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ABSTRACT

We apply the recently developed technique of Ward Takahashi
identities for proper vertices in gauge theories to the problem of
renormalization of electrodynamics - as a simple example of a gauge
theory - when the gauge condition chosen is bilinear in fields. We show
that spinor electrodynamics is renormalizable when the gauge condition is

f(A) = (8 At o1 §A2) = 0 where & and o are real and arbitrary, and

N/_

parameter £ is renormalized independently. We also show that scalar
electrodynamics is renormalizable with the gauge condition

A1z (8 A" 16a% - 1ns"9) =0 wh d 1 and
f[ ]:--'\/—E-—(HL -1t -3n¢ ¢) = where £ and n are real an

arbitrary. £ and n must be renormalized independently.
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I. INTRODUCTION

Renormalization of gauge theories (broken and spontaneously
broken) has been discussed at length over past few years. The earlier
discussions on the renormalization of gauge theories have been based
on the Ward-Takahashi {WT) identities for Green's functions.fl Recently,
renormalization of gauge theories has been discussed using the Ward-
Takahashi identity for I' [ &], the generating functional of the one particle
irreducible (proper) vcserticv:—:s.2 Since renormalization procedure is stated
in terms of proper vertices, use of the Ward-Takahashi identity for
I'[ ® simplifies the discussion of renormalizability greatly. Above
discussions on renormalizability of gauge theories have been carried
out in which the gauge conditions chosen to quantize the theory are linear
in fields. It is of some interest to see whether the proof of renormalizability
goes through when the gauge condition chosen is bilinear in fields. > {(That
is how far one can go if the gauge term is not to exceed dimensions four.)
Here, we apply the method of Ref, 2, viz. the Ward-Takahashi
identity for T’[ ®] in order to carry out the renormalization of the simplest
possible gauge theory. We work out the renormalization of electromagnetic
field interacting with a Dirac field or a complex scalar field. It is hoped
that this exercise will help understand the renormalization of more
complicated (e. g., non-abelian)gauge theories in bilinear gauge conditions,

In Sec. II, we begin considering the Lagrangian for free
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electromagnetic field with the gauge condition f[ A]= % [aHA“-ggAHA”]
=0 , with £ and o as free parameters. Though the theory is trivial
from the point of view its physical content {S-matrix), it is non-trivial
from the point of view of renormalization. In fact the renormalization
of free electromagnetic field makes it considerably simpler to treat the
interacting cases in this type of gauge. We note that, in this gauge
(E# 0), there are (AH)3, (.Ap')4 and (cc AH) vertices. (&,c are the Faddeev-
Popov ghost fields. 3) We obtain the Ward-Takahashi identity for proper
vertices. We use the dimensional regularization. We analyze the
divergences in G_i[<I>] (the generating functional of proper vertices with
two external ghosts.) and in L?i;[@] which is essentially the expectation
value of the gauge functional in presence of external sources. Using
WT identity for I'{ @], we obtain relations among the divergences in
I [14a), G [ @ and (2:[ #] and show by an inductive proof that they
can be removed by multiplicative renormalization on fields and parameters
« and £ . (We shall not state any specific renormalization conditions
which determine the finite parts of renormalization constants.)

In Sec. III, we give results of one loop calculation to carry out
the renormalization program of Sec., II and varify the relations among
the divergences obtained there.

In Sec. 1V, we show that the 4~photon S-matrix amplitude vanishes

in this gauge, as it should.
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In Sec. V, we consider spinor electrodynamics. The extension
from non-interacting case is, more or less, straightforward. We prove
the renormalizability of spinor electrodynamics and obtain the usual Ward
identity between the renormalizations of clectron photon vertex and
electron propagator.

In Sec. VI, we consider scalar electrodynamics. We find that in
the gauge f[ A] = _\/13“ (8HAFL - %gAz) = 0 , we cannot make proper vertices
finite by multiplicative renormalizations on o and £ (and fields, etc.).
This is essentially because, in this case, y;[ ®] is such that its
derivatives cannot be made finite to all orders by multiplicative
renormalizations on o and £ (and fields, etc.). We however find that
if we choose the gauge condition f[ A] ____:/16- (Bp.Ap' -1EA" - lnqg*d;) =0 ,
and renormalize o, £ and n independently, the renormalization program
goes through. This is explained in Sec. VL.

