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two-dimensional model field theories for which exact non trivial class;cal
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SECTION 1. - INTRODUCTION

For som;a time now, it has been known that certain 2-dimensional
field theories have particular classical solutions which look like ex-
tended particles.” There has however, not been much progress on the
question of whether these objects would appear as true particle states
in the corresponding quantum field theory. In this paper we address
this problem using the semi~classical functional quantization scheme
developed in the previous paper.Z)

The tl;nsual way of doing perturbation theory has built into it the
assumption that the asymptotic states of a field theory are free fields.
In a functional language, free field modes are just the solution to the
extreme linearization of the Schwinger equations for the generating
functional. This is reflected in the Feynman path integral language
through the instruction to integrate over all possible field histories
after expanding the interaction functional, either in ascending powers
of the coupling constant, or topologically, in terms of loop functionals,
around the free field modes.

This assumption selects only a sector of admissible solutions
to the full interacting problem. We will be concerned with those solu-
tions that pass through the usual functional sieve and are not asymp-
totically free fields.

In particular, we want to take as fundamental an exact solution

to the classical full-nonlinear interacting equations.



The bulk of this paper is devoted to the study of a particular
model that is a remarkable one since all relevant equations can be
solved analytically., Furthermore it has many interesting properties
even for weak coupling, a regime where we believe we have control
over our approximations, In particular we will display an extended
particle solution which has many properties reminiscent of hadrons.

A peculiar feature of the model extended particle is that it
involves a classical field configuration which has a topology different
than that of the classical vacuum. This feature serves to stabilize
the state and we conjecture that it is a general characteristic of
interesting extended objects. The possibility of topologically unusual
. field configurations appears to be related to spontaneously broken
symmetry, a discrete one in the present case. In a sense the field
theory becomes a model for a superconductor.

Cur model extended particle also serves as a well which can
trap and confine fermions. In fact, by turning the solution in one
space dimension into a (locally one dimensional) thin spherical

shell, a group at SLAC has independently been able to construct an

interesting and perhaps realistic model of hadrons with confined quarks.

The methods we have developed for including fermions, trapped or
otherwise, in semi-classical calculations are presented in Section 4
of this paper. Included are a set of self-consistent field equations,
~which while written for two dimensions, can be trivially generalized

to four.
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We will compute the first quantum corrections to the masses
of our extended particles, In doing so we will meet ultraviolet di-
vergences and in the process of removing them, illustrate some
renormalization techniques., Generaiizing these methods to arbitrary
renormalizable interactions is in principle straightforward. In more
complex models however, the cal::ulations would be extrerhely difficult,

There is a persistent conceptual problem associated with the
identification of a classical barticle-like field configuration with a
quanturn particle. It is that the classical extended object has to be
localized at some point in space. In the previous paper we show how
this apparent difficulty goes away when semi-classical quantization

methods are applied consistently. The reader who is troubled by this

point is referred to Section 5 of the preceeding paper.

The following section contains a review of those aspects of our
semi-classical functional methods which are needed for the present
work. We then proceed to the model and the fermion techniques

described above.
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Section 2. Review of the Semi-Classical Method
In this section we wish to review those results of the previous
paper which are directly relevant for the present work,
Suppose we have a classical field theory described by a field ¢

(more generally a set of fields) and a Lagrangian i {¢). Suppose

further that we can find a time-~-independent solution ;pofx) tc the time-

independent Euler-Lagrange equation

2 62 ¥4
.-é;(b )'P?é— =0 {2.1)

8
(;;m

We require that- the solution be localized in space so that the clasaical

energy, given by

E,=- [Liog ax | (2.2)

for a time independent field, is finite. Note that we are -Ea__gt looking feor
a new vacuum state which would be a conatant ¢ with a constant energy
density and hence a divergent energy.
The classical solution @ is also supposed to be stable in the
following sense. In the Lagrangian set ¢{x,t) = (po(x) + n(x,t) and
expand in powers of n keeping only the quadratic terms. {The linear
terms will be absent because %o -n.tilfien'the classical equations of
motion.) The resulting quadratic Lagrangian shouid then be reducible to a set
of independent harmonic oscillators with real frequencies Wi k = 1...m@).
Intuitively, one would expect this lbcalized, stable classical

solution to correspond in some sense to a particle at rest. In first



2pproximation its mass should be Ecl with the first quantum correction
_ Z‘ 1 .
coming from the zero-point energy 2% of the small cscillations
k
around rpo. Of course, we wil! have to subtract the zero point energy
of the vacuum to make § -%- “ finite and perhaps have to make further
renormalizations. According to the previcus paper, this is a2 valid

procedure for finding new kinds of particles in field theory provided

that the coupling constants are small. For strong coupling,semi-classical

approximation methods take a more complicated form akin to the
usual WKB method in ordinary gquanturmn mechanics. In the next two
sections we will restrict ourselves to weak coupling.

