized by 

two quantitites: 

a) R -- the radius over which the unabsorbed overlap function 

would violate unitarity, (we will only deal with the case where the radius 
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is logarithmically expanding with energy), which would also eventually 

reflect the magnitude of the total cross section should only one mechanism 

be operative. 

b) g -- the internal coupling constant between the produced 

particles and the two adjacent t channel exchanges in the process which 

builds up M. 

The structure of a two-component absorptive model will thus be 

exemplified by using two overlap functions M1 and M2 which differ in 

their radii Rt, R2 and their coupling constants g4, g2. Each would 

violate unitarity in the absence of absorption and lead to increasing 

cross sections. 

M4 = (34) 

(32) 

An exclusive model leading to such an overlap function was reviewed 

in Sec. IIIb. 

Given this global information the problem addressed will be the 

following: What is the contribution of each mechanism to the total 

cross section at a fixed impact parameter b ? - 

Both mechanisms increase indefinitely thus justifying the 

approximation stated in Eq. (10) for the absorptive factor. The two 
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inelastic contributions It, I2 resulting from absorption are given at 

fixed b by: 

M 
II--w--1 , 

y-00 4K 
(33 

M 
(34 

) 

,) 

The total inelastic contribution of the first inelastic mechanism to the 

total cross section is obtained by integrating Eq. (29) over the whole 

avaible b range. - 7 

1 
(35) 

0 
1+ 

g2 
- 2 exp h( R 1Y 
‘1 R2 c 1 

The upper limit of integration is the larger of R4 and R2; we have 

chosen it to be RI. q is given by: 

and h(n) is a function given by: 

h(n) = (g,-g,)- 

(36) 

(37) 

A similar result is obtained for the second component. After absorption 

has been completed the elastic amplitude will, of course, turn out to be 

an expanding black disk, but one may still inquire how that black disk 
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is built up from the production mechanisms at a fixed L. 

This structure will be governed by the behavior of the function 

h(rl L Whenever h(n) has a positive definite sign over a certain range 

of n, that is, whenever M2 is greater than Ml, only the mechanism which 

builds up M2 will contribute, asymptotically, to the total cross section 

corresponding to that range of n. From the range where h(n) is negative 

only contributions due to the first mechanisms will appear in the total 

cross section. The elastic cross section responds for each k, to the 

behavior of the inelastic cross section. 

The analysis of the function h(n ) shows that one must distinguish 

between several cases: 

a) R1 > R2 and gtz g2. 

In this case the first mechanism completely dominates the total cross 

sections for each b -* 

b) RI = R2 and g1 > g2. 

The same consequences as in a). 

c) RI = R2 and gt = g2. 

In this case, both mechanisms have identical overlap functions and 

contribute equally for each b. - 

d) R1>R2 and g2 > gl. 

In this circumstance, absorption results in a very interesting structure: 

The pomeron in & -space splits in two: 

For every value of bin the range noY < b < R4Y, it receives 
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asymptotic contributions only from the first mechanism. 

For values of b in the range 0 < b < noY the absorbed overlap 

function is determined solely by the second mechanism. 

The transition point no occurs at: 

2 = R2R2 g2 - g1 
“0 

1 2 g2$ - glR; 
(38 1 

Thus no is smaller than both Rt and R2. 

The process with the larger radius and the smaller coupling constant 

is turned by absorption into a peripheral mechanism, while the process 

with the smaller radius and the larger coupling constant is confined to 

a circle of radius uoY around b = 0. 
14 

All other cases involve changing the roles of the two mechanisms. 

In Fig. 1, we show the detailed structure of the pomeron in case d. 

The expanding black disk is composed of two parts, each of which 

consists of a “black” and “gray ,,I4 region. One part is a peripheral 

expanding ring and the other is an expanding central disk. 

Although all cases are logically possible, once the possibility 

of splitting the pomeron has arisen one is tempted to inquire whether 

it is possible to construct a model which leads, under reasonable 

assumptions, to case d. In the next section we will try to point out 

such a possibility. 
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V. TWO-COMPONENT ABSORPTION: 
DIFFRACTIVE AND NONDIFFRACTIVE MECHANISMS 

In the former section a model consisting of two overlap functions 

having rather general features was investigated. In this section we try 

to study the fashion in which the results obtained are altered in a two- 

component model actually consisting of diffractive and nondiffractive 

components. 

