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ABSTRACT 

The question of how to count hadron states is explored. It 

is suggested that there may be states which should be ignored in 

classification schemes such as SU(3) or the quark model. 
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The purpose of this note is to point out that there may be hadrons 

states which ought to be ig+nored in classification schemes such as 

SU(3) or the quark model. In a well-defined sense, such states do not 

exist if we look at an average course-grained mass spectrum. The 

deuteron will be shown to be a non-controversial example of such a 

state. Whether or not more interesting examples exist among the 

many meson and baryon resonances is not yet known. 

The basic idea, which is implicit in some recent work in 

i statistical mechanics IS best illustrated by an example. 

The deuteron is supposed to belong to a io representation of 

SU(3 1. This would imply low energy bound states or resonances in 

hyperon-nucleon and hyperon-hyperon channels. It may be however 

that these presumed partners of the deuteron do not exist. What would 

this mean? 

To answer this question let us begin with a precise definition of 

SU(3) for the hadron spectrum. Let pQ(M) be the density per unit mass 

of hadron states with quantum numbers Q. A stable state with mass MO 

clearly contributes a delta function 6 (M-MO) to p. We will see later 

how to compute p for continuum states. Here we need only mention 

that in the continuum p is to be the difference in density of states for 

interacting as opposed to free particles and need not be positive. Now 

define pQ(M) as the average of pQ over a mass interval AM which is 
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typical of SU(3) breaking, e.g. , one could set 

AM/2 

;QWU = A+ / pQ(M+M’)dM’ . 

-AM/ 2 

(1) 

From the baryon mass differences we expect that AM * 200 MeV would 

be an appropriate averaging scale for SU(3) considerations. 

If states with quantum numbers Q belong to an SU(3) multiplet 

containing states with quantum numbers Q’, Q’ ‘, etc., then SU(3) 

requires that 

-iQ(M)= iQ,(M) = iQ,,(M) .~.. (2) 

Note that averaging has gotten rid of mass differences so that our 

criterion is just that there be the correct number of states in various 

channels. 

With this definition of SU(3) the absence of partners for the deuteron 

will be bad news unless the average density pu in the deuteron channel 

somehow succeeds in vanishing. Actually this is just what happens. 

The delta function from the deuteron is canceled in the average by a 

hole in the n-p continuum states. To see how this goes consider the 

p-n system confined to a large spherical box of radius R in the center 

of mass. If we concentrate on that partial wave which contains the 

deuteron, then on the edge of the box the wave function is approximately 

4J cd sin (kR + 6( cowhere 6 (E) is the phase shift as a function of energy 
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E and we have assumed that R is much larger than the range of the 

interaction. Making the wave function vanish at R yields 

k.R i- 6(e) = Nir (3) 

where N is an integer and 

dN 1 -=- 
de TI 

R(s+ 2) 

(4) 
dN =- 
de 

b 

where dN/de [ 0 is the density of states for non-interacting particles. 

An approximate definition of p is evidently3 

which is independent of the radius of the box R as it should be.’ For the 

deuteron pu is then easily seen to be 

PD = & k + $(Ac) - 6(O))] (6) 

where the one comes from the deuteron and the difference in phase 

shifts is the result of integrating the expression in Eq. (5) over an 

averaging energy A E Q AM * 200 MeV. The phase shift in the 

deuteron channel is TT at threshold (E = 0) and falls rapidly, being 

nearly zero at an energy AC s 200 MeV above threshold. Thus pu 

nearly vanishes which can be understood as the statement that in the 

region from the deuteron up to about 200 MeV, the net number of states 
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is the same as for two free nucleons. 

Evidently, there is a well defined sense in which the deuteron 

does not exist if we look over a mass interval typical of SU(3) breaking. 

The possible lack of strange partners for the deuteron is not a serious 

matter. 

It is no accident that i vanishes for the deuteron. The deuteron 

and low energy p-n scattering are adequately described by nucleons 

interacting through a static potential. In potential theory one can 

derive Levinson’s theorem which says that5 

(7) 

B 
is the number of bound states in the partial wave under 

consideration. On a nuclear physics level an energy of order 200 MeV 

is essentially infinite and we see that PO vanishes as a consequence of 

Levinson’s theorem. 

where N 

Levinson’s theorem can be interpreted as the statement that the 

interaction does prX.‘change the net’number of states in any channel. 

Thus the nuclear force can bind the deuteron only at the expense of a 

compensating depletion in continuum states. The idea which we want 

to abstract from this example is that certain interactions like a nucleon- 

nucleon potential do not make new states but just shuffle around the states 

which are already there. All this reshuffling takes place on an energy 

scale which is small on a hadronic scale of, say one GeV. 
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The general formula for pQ(M) can be shown to be 4, 6 

pQ(M) = E 6 (M-Mi) + &- & trQ kn SWj, (8) 
i 

where the sum runs over stable particles with quantum n~umbers Q, 

[ In S(M)lo is the corrected part of the logarithm of the S-matrix at 

center Jf mass energy M and tr 
Q is a suitably defined trace’ over all 

channels with quantum numbers Q. For a single partial wave S is 

e2id 
so that our definition of p agrees with Eq. (5) in this special case. 