1f :po(x) is any particle like classical solution so, of course,
is rpo(x+a) for any spacial translation a. Also ¥y can be Lorentz
transfcrmed to obtain moving solutions. It was shown in the previous
paper that when these additional degrees of freedom are taker into ac-
count one obtains a quantum mechanical particle which has the prdper
energy-momentum relation E = p2+Mz where M can be computed
as outlined above. The quantized state of zero rmomentum does not
correspond to any one of the particular solutions ¢0(x+a) but rather
to the whole set of classical solutions obtained by letting a vary.
Furthermore, it was shown that states with many of these particles
can exist and that they will obey Bose statistics if ¢ is a Bose field,

In the previous paper, it was shown that one can systematically

improve on the weak coupling serni-classical approximation as follows.



in the Iagrangian ct, write the quantized field ¢ as ¢(x,t) =

(oc(x) 4+ ni(x,t} where cpc(x) is a time-independent c-number field

and n(x,t) is a new quantized field, Separating out the pieces of b4
which are linear and quadratic in m gives a new free lagrangian £0.
The guadratic terms in io define a propagator B(n, x', t-t') which
depends on x and x' separately, but because @ is time independent
the time dependence is the usual one t -t'. We denote the fourier
transform of ﬁ with respect to t-t' as oé(x, x',w). The part of

cf which is trilinear or higher in n defix;nes a interaction Lagrangian -fI.
In terms of &) and cxl one can clearly define a Feynman diagram ex-
pansion which has exactly the same topological and combinatoric proper-
ties as the usual one, We now introduce a functional d(wc) which is
defined to be the sum of all connected one-particle irreducible diagrams
with no external lines. Specifically e(wc) is

A (qac) - . fd"éfc“’c) P S fiw
h

= +
3 e dw tr logﬂ(u) i

.- {00

{2.3)

where tr log.é'(m) is the log of the determinant of g(x, x',w} with

respect to the variables x and x' and the omitted terms come {from

diagrams with two or more closed loops a‘nd are of order (h)n with n> 1.
Note that the first term in the expansion (2.3} for ? (qpc) is

just the classical energy. Any stable solution to the classical field



equation (2.1} is a local minimum of the classical energy. In the
previous paper, it was shown that a way to improve on the weak couplirig
semi-classical approximation is to look for a local minimum of 6 in-

stead of the classical energy. The equations are

LN AU
6 ¢ (x) = 0
wC’¢C
(2. 4)
M=&@)

where we denote by 3c the localized field which is supposed to be
a relative’minimum of ﬁ. We note that the ;')article mass M is just g
evaluated at ;5(: .

For weak coupling Eqs. (2.4) were justified in the previous paper.
Except for special cases, they do not provide a useful variational method
for finding part":clé states., The reason is that a particle-like, localized
field can at best be a local minimum of 6 The reader who is familiar
with functi.onal;.m.ethods will immediately recognize that the absolute
minimum of &, comes at the constant field < 0{¢| 0> equal to the
vacuum expectation value of the quantum field ¢. Nevertheless, Eqs.
(2.4) are useful. For example, they tell us how to renormalize. Ina
renormalizable theory, for every subtraction needed to define the second
term on the right of Eq. (2. 3) or any of the omitted higher terms there is
a corresponding counter term which can be added to the lagrangian in the

first term,

For weak coupling where this recipe is useful, the higher order

terms in (2.3) are small and since théwf are prohibitively difficult to



compute, in practice one will work with the two terms shown explicitly

in Eq. (2. 3). If one looks for a minimum of & (goc) computed in this
approximation, the resulting equations lead to an interesting self-consis-
tent-field Hartree-like approximation. An example of this procedure is
given in Section (4). For the present, let us- content ourselves with an
iterative solution to the Egs. (2.4). Let Ec be expanded as <_pc =