Specifically, we will utilize the two models mentioned in Sec. III. 

The diffractive model leading to constant multiplicity cross sections 

is described by Eq. (18) and the nondiffractive model leading to 

decreasing cross sections is described by Eq. (28 ). 

We proceed as in Sec. IV, concentrating on the diffractive 

mechanism one obtains for the total inelastic diffractive contribution, 

dx 

0 if Kx exp f(x) - 
t- 

gM Y 
Y I 

where 

%I K=- 
CD 

(39) 

2 2 
a gM 

gD b = n ROY; 

(40 1 

f(x) =x 2 Y -g-x+y-i. (41) 
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gMis the coupling appearing in Eq. (28 ) and g+, is the coupling constant 

of Eq. (18). 

The nondiffractive component violates unitarity in a radius 

b < agMY, while the diffractive component violates unitarity in the 

range b < ROY (independent of gD), thus a priori the largest absorbed 

& is given by 

RY = max(RoY, agMY) , (41) 

to obtain Eq. (39) we have assumed that R = R. but we will also discuss 

the other possibility, 

The function f(x) will determine (as the function h(n ) in Sec. IV) 

the dominant mechanism at each x. The function depends on two 

parameters: 

a) Y -- which reflects the ratio of the radii of the two components. 

g D b) ;=- 

g M 
which is the ratio of the internal coupling constants 

of the two mechanisms. 

The following cases occur (for more details, see Appendix A): 

I. y 2 1 

a) z < 1 (g, < 6) 

In this case the black disk is fully diffractive. 

b) Z = 1. 

Also in this case the disk is totally diffractive, {unlike the 
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simpler case (c) in Sec. IV). 

c) z>l 

In this case, when the nondiffractive coupling constant is 

greater than the diffractive coupling constant while the radius of the non- 

diffractive mechanism is smaller or equal to the diffractive radius, 

one finds that the pomeron splits, it has a nondiffractive nucleus and 

diffractive periphery. (This occurs also for y = 1 unlike case d in 

Sec. IV. ) 

II. For y > 1 the results are similar, the main difference is in 

the region 1 < y < y1 (where y1,y2 [1 I is the interval of y values over 

which the function f(x) has no roots (see Appendix A)). In that region 

the pomeron consists of three parts: a nondiffractive nucleus, wrapped 

by a diffractive ring which is wrapped again by a nondiffractive ring. 

Beforepresentilg in detail all the possible configurations we will 

try to figure out what physical assumptions could help locate that section 

of the y-z plane which is consistent with the knowledge we possess of 

production processes. In the absorption three radii are involved. 

two of which must be equal. agM -- is the radius of the nondiffractive 

processes: R. -- is the radius of the diffractive mechanism, and R -- 

the radius of the resulting pomeron. 

If we now impose a self-consistency demand, that is we will 

require that there exists only one pomeron in the model, we obtain 

that R of the output pomeron must be identical to Ro, the radius of the 



-21- FERMILAB-Pub-74/ 107-THY 

input pomeron. Thus self-consistency constrains us to the region of the 

y-z plane where ag 5 R = So that is to the region y 5 1. If we further 

insist that the pomeron built up by nondiffractive processes alone will 

also be identical to the pomeron exchanged in diffractive processes we 

are led to the line y = 1. 

In order to complete our location in the plane one should try to 

estimate the expected value of z. If we accept the experimental 

indications that coupling constants characterizing nondiffractive processes 

are larger then t!lose attached to diffractive processes, we are naturally 

led to the conclusion that physics could occur at the region y 5 1 and 

z > 1. However, this is just the region where the pomeron splits. 

In that region the pomeron is built up by a diffractive peripheral component 

and a nondiffractive component which is responsible for the more central 

collisions. 

In Fig. 2 we demonstrate the various possible structures of the 

pomeron in the y-z plane. 

For z < 1, motion along a line with a fixed z will describe a pure 

diffractive pomeron as long as y 5 1. When y exceeds 1, a non- 

diffractive ring is added to the pomeron. 

For z > 1 one finds that as y increases, the nondiffractive nucleus 

also increases. In the interval 1 < y i yi a nondiffractive ring appears 

and at y greater than y1 the whole pomeron turns nondiffractive. Motion 

along a line with a fixed y shows the increase of the nondiffractive 
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component as z increases. For y < i the increase is felt only after 

z becomes larger than 1. When 1 < y < 2 the nondiffractive component 

is aringaslongasz<i. When z > 1 it also appears as a nucleus 

forcing the diffractive component into a ring. For y > 2 and z > 1 

the whole pomeron turns nondiffractive. 