It is found that renormalization of £or £ and 7 is (are) independent
of those of other parameters and fields. From practical point of view,
such gauges would have been more useful were the renormalizations on
¢ and n dependent on other renormalization constants, for then,

certain simplications in the effective action could be made and maintained

to all orders.
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(IT-1) Prelimary

In the following, we consider the Liagrangian for the electromagnetic
field A (x) ,

H

FF
pv

i

_gﬁ=_

where,

F

aA -0A
pv MoV VR

36 is invariant under a local gauge transformation,
A=A (3 -=0 wXx (1)
e U e M ’

We shall choose the nonlinear gauge function,

A

a

M P
f = 8 A" - L A . 2
[A] =+ (*L ZéAp ) (2)

Then the gauge term, to be added to _%ﬂ, is given by,

2
%augez_%{f[A]} ’

Henceforth, we shall use a summation - integration convention

(used, for example in Ref. 2). Thus, the gauge functional of Eq.(2)is,
1 o
= 4 —— - L
L8] == (£8, - 3E58,8) (3)
_ _ 4
[a(iy: 8 64(){ -X ) g‘f!. = g. 6 (X _X_) 64(X_-X.) etco] -
I o i 1 e 1 i)
As shown by Faddeev and Popov,3 the Feynman rules for

constructing Green's functions can be deduced from the effective

Lagrangian,

L%

eff[

A,C,E]=g+g +

0 gauge —.aMce[S cﬁ ‘ (4)
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Where, éa and c‘3 are fictitious, anticommuting complex

scalar fields which generate the Faddeev -Popov ghost Ioops, and M

ap
is given by,
51 [ Al 1
. _ o 1.8
Mop “5A_ (& o) eva
Bf.a o
(ai -5 ) - (5)

We note that there are (A"L)3 and (AH)4 vertices arising out of the
gauge term and a ECAH vertex from the ghost term. These Feynman
rules are given in Fig. 1. (The dotted lines denote the ghost lines, the
wiggly lines denote photons.)

(I1-2) Ward-Takahashi Identity for Proper Vertices

We shall deal with unrenormalized, but dimensionally regularized
guantities (in dimensions 4-€). We shall use the notation of Ref, 2,

The generating functional of Green's functions is given by,
Wl J] - J[ dAdcdE ] exp z{g [A,c, 8] + JiAi} . (6

As a result of gauge invariance, WF[ J] satisfies the WT identityz;

which to our specific case, reads
1 1 5 ] -1 6 ]
- — —_—— + —_
@fa[iaJ JiBBiMﬁa[iéJ

Z[ J], the generating functional of connected Green's functions

WF[ J] =0, (7

is defined by,

WF[ J] = exp iZ[ J}
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We define,

. 82[7]
e = 55, (8)

Then the functional I'[ &] defined by,

rpe =2z[J] -J.9 (9)

11

generates the proper vertices.

It follows from Eq. (9),

T vs (10)

We go back to the WT identity of Eq. (7) and use the operator

identity:
1 & iZf J] iZ] J] [ 1 5]
- = + -
B[i GJ]e e Bl ® T57 11
and thus obtain,
1 1 5] B -1[ 1 GJ]
- = +m =] J = 1 - =
Jafa[@ T3 1+ 9 iMﬁa ®+o o 1=0 . (11)
Now,
L2
5 5 j o )

= . &
- Aij[ ] 5@,
J

It can be shown that Aij [ ®] is the propagator when fields Ai

are constrained to have expectation values <I>i . Then using Eq. (10},

Eq. (11) becomes,

1 I PR - <7 0 _
ﬁfa[qwmé@] 1 aiwi Gﬂa[@] 0 (12)

where,

— .. b
— —+ — .
Gﬁa[ )= MBQ[Q iA 5 gp] 1 , and can be shown to be the
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generating functional of proper vertices with two external ghost lines.