%y + B % + 52 ¢, + ... . Clearly the first term % is just the classical
field which is a local minimum of the classical energy. To compute the
corresponding particle mass through order L, we need only insert @
into Eq. @.3). The error incurred by neglecting g can easily be seen

to be of order Hz . The particle mass is then

+i%0

. . _
M=- f dxd{((pol + z;;* fiw dw tr logﬁ (w,fPD)
: ' (2.5)
+io0 !
h
= E.c! + :hr—l [ ? log {w-uk)
- 100

where in the second line IEI.:I is the classical energy as before and the

;‘k in the second term are the oscillator frequencies defined above. The
w integral is divergent and in need of regularization and renormalization,
but an integration by parts shows that it is formally equivalent to the sum

. . 1
of zero point energies § 2 W .
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SECTION 3.
BOUND STATES IN A TWO DIMENSIONAL FIELD THEORY MODEL

We now discuss a simple, soluble example, of the application of
these ideas tou field theory. Our example is the guantization of a classical

kink-like solution of the field theory described by the Lagrangian density

2
1 ~ 2 m ~2 Ao~4 3
= s , — - = .1
L= -3, 0+ G 0" - J0 (3.1)
where @ (;, t) is a real scalar field. The sign of the mass term
generates spontaneous symmetry breaking {the symmetry being
@ ~-¢). As will be clear, this is necessary for the existence of our
solution,
By making the scaling
J— a

¢ ='=
m

X = mx (3.2)

the Lagrangian becomes
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4

F-5

with

2 F3 4
L= -1, 9 +1¢ -10 (3.3)

After this rescaling, the limit K = 0 is equivalent to the limit
)\/mz =~ 0, which is the weak coupling limit. Hence, we expect our
results to be at least valid in the range of validity of ordinary perturba-
tion theory.

The classical eguation of motion is
2 2
(-8, +8 )¢ to-¢ = 0 | (3. 4)

The boundary conditions are |@| = 1 at infinity., We look for stationary
solutions. Multiplying{34)by ¢' and integrating, one obtains, after

using the boundary condition

) 2

o' + ¢ -t = 3 (3.5)

{We use the notation ¢ = tho and ¢' = qup .) Besides the solution

¢ = + 1, which represents the ordinary vacuum, we find the solutions
@ = +tanh /> (x-x) (3. 6)

tramhy x-Xy .
These solutions represent '"kinks'' where the energy denasity

vanishes exponentially away from Xq. In the following, we shall restrict

-ourselves to x, = 0 and the + sign, We also notice that @(x) approaches
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two different values as x - t+ o , .which correspond to the two
possible vacuum states. Because it is the lowest energy state which’
connects these two vacua, it can be translated, boosted or excited, but
never decay. Its decay would require flipping the vacuum over an in-
finite range of space, which requires infinite energy. This persists
after quantization., It is of course essential that the vacua have the
same numerical magnitude,

It is possible to have two (or many) solutions of the type (3. 6)
located around different values of X0 and with alternating signs.
There is an additive conserved kink number, which can only take
the values +1,0, or -1.Such a system is actually a well-known model
for a one dimension‘al superconductor, ¢ being the order parameter,
This relationship to superconductivity is nc accident and will also be
found in higher dimensional models,

We now il:;u'rn to the calculation of the quantum mechanical

energy of such a state, in our W_K, B, approximation. There are

two contributions: the classical energy and the quantum mechanical

fluctuations around the fundamental solution., We shall have to subtract
the ordinary zero point vacuum energy. It will aiso turn out that
another subtraction, corresponding to mass renormalization will be
needed.

The harmonic oscillator frequencies are the square root of

2

the eigenvalues of the differential operator (i—) +1-3 tanhz /-é‘
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It turns out that this problem is soluble in terms of elementary functions. 4
The equation to be solved is
2 2 2 =x
-'i-g--r(l-*u )y - 3y tanh ’,3-:' =0 3.Mn
dx

This is an ordinary one-dimensional Schrodinger equation for the

potential 1 - 3 tanh2 x . There are both bound states and scattering
V2
states. By the change of variables,

JE
zZ =
€ = .?.wz + 2
we recognize a particular case of Eq. (12.3.22) of ref. (4). The
. 2 2 3 .
values of the bound-state energies are w = Candw = 3 - The

. . 2
continuum begins at w = 2.
The bound state at w = 0 is recognized as a translation mode of

the kink. Indeed, its wave funcfion is

| d x - XO
- - = - 7— tanh —m
coshz_zi dxo f? X

Jz

This is the zero frequency mode mentioned in Sec. (4} of the previous

n
o

paper. It does not contribute to the mass of our kink. Its presence is

an indication of the fact that if center of mass rnotion were taken into
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/ 2 2
account the energy momentum relation would be the correct E:zfp +m .