For completion we add some details on the structure of the 

model in the case in which y = 1 and the pomeron splits. 

The total nondiffractive inelastic cross section is given by: 

and the diffractive contribution to the inelastic cross section is 

g2 
cD=R;Y2 A2 . 

gM 

(43) 

(44 ) 

One thus finds that the ratio of the cross sections coming from the 

different components is 

2 
“M g1VI * _= -- . 

“D g; 
(45) 

Experimentally this quantity is much larger than one. This may serve 

as another indication that the assumption gM > gD was reasonable. 

Each multiplicity cross section (T (Y) is composed out of two n 

components: one constant and one decreasing with energy. Both 
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components sum, however, to increasing cross sections. 

The special way in which absorption has taken place affects the 

average multiplicity. The diffractive processes were absorbed in the 

center of the proton, thus losing the high multiplicity events. The 

nondiffractive processes were absorbed on the periphery thus also 

they lost their high multiplicity events. The overall average multiplicity 

has decreased as a result of having both components absorbing each other. 

We have described in the last two sections the results of absorbing 

a two component model. Between the possible results we were led by 

self-consistency arguments to the interesting ” splitting” of the pomeron. 

VI. TWO-COMPONENT MODELS: A PERTURBATIVE APPROACH 

The main assumption involved in the model presented in the former 

section was the ansatz of the driving force K in terms of two overlap 

functions each representing a familiar model. In this fashion no account 

was taken of production processes initiated by exchanging simultaniously 

both t-channel objects. In other words we have essentially neglected 

the coupling between a pole, a black disk and a produced particle. 

In this section we will sketch the structure of a model in which this 

coupling is treated perturbatively, namely we will continue to assume 

the existence of two production mechanisms. The nondiffractive 

mechanism will again be represented by the model described in Sec. 

IIIb. The diffractive mechanism will include these processes in which 
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only one black disk is exchanged accompanied by a chain of usual 

Such a model may be of interestif one infers from the ISR data 
16 

poles. 

that complete absorption is far from having developed. In such a case 

an exclusive exchange of more than one or two black disks will be 

impossible for any energy available experimentally for quite some 

time. The results will be presented in a qualitative manner and the 

approximations involved will be stated. 

a) The overlap function 

We begin by treating the diffractive component independently 

and later add the effects of a two-component model. 

The general nature of a model is reflected in the behavior of 

the its overlap function. In this case the overlap function is built out 

of two elements (Fig. 3); a black disk (which for the time being is 

confined to the end rungs), and from the process in which a black 

disk collides with a proton; one assumes that this collision is given 

essentially by its nondiffractive component. (The black disk behaves 

in factorizable manner due to the pion propagator which actually 

separates it from the next exchange. 
6 

) Thus a black disk given by 

0 (r,2, - bf, ) and a pole given by EqJ28a) will compete over the whole 

(Y, b) space. 
(B- kq2J2 

12’b-b12) = 

a% W-y12) 
WY-y 

a2g (Y - y12) 

1 . 
(28a) 
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Yi2 
and b 

-12 
are respectively, the difference in rapidity and impact pararreter 

between the first and second produced particles. The black disk is indifferent 

to the amount of the rapidity axis it covers provided that it should always 

exceed the amount of bit has. Thus one finds that the favorable config- 

uration is one in which the rest of the particles fill all the available rapidity 

and impact-parameter space and the black disk is left with Is,, / = yi2 = 0. 

This indicates that the addition of a black disk to the production 

process will not radically alter the structure presented in Sec. IIIb. 

In particular the cross sections on that contributed the main bulk of 

the total cross section, at a fixed energy, before the addition of a 

black disk,will persist with their behavior. 