In general, p can be thought of as the (infinite) sum over derivatives 

6 
of eigen-phase shifts. 

To see that Eq. (8) is a reasonable definition let us consider a 

resonance. At a sharp resonance some eigen-phase shift jumps rapidly 

by 90” so that 

b,(M) = const + TI 0 (M-M,) (9) 

and 

: & 6r(M) zz 6(M-M,) . (9 1 

Therefore, a sharp resonance acts just like a stable particle. A wide 

resonance puts a broad bump of unit area in p. 

The multiparticle generalization of Levinson’s theorem would 

read 

co 

/ 
0 pQdM = O 

(Levinson’s theorem) (10) 
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This is an established result for multiparticle potential scattering. 
b 

However, hadronic reactions do not appear to satisfy Levinson’s 

theorem at least for any reasonable cutoff on the integral. The dual 

model violates Levinson’s theorem for any cutoff and it is probably 

not satisfied in field theory. Thus whatever the fundamental hadron 

interaction is it is unlikely to satisfy Eq. (10) at any reasonable energy. 

Nevertheless the notion behind Levinson’s theorem that some interactions 

just move states around as opposed to making new states could, as we 

will see below, be a useful concept in hadron spectroscopy. 

Let us take a course-grained view of the hadron spectrum by looking 

at i with an averaging interval AM of a few hundred MeV. 

We already know that the deuteron appears in the local density p 

but not in the average i . The 3-3 resonance A will, however, appear 

5.s a bump in both p and p. Thus we bee that there can be two kinds 

of hadrons. The first kind which we call true hadrons remain as 

bumps in b as well as p. The second type which we will call accidental 

states disappear when we average over a mass interval which is small 

on a hadronic scale. The name accidental is chosen to suggest that such 

states might be produced accidentally by relatively weak long range effects 

such as n-exchange in the case of a deuteron. 

What we have in mind here is something like thefollowing. Simple N/D 

calculations based on a few channels and keeping only light particle exchanges can 

oftenproduce resonances. The appearance of such a resonance is often 
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almost a kinematic effect due to, say, the opening of a new inelastic 

channel. Any kind of dynamics like this which is localized in energy 

ought to satisfy Levinson’s theorem locally. 
9 

This sort of dynamics 

should not lead to a net change in number of states in any given energy 

range but will just reshuffle those states which were already there. We 

know nowadays that whatever the fundamental hadron dynamics is, it is 

not of this simple type. However, it is quite possible that such effects do 

exist on top of whatever ones theory of fundamental hadron physics is. 
10 

Do accidental states other than the deuteron really exist? At 

present one simply doesn’t know. It is easy to convince oneself that the 

major well-studied states like p, A, etc. , are not accidental. - 

Where might we look for accidental states? Probably the meson 

channels are more likely because they are eigenstates of more quantum 

numbers so inelastic channels (where a fluctuation in number might drive 

an accidental resonance in some channel 1 frequently decouple 

Perhaps a Ykely case is the B meson multiplet. The evidence for 

the B and its properties is not controversial. It is coupled to TI W, np, 

rrA 2, plus higher mass channels and strange particle channels. The 

isoscalar partner of the B is coupled to rrp, nw plus higher mass and 

strange particle channels, missing the equivalent of rrA2 (which becomes 

a strange particle channel 500 MeV. higher in mass). If the B is strongly 

coupled to rrA2, as is likely from data on B production by isovector 

exchange, then perhaps the B is an accidental particle which has no 
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isoccalar SU(3) partner. These ideas can be tested by studying the rrw 

phase shift in the i+ channel, looking for Levinson’s theorem behavior 

and by studying the 1+, isoscalar, odd G channel. 

In baryon channels one might look at the Roper resonance N*(1450) 

as a possible accidental particle, driven by the strong nearby TI A and 

EN thresholds. 
10 

One could study the pii phase shift, perhaps best in the 

HA channel since the inelasticity is large, looking for Levinson’s theorem 

* 
behavior. Also, if the coupling of N (1450) to strange particle channels 

:c 
such as KY is important (as is often the case for the higher mass one 

when two resonances N, N” have the same quantum numbers) it might 

happen that the A* SU(3) partner of N* (1450) would not exist since it is 

missing the I?A (I = 1) channel. 

It is reasonable to assume that SU(3), the quark model or any other 

classification scheme should apply to the strong short range interactions 
10 

which produce the true hadrons in p. If accidental states exist they could 

perfectly well not fit into ones classification scheme. This is no real 

loss since if we average over a reasonable mass interval the peripheral 

states disappear ~ In fact, the existence of accidental states is likely 

to be extremeley sensitive to symmetry breaking effects. For example, 

if the TI mass were as large as the K mass the deuteron would probably 

not exist. Also, the kind of N/D dynamics discussed above is extremely 

sensitive to mass differences at thresholds and in exchange forces. 
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We close with the obvious remarks that the existence of an incomplete 

SU(3) multiplet of accidental mesons would be a perfectly acceptable 

circumstance and that the quark model need not fear the establishment 

of a Z if such a state turns out to be accidental. 
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