The bound state at w = /:3- corresponds .to some eigenvibration of
the kink, which dies off exbonentially as one goes away from the center of the
kink. This vibration, if of small encugh amplitude, is a harmonic oscillator
with an excitable spectrum. Its ground state energy contributes i1hw to
the ground state energy of the kink.

We now come to the continuum states. They are defined by a wave
vector k = JZuZ - 4 {(Eq. 12.3.28 in ref (4)). One finds that there is no
reflection: all of the incoming wave is transmitted through the potential

well with a phase shift 6 which turns out to be
§ =2n - 2 Arctgk - 2 Arctgl k. (3.8)

To compute the total contribution to the energy, we need the
density of states as a function of k. Putting the systemn in a very large
box of length L with periodic boundary conditions makes the modes

discrete, the nth mode being given by
tk+ 6 = 2nn
n

Hence the contribution Econt of the continuum to the zero-point energy

of the kink:



(3.9}

The first term in (3.9), which is proportional to the volume of the box

is cancelled by subtracting out the vacuum energy. From (3.8}

dé (2+k2)‘
= 6 2 2
I +k Me+k)

dk

The remaining term in (3. 9) is then still logarithmically divergent.

This divergence is exactly cancelled by the usual mass renormalization
counterterm. The actual calculation requires a lot of care, in particular,
because the vacuum energy is linearly divergent, and finite parts can
easily be missed. The regularization scheme which is best suited

for this problem is to define the field theory on a lattice in a very large
box: the number of degrees of freedom becomes finite; one performs the
calculations and then lets the lattice spacing go to zero and the size of

the box to infinity. These points are discussed in the Appendix. The final

result for the energy of the kink is then

3
2 .
E = 3/2‘—)-:—' +m [— 1—']EF+ 2—76.] + OM) . (3.10)

where the first term is the classical energy, and the second one is the first

quantum mechanical correction.
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It is interesting to note that the kink has excited states. As noted
above, the w = ';— bound state is a local oscillation of the kink. The

state with n quanta in this oscillator will have an energy

’ 3
En = Ekink + > 0 (3.11)

The n = ] state is below the continuum and is stable. The higher states
can decay into an unexcited kink and one- of the ordinary quanta of the
theory. They would appear as resonances.

The kink is vaguely reminicent of a hadron. It is an extended

1

object with a ground state and a tower of excited resonances above it.
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SECTION 4,

ADDING FERMIONS

We can generalize our model by adding to the Lagrangian the terms
iV +g Ty (4.1)

which describe a fermion coupled to the scalar field ¢ . Note that our
fermion has no bare mass; its physical mass comes from the vacuum
m

expectation value of ¢ =+ = . Hence, denoting the fermion mass by M,
P i g Y

we have

ﬁ (4.2)

)

The transformation ¢ — ysxp will reverse the sign of a fermion mass so
that M can be taken as positive for either signof < ¢ > .

The rescaling

(4. 3)
@ - ¥
leads to the equation

idy+Goy=0 (4. 4)

where G is the dimensionless quantity
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c: % = ¥ | (4:5)
Finally, we observe that the ''charge”

a:fvylv (4.6
is a conserved quantum number and that if we take the representation

Y =0 Y i @ (4. 7)

It is of interest to study the solutions of (4.4) in the static kink field of

Eq. (3.6). Giving ¢ a time dependence

, (4.9)

multiplying (4.4) on the left by i# - G ¢ and using the representation .