This does not mean that one cannot find quantities whose study 

will expose the existance of an exclusive black disk. For instance, 

following the behavior of the cross section for producing a fixed 

number of particles n as a function of energy, one discovers the 

influence of the exchanged black disk. 

b) m(s) of the diffractive component 

For simplicity we will follow the specific process in which one 

additional particle is produced by the two scattering particles. The 

production occurs by exchanging a black disk and a pole with intercept 

one ( a different intercept will not change the result). (Fig. 4). The 

cross section is: 
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e(y2 -b2)e - - dy d2b , 
-(B-b)2 

(46) 

As pointed out in Sec. III, the asymptotic fate of the cross section will 

be determined by its behavior at [I! [ z Y. Both the pole and the black 

disk are indifferent to the fraction of the rapidity axis which they cover, 

thus for \B / r’ Y the pole will stay at zero impact parameter and the 

black disk will be forced to extend all over the rapidity axis having 

y = Y, this configuration carries no energy penalty and actually resembles 

an exchange of a single black disk, the cross section is thus energy 

independent. This result clearly generalizes to any n. 

The diffractive component thus leads, as desired, to constant 

cross sections. How can this be reconciled with the fact just stated 

that the total overlap function hardly changes by the addition of a black 

disk ? 

What happens is that these on that build up the log2 s of the total 

cross section at a fixed energy are practically unchanged by the 

exchange of the black disk. In other words, at each energy the sum 

of all cross sections which have already reached their asymptotic 

constant value is increasing slower than log2 s. 

Such a behavior is exemplified in Fig. 5, which shows the behavior 

of on(s) as a function of n at a fixed energy. Most of the cross section 

comes from the region around the average multiplicity; cross sections 

in that region are far from their asymptotic value. 
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We have thus encountered a diffractive model whose gross features 

are very much like those of a nondiffractive model and whose distinct 

properties can be found only in rather fine details. This result should 

be contrasted with the behavior of other models for the diffractive 

components, such as models for single diffractive excitations. 9 
In those 

cases the structure of the diffractive component is substantially different 

from that of the nondiffractive component. Absorption which allows a 

unitarity violating unabsorbed overlap function is responsible for the 

difference. 

c ) Two and more component models 

The diffractive component just described constitutes only part of 

the driving force, which will be completed only after adding the non- 

diffractive component. As a small difference exists between the two 

mechanisms, one expects both to contribute at every impact parameter. 

This can be verified in a more detailed model that involves some 

mathematical simplifications. 
17 

In this particular model both mechanisms 

contributed at each impact parameter, however, the ratio of their 

contributions is a function of b. The larger the impact parameter, the 

larger the contribution of the diffractive mechanism to the total cross 

section. This is a reminiscent of the peripheral structure of diffraction 

exhibited in the former sections. 

The exclusive diffractive process was confined in the former 

analysis to the ends of the chain. The liberty to exchange the one black 
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disk anywhere along the chain would result in a log s enhancement of the 

diffractive processes relative to the nondiffractive processes. The 

output pomeron would eventually reflect, at a very slow rate, only the 

diffractive processes. The addition of a finite number of exclusive 

black disks would bring about the same result. 

VII. SUMMARY 

In this work we explored the effects of elastic initial-state 

absorption on several two-component models. The models describing 

both components were chosen to lead separately to increasing cross 

sections. We first utilized existing models for each of the components, 

the mechanisms were characterized by the energy behavior of their 

multiplicity cross section; on(Y). It was found that these models 

offer a large range of solutions. Particular attention was paid to a 

case in which a “splitting” of the pomeron had occurred. It was shown 

that using self-consistency arguments and experimental evidence as 

to the dominance of nondiffractive processes one may be led to a 

solution in which absorption confines diffractive processes to be 

peripheral and nondiffractive processes to be central. The main 

interest in this case is that it illustrates some of the nonlinear effects 

of absorption. A “perturbative” two component model was treated next, the 
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resulting diffractive process had many features in common with the non- 

diffractive mechanism, however, its special nature co&l be exposed by 

studying the asymptotically constant behavior of the cross section to 

produce n particles diffractively. The more components added the weaker 

becomes the signature of the nondiffractive mechanism on the output pomeron. 

The models presented may eventually have phenomenological consequences; 

however, they are of an asymptotic nature. As long as a black disk behavior 

16 
of the pomeron is not observed experimentally, there is no possibility 

of applying any of these models to the data. Some of the diffractive models 

will require even a further asymptotic limit. Finally one should add that 

the data do seem to support a split pomeron; 
18 

however, if this behavior 

persists up to the asymptotic region discussed in this paper is yet to be 

found.. 
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APPENDIX 

I. While investigating the properties of a two-component absorptive 

model including a diffractive and a nondiffractive mechanism it was 

found that the contribution of each mechanism at a fixed b (Eq. 39 1 

was governed by the behavior of the function f(x) (Eq. 42). 

f(x) =x2 
gD 

--yx +y-1, 
gM 

(A. 1) 

where gD and gM were respectively the diffractive and nondiffractive 

coupling constants. y was given by the ratio of the nondiffractive and 

diffractive radii (Eq. 40). 