Now,
Na f [cI>+ iA -—6—] 1
o 5@
(e
. 6 ol & . 5
= o + —— - L B+ — — |7
%81[ Ty 5@.] 26| B By 5@] [q)j "M% e ]% !
] k 1
(23
= - 1 + 3
%aﬁ R ““ij’i
Thus we obtain the WT identity for proper vertices:
Bol[®] Va2 s _ 12 + 1
Gool B9 53— = 5% & ~ 25 (&% T oy L9 - (13)

(II-3) Expression for G;t[ ®]

Gay[ ®] is the generating functional of the proper vertices with

two ghost fields at ¢ and y . In order to carry through the renormalization

. -1 . -
program, we need to show that the renormalized G [ ®] is a finite

. . . -1
functional, Hence we need, first, to obtain an expression for Gay{ 3] .

We have the identity:

.. & -1[ . 6]
®+ —_ @-}- iy '1:
Mayl: 1A6<I>:| IVIYB 1A6@ 6043

Using definitions of MQY{Eq. (3)] and G _ [ Eq. {(12)];

vp

[éli-g‘fj(qwrm. —-‘l—)]a?a (8] =6

j jk o @k i "vp of
Using, 1
5G
b g 19 =-c n g
5% YB Y€ ST
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we obtain,

@Y g o =
a8 -t ®39'A_ G G =58
11 .513 iijkomt 6% vB af
Hence,
-1

-1 @Y Lo Y o n 6G§v

d] = 9.9} - + i A G 14
Gyl ® i % gijq)jai Igijal jk nt " o® (14)

A diagraramatic representation for the last term is given in Fig. 2.

(II-4) Renormalization Transformations

To prove renormalizability of the theory, we have to show that the
derivatives of T'[ ®] about its minimum can be rendered finite as € - 0,
by rescaling fields and parameters appearing in the Lagrangian
-Q'ﬂeff[ d,c,& ]. We therefore define renormalized parameters and

fields by the following renormalization transformations:

- 7H an 3HaD
1_ W 1 o1 1 (r)
a Z (r) §=YZ 278
[24
We also define:
PN 62 T \ - (r), (r) (r) A7)
Ga’ﬁ[i} - ZGaﬁ [ o ] » P[ Qsas g] - r [q) ) & :g ]

In the following, we shall always express everything in terms of
renormalized quantities and drop the superscript (r) . Thus the

expression for (renormalized) G;i[ &} becomes, (from Eq. (14)):

-1
1 ~ Y o v @ N 6G§Y
Pl = al. + i —_—
GQY[ 1 zai h Ygij cbjai 1Yg.1j ai AijGng B(I)k . (15)
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While the WT identity of Eq. (13) becomes,

p o 1w X 1Y
ﬁaaiaq)i s 9, & £.&8 @ Ei.A,.

= -9 . (16)

To carry through the renormalization program, we start with the

unperturbed Lagrangian expressed in renormalized fields,

= -1 wv (1 g Ak
—Qg 4F|.WF ZQ(p,A)

2

and expand the proper vertices in terms of the loops the Feynman diagram
contains, In each loop approximation we must determine the renormalization
constants by a given prescription.

In the following, it will be assumed that renormalization constants
Z, Z, W, Y are determined up to (n-1) loop approximation and that these
make G‘;i [®], T'[ ¥] and ja'[ @) (defined in Eq. (16)) finite to each
order, up to (n-1) loop approximation, in perturbation theory. We write,

up to (n-1) loop approximation:

= + + ..., + . .
Ziley = 1+ Zi(e) zz(e) zn_i(e), etc., etc

Then we shall show that an appropriate choice of Z "z"n, Y, W, can be
-1 L.
made as to make Gay[@], I'[ ®] and ‘_ZT ®] finite up to n loop

approximation.