(4. 7) yields

2

sz +U" -G qozU + Gcrz(l - (PZ)U =0 (4.10)

where primes denote derivatives with respect to x and we have used the

equation '=1- fpz, satisfied by the kink. Eq. (4.10}, like {3.7), is then

a Schroedinger equation with a hyperbolic tangent potential and can be solved
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analytically. The frequencies w of the bound states are
2
w =2nG-n ; n=0,1, ... <G (4.11)

Note that Wy is zero. It is a non-degenerage eigenvalue of (4.4). The
corresponding wave function UD is real in the representation (4. 7) and
is therefore a self charge conjugate fermion state which carries no charge

5)

1 .
Q. ‘Also, because U_ turns out to be an eigenstate of y = 10’2, the

0
density 60 U0 vanishes, i.e.

U0U0=0 (4.12)

: / 2
The non-zero freguencies come in pairs, w = + 2nG-n . The positive
frequencies are fermions with Q = + 1 while the negative frequencies are

anti fermions with Q = -1. The proper normalization for these states is
fulu =1;n=12 <G 4.13
n n - » n=l,4, ... (4.13)

There is also a continuous spectrum to (4.10).

So far, all we have done is to introduc'e some notation and discuss the
solutions (4.4) in the static kink field (3. 6}. Now we would like to see how
the Fermi field can b? incorporated into our general program of looking for
semi-classical particle-like solutions in field theory. A simple device which

will be sufficient for our purposes is to observe that the Fermi field enters only
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bilinearly in the Lagrangian and can be integrated out of 2 functional integral.
Doing this will yield, in the standard manner, an effective action for the

field ¢ itself;

2 ~4 .
~2 m ~ A\Q i . ~ (4.14)
- 1 m_ Lo L +
S = f(.z(apqp) t -3 _)dx t3 trlog (i? + go)
where
tr log (id + g @ = log det (id + g @) (4.15)

is the log of the Fredholm determinant of the differential operator
(i + g 9 . The determinant is, of course, divergent and must be
renormalized.‘ We wli.il return to this later.

At this point it should be understood that ; is now a general
classical scalar field not the kink field. When we wish to refer to the
kink field we will 'say so. -If we restrict ourselves to fields @ which are
independent of time, i.e. @ = @ (x) where x is the spacial variable, the

time part of the trace in (4.15) can be done in frequency space yielding

. a1 0 ,. 14 , ~_ 50 |,
3 tr log (1a+g¢)-2“i fdwl:rxlog (y w + iy ax +goIm S {4.16

where the symbol trx log stands for the log of the Fredholm determinant of

the one-dimensional differential operator (you +i\‘rl ‘% +g @) . The factor

6 (0)/27 corresponds to the integration over time in the definition of the

action 5. It will be dropped from now oﬁ.
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An integration by parts in (Eq. 16) yields

0
3 tr log (i?*ga)'-"z}'-: fdm W tr ( X ) (4.17)
mio- x ) ~
C t gy

I d
Yenw g

where the contour C of the w integration remains to be specified. The
integrand has poles at the bound states of the one-dimensional operator

iy y 2 + gy ¢. The lie on the real axis and (by charge conjugation)

dx
are eymmetric around w = 0. If we assume that I'&;(xll goes to a constant
{@(x)| as |x| o, then a free fermion has mass M = gl ¢ (0} and the
integrand in (4.17) has cuts running from +M to +®, and -M to -®. If we
are interested ina Q=0 sector of the theory then by ch#rge conjugation,
the contouf C must cross the axis at w = 0 as shown in Fig. (1). To obtain
the contour for a Q# 0 sector, one proceeds as follows. Add to the
Lagrangian a Lagrange multiplier I.JJ yo ¢, compute as before and then adjust
p to obtain the desired value of Q. .Clearly, the effect of the Lagrange
multiplier is simply to replace w by w +p in the integrand of Eq. (4.16).
This simply shifts the contour to the right or left depending on the sign of
p. If we shift to the right passing N poles of the integrand in the process,

we will be in a sector with Q = N. Conversely, shifting to the left and

picking up N poles at negative w will put uls in a sector with Q = -N. The
contour for the Q = 2 sector is shown in Fig. (2a). Fig. (2b) shows this contour
deformed back into the Q = 0 contour C0 plus a loop around the two lowest
positive energy bound states of the Dirac equation. Let us call the poles in the

loop occupied states. For the Q = N sector, the N lowest positive energy
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states will be occupied and for the Q = -N sector, the N lowest negative
energy states will be occupted. Having now determined the contour C for
the general case, the Lagrange multiplier no ionger plays any role and will
be ignored.