One should remark that the x factor that appears in Eq. (39) is 

13 
actually spurious at x = 0. 

The roots of the function~f(x) are: 

x1,2 = 
yY*kpZ-C-G 

2 (A. 2) 

1 g, 
where y = ; = - . 

gM 
The equation has two roots for each z, exept 

when y is in the range: 

22(2 - Jr- 1)< y< 2z(z+K) . (A. 31 

The edges of the interval were denoted ‘ff,Y2, they are both functions 

of z. 
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We note the following cases: 

a) z < 1: 

In this case the large root x2 is greater than 1 for every Y > 0. 

The small root x1, is negative in the region 0 (Y < 1, is zero for Y = 1 

and positive for Y 7 1. Thus for each y < i,f(x) is negative in the relevant 

interval (0, 1). ForY 7 1, f(x) is positive in the interval (0,x) and 

negative in the interval (xi, 1). 

b) z=i 

In this case x1 increases from a negative value for Y = 0 to 

the value zero at Y = 1. For Y> 1, x1 is positive and smaller than 1 

till Y = 2. For Y > 2; xi > 1. 

x2 has a constant value 1 between Y= 0 and Y = 2; for Y > 2 one 

has x2 71. Thus f(x) is negative in the interval (0,i) for every Y < 1. 

For 2 7 Y > 1, f(x) is positive in the range (0,x1) and negative in the 

range (x,, 1) for Y > 2 it is positive in the whole interval (0, 1). 

c) z>l 

x1 increases from a negative value at Y = 0 to zero at Y = 1. 

For 1 < Y (Y t; O< x1 (1. For Y1 <.Y < Y2, xi does not exist. For 

Y >Y2. x1 decreases but is always above 1. x2 decreases from 1 at 

y = 0 to O< x2< 1 for y c; 1. For y 7yz; x2 7 1. Thus f(x) is 

negative in the interval (0,x,) and positive in (xi. 1) as long as y 7y i 7 1, 

for Y 7 -f2 f(x) is positive in the interval (0, 1). 

The line appearing in Fig. 2 describes the relation between Yi 

and z. 
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II. We conclude by remarking that the situation in the case z > 1 

is actually more involved. In principle gMand gD could be estimated 

by measuring the average multiplicities of diffractive and nondiffractive 

events . However, it seems that the pomeron is still far from behaving 

like a black disk even at ISR energies. 
16 

This means that the displace- 

ment of the pole above one is small while multiplicities are not small. 

One may perhaps regard nondiffractive processes as originating from 

an exchange of a reggeon of intercept aM lower than one, but with a 

larger coupling constant gM such that 

E = 2a 
M 

-2+gNI> 0. 

In this case absorption may still be small, while <n > , whose behavior 

is governed by gM, is large. In this Appendix we also analyze the 

case where a new parameter E has been introduced. 

In this case the function f(x) is: 

gD 
f(x)=x2- - x+=-i. 

gM gM 

We will deal with the case y = 1. The roots x4,x2 are 

x1,2 = 
y*pz-z- , 

2 

gD 
where y = - and k = E. 

gM gM 

(A. 4) 

(A. 51 
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If 0 < k < 1, then for each 0 i y < k, one has 0 < x 
2 

< 1 and 

x1 
< 0. Thus in this range where E > gD, f(x) is negative in the interval 

(0,x2) and positive in lx,. 1). Thus once again the pomeron splits. 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

Fig. 5 

FIGURE CAPTIONS 

The central and peripheral components of the pomeron. 

The various possible structures of the pomeron in the 

y-Z plane. y,(y. t) is defined in Appendix A. 

The unabsorbed diffractive overlap function. B. D. is the 

exclusive black disk and V. M. is the total nondiffractive 

component of the B. D. -proton scattering. 

The unabsorbed cross section for the diffractive pro- 

duction of three particles. 

The diffractive multiplicity cross sections O,(S ) as a 

function of n for a fixed s. The log’ s behavior of 

dtot comes from n-gY. The behavior at small n 

should be associated with already constant cross 

sections. 
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