(II-5) Analysis of Divergences in G;i[ @] andz-[ d]

-1 .
In order to show that Ga’Y[ @] andﬂ 3] can be made finite by
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appropriate choice of the renormalization constants in n-loop approximation,
we must show that various derivatives of G:Y[ 3] and ‘2:[ ®] at
© = 0 (the minimum) in the n-loop approximation have received all the
internal subtractions (the meaning of this statement will be clear soon. },
so that the divergences in these (those which are renormalization parts)
are polynomials in external momenta and therefore that these can he
removed by the local counter terms provided by the appropriate choices
of the renormalization parameters.

We note from Fig. 1 that the Feynman rule at the r':cj-‘s}JL vertex is
proportional to the momentum of the incoming ghost; so that in any

proper vertex with two ghost lines, there is a factor of pH for the

incoming ghost of momentum p . This effectively decreases_ahe degree
-1 BGQ\([ )

of divergence (D) by one. Therefore, G [ 9] and =3
@ &= 0 k =0

-1
are renormalization parts but higher derivatives of Gm{[ ®] are not
renormalization parts. Also only the first two derivatives of gga[ @)
at &= 0 are renormalization parts.

(A) We begin by considering G;:,[ ] in n=loop approximation.
&=0

We write this down in momentum space as Feynman Diagrams. [ See
Fig. (3)].

Consider [Z]n i.e., X in n-loop approximation. The shaded
blobs in [Z]n contain at most (n-1) loops and the counter terms introduced

up to (n-1) loop approximation provide the necessary subtractions for
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the subdiagrams in the blobs making them finite by our hypothesis.
However [2]n needs further subtractions for the renormalization parts
which are subdiagrams of [Z]n and contain the rightmost vertex in [E]n

From the remark made earlier about the (&cA ) vertex, such _1
5G
£y

6 <I>k

renormalization parts arise only from two particle cuts in
the leftmost blob in [Z:]n . See Fig. 4.

Thus these renormalization parts needing overall subtractions
consist of the three point proper vertex 6 G_ilé & to various loop
approximations [up to (n-1) loops]. We shall show that the overall
subtraction for such subdiagram is provided by y Hence the
additional internal subtractions needed by [Z] consist of 55: Yo (Z))

Therefore,

n-1
) Z y1"(2)n--r
r=1

has its divergence a polynomial in momentum. Due to Lorentz

-1
transformation property and dimensions of G " (p) ,

di 2
(YZ)Hlv = p K(e)

(Here we note that there are no dimensional parameters in age)ff

~di -1 o
Therefore by choosing Zn1v= K(e) we can make [G (p):ln finite.

6G- [@]

5 fbk

(B) Next, consider From FEq. (15),

®=0
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-1
oy y, o « n 5 BG;
-y o E? 4 5 __ bty T
58 YL, TIvE; 8 58, AmC e 5% (17)
&=0 =0

We express the Fourier transform of Eq. (17) diagrammatically in Fig, 5.
As before, we need consider the internal subtractions needed to

[y1 + Y, + Y3]n for their subdiagrams containing the rightmost vertex

in each only. It is easy to see that (yz)rl and (Y3)n does not have

subdiagrams which are renormalization parts. (\/1)n has, however,

such subdiagrams which arise out of two particle cut in the proper

{ECA“A v) vertex on the left. These fall into three catagories shown in

Fig. 6.
As before, it is clear that the internal subtractions to (yi+y2+y3)n
n-1
i +
are provided by Z yr(\(iﬂg2 Y3)n-r . Hence,
y=1
Y0y, +v,+v.) 10V = p_J(e)
1 '2 '3"'n 0

(Here one must remember that each diagram is proportional to pu.)

Therefore,
3 di
[G( )(p,q. T, u)]nw = pu[éyn(e) + J(e)]

and can be made finite by appropriate choice of yn(e)
{C) Consider divergences in ._9:[@]

We note,

-iY
F1 2 = %A
@ =0 ZWZZ LY
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2
F.T.,LQZ[@] = Wf[ App(q 11,494 (19)

2
where Apv(q ) is the photon propagator. Since the right hand side must
have dimensions (molc:r1e|c11:ur_r1)2 and since there are no dimensional
quantities in the integral that it can depend on, it must be zero in

dimensional regularization.

2 -
" Fe %
Next, we consider the divergences in and ——me—
5 <I>k ) (Dk & @E
=0 &=0
5 o W\ e Y ,a & .
=9, -—=¢&. . — (iAa.) (20)
& ‘I}k 7 k 27 "1} 6@1{ ij
=0 =0
° : o Y o o 5} 2
——— = el + —_—e— [} .
55,60, 52 %5k T 55 3 63, (14;5) (21)
&0 =0

We tabulate these in Fig. 7.

The constants, A, B, C are defined in each order in perturbation to
be the overall divergences left in A , i:]“v and IIHV {They are defined in
Fig. 7) respectively when all subtractions are performed on their
subdiagrams which are renormalization parts. Note that we have not
yet specified how the finite parts of A, B, C (alternately of A, o
and II“v) are to be defined. [For clarity, we note that A, g , and

Y

II are proper diagrams. The distinction between o and II is
Ry Ky My

that when they are opened at the vertex denoted by cross (—~¢~), Hpv

gives rise to a 4 photon proper vertex while Dw gives rise to a

4 photon improper vertex.}
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The subtractions needed for subdiagrams in the shaded blobs in
(A , [o ] and | IIHV] n (See Fig. 7) are provided by the counter
terms already introduced in the Lagrangian up to (n-1) loop approximation.
Thus apart from overall subtraction these need subtractions for the
renormalization parts which are gsubdiagrams containing the leftmost
vertex denoted by a cross (~~) . We tabulate these subdiagrams and
subtractions needed to them in Fig, 8.

Thus, from Fig. 7 and Fig. 8, it follows that,

n-1 -1
. _ 1 _
@ [a @], - 2 Blaml, -} 2 C[a® _ -4p
r=1 r=1
= finite
which can be written in a condensed form:
[A (p)(1-B- (—:) - Ap ] = finite (22)
1 P 2 pp n )
(i) 2[ Dp.v]n - ZBngpv = finite
n-1 n-1 n-1
(iiiy [(II ] -4 CI[Il ] ~2 Cig 1 . -22BJlo ]
vin oy I pyin-r o4 T wyoner y ¢ mvn
n-1
- B[l ] __. = finite
I‘z'.l T (A

Adding (ii) and (iii) and writing in a condensed form:

C -
[ (Zgw + ZDW + IIW)(i-B— =] = finite . (23)
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Now, 5.
o o W EYW
F. =ij=zp t=57 A (p) 24
6%, ANEY M (24)
&0
and, 2
® @ WYE
——————— = - + +
F.T. 5@1{6 @f 2—,.2“;2— 2 " 20 v II . (25)
$=0

Comparing Eq. (22) with Eq. (24) and Eq. (23) with Eq. (25), it is
clear that the two derivatives of z'[cb] can be made finite simultaneously

if we choose the factors ?Z%-N and Y_,—v appropriately [ i.e., equal to
Z

(1-B- g_j) and _—%‘é— respectively.] However, since we would like to
(though it is not necessary) determine the finite parts of W and Y by
renormalization conditions on derivates of I [®] rather than of zf 3] ,
we will state it differently. Suppose, we have chosen v, and Y, in

rth loop (r<n} approximation by appropriate renormalization conditions

and if they satisfy,

{i) (%‘;) {1 B—g) 0 r £ n-1
7 2'r
r
div .
(ii) (5 ‘é’) - a9 0<rs<n-1 (26)
g r r

then we have to show that Wn and Yy chosen in nth loop approximation
will safisfy:

YW C
(i) (—-——) - (1-B- S)
Zz 2

1

n
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div .
(i) (3 W,;) a0
g r

Z
62:

§ 29
T finite to n loop approximation.
i

and ———
=0 88 % a0
Here we note the convention to define the finite parts of AIJ and

and hence will make

{2 +II ). Once the finite parts of Y,Wand Z are chosen by a

0
[TRY) v
given set of renormalization prescriptions