Let us now look for time independent (static) solution to the
variaticnal equation for @. Varying the effective action (4.14) with

respe:t to the time independent, but spaciully varying field @ (x), yields

1
t?’(xwmza(x)ex'&a(xuf; fdo <xi —5 : — 1 x>=0 (4.18)
' -y wtly S TE?

where the integrand is the diagonal x-space matrix element of the indicated
inverse differential operator. This matrix element depends functionally on
¢. Deforming the contour_to the standard Q = 0 contour C0 and picking up

any occupied states, we have

P'(x)tm @x)-Ae (x)tg 2 Uk (e, x) Uk(tp,x-) + "Fermion Loop" (4.19)
keocc. states

where

(L] 3 ] 1 1
Fermion Loop" = pury f dw <x | 0 1 q ~| x> {4.20)
S -y wtiy =t g¢

and we have indicated that the Uk depend functionally on ¢; that is
they are scolutions to the equation -ukyo Uk(a’.x) + iyU'k(q';,x) + ga(x)Uk(rF, x)
= 0. The % sign in Eq. (4.19) takes the value + for positive energy states

and - for negative energy states. The product of wave functions uu
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algo changes sign as so that this term is actually the same for Q > 0 and
Q < 0 as it should be from charge conjugation considerations.

in Eq. {4.19) we have separated the fermion loop from the occupied
states since the former is a true quanturn mechanical correction of order h
relative to the terms explicitly shown in Eq. (4.19). Concentrating on the
explicit terms in Eq. (4.19) it is clear that they define a self consistent
field, Hartree-like approximation. &) One could imagine guessing a value
of @, computing the occupied states Uk’ solving Eq. (4.19) to obtain a' new
field ¥ and repeating the cycle until a self consistent solution is obtained.
One could even contemplate doing this with the fermion loop included, but
such a pr‘obnlem would be intractable unless some clever approximation
could be devised.

While the general problem of solving an equation like (4.19) is very
difficult, there is a special case which is extremely simple. Recall, that
with our static kink solution for ¢ , the Dirac equation has on.e solution
with w = 0. As mentioned above, this state carries no charge and has Ilo(kink.x)
U0 (kink, x) = 0. Now, if we occupy only this state, there will be no reaction
of the Fermi field back on the scalar field ¢, and the kink will remain an
exact self-consistent solution. (Here, we are ignoring the fermion loop.}
The particle thus obtained by taking the basic scalar kink and occupying the
w = 0 fermion state will be a3 new object in the theory which has Q = 0 but
otherwigse behaves like a fermion, i.e., it will have spin § and obey Fermi

statiatics. To zeroth order in B the mass of thia new fermion state will be
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the same as the mass of the kink. This must be so, since it costs no energy
_ to put in a fermion with w = 0. Of course if g is small,we can find further
approximate solutions to Eq. (4.19). If we take small g in Eq. (4.19), then
in first approximation the Uk(ﬁ,x) will simply be Uk(kink, x}). The
solutions of the Dirac equation in the kink potential were discussed above.
For small g, the mass of a Q = N state composed of kink plus N trapped

fermions will be

N
M(Q = N) = M(kink) + m Z"IJZHG - nZ (4. 21)
n=

(small g)

where G = gf2/\ as before and we must have N <G. We leave it to
the reader to convince himself of this result.

It remains to tackle the fermion loop. We assume that we are talking
about a particle with Q =0, either the original kink or the kink with the
w = 0 fermion state occupied. We wish to evaluate the lowest order
contribution of ghe fermion loop to the mass of particle. From Eq. {4.17),

this is simply

0 .

1 Y

= . — .22

aM z“fduutrx( R ) (4. 22)
Cb -Yu+w—a';+g¢(k1nk)

Deforming the contour C0 to encircle the negative energy pole and cut

as shown in Fig. (3), yields

AM = Z..,k . (4.23)
neg. energy states
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where we have imagined the cut to be a series of closely spaced poles.

The interpretation of (4.23) is simple. It is the sum of the energies of all
the negative energy states which, according to Dirac hole theory, should be
occupied. Recall that for a boson loop we found that AM was given by

.,
Lssw

for positive w_ which has the interpretation of the zero point

k k

energy of a set of oscillators. A fermion loop has the opposite sign {the

w. in (4.23) are all negative) and a factor of two difference in magnitude.

k
This change of sign and factor of two are familiar from perturbation theory.
Here we see that this is a refiection of some rather different physics.

To make AM finite we first have to subtract the (infinite) energy of

the states which would be filled in the vacuum, i.e., in the absence of a

kink. Then,

AM = ? oy teinko) - w, (vacuum)] (4. 24)

neg. energy
states

in an obvious notation. The expreasion is still logrithmically divergent
but is made finite by a simple mass renormalization, as wa;s the closed
boson loop.

The actual computation of AM can be carried out along the lines of the
Appendix. . As the result is rather complicated and not particularly
illuminating we wiil not give it here.

One of the authors (B. H.) would like to express his appreciation to
Dr. Carl Kaysen for the hospitality extended to him by the Institute for

Advanced Study.
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APPENDIX

In this appendix, we compute the first quantur~ mechanical

correction to the energy of the kink of Section 3. The classical energy is

3
_ml ot g2, 2 1 e 1
E, =% fw Be"-de"r T +7)dx (A1)
with ¢ - tanh x /2
. 5 3
- £ P
Hence Ec!- 3 ﬁ ~ (A .2)

For the quantum mechanical corrections, one must be very careful
to appropriately count the modes, and subtract the vacuum energy
for each mode. The regularization of the theory, both in the infrared and
in the ultra;iolet, is obtained most naturaily by putting the systerm on a
finite lattice in a box,with periodic boundary conditions. This makes the
number of degrees of freedom finite. - We cormpute the difference between
the quantum corrections to the ground state energy of the ordinary vacuum
and to the ground state energy of the kink. We shall neglect any quantity whict
goes to zero fast enough,when the length L of the box goes to infinity. One
must follow what happens to the eigenmodes of that systern when the kink is
introduced into the box.

In the absence of the kink, the energy of the vacuum comes only
from continuurm states (travelling waves). When the kink is introduced, the
first two continuum states disappear to.become bound states with w = 0 and

w = g . The contribution of these two states to the energy of the kink - "
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will then be 3(0 -2+ 4 (j‘-z! - ﬁ). The contribution from the other states,

which rerain in the continuum in the presence of the kink will be

E_,. - ? 2'14_2' [@i + 4)%- ( ;‘2 + 4)1 (A .3)

where kn is the wave number of the nth mode in the continuur in the
presence of the kink, and k' o the wave number in the vacuum. They are

related by the periodic boundary condition:
Lk + 6=1Lk' =2nmw
n n

with & given by eq. (3.8). Inthe limit L — o, the discrete sum of

(A .. 3) becomes the integral
A

1 dw
E -7 [ & 4 d
0
where A is the ultraviolet cutoff, given by the lattice spacing, Using

eq. (3.‘8) and restoring the dimensional units, one finds

E - [4n-6 3 f°° mZdk
cont zn’T Z Jo Zy 2kz)rﬁ( 2o

Wz o sz+ 2mz .

This expression is now logarithmically divergent only. This reraining
divergence is cancelled by the ordinary mass renormalization counterterms
" as follows:

By computing all the one loop graphs in the ordinary fashion for the

Lagrangian (3.1}, one finds that they become finite if the Lagrangiaﬁ (3.1) is
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replaced by

4:-—;(8 'cﬁ)z+§(mz+6m!'¢3-L3 (A.5)
B 4

A
where b = f S

and in which one performs the ordinary shift e @ v—{:— . The fact that

this shift remains unchanged generates the tadpole counterterm

~ 2
J%‘- 5m which is precisely needed to cancel the one loop tadpole. For

™ X m

the kink, the shift is a -¢ +JT tanh J—Z-— .
Hence the mass counterterm contributes to the energy of the kink by the
amount

+ o0

1 2 m: 2 x
-3 5m .= |dx (tanh -1,
: - Jan Z

which exactly cancels the divergent term of eq. (A..4). Collecting all the

finite terms, one then arrives at eq. (3.10) .
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a real field can carry no charge.
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This state is a self charge-conjugate -object like K(; . It has a

partner (Kg) built'on the kink with the negative sign in (3. 6).
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FIGURE CAPTIONS

Fig. 1. The singularities of the integrand of Eq. (4.17} and the

integration contour CO for a charge zero sector of the theory.
Fig. 2. The contour for the charge two sector (a) and its shift to
CO with two states occupied (bj.

Fig. 3. Contour for evaluating the fermion loop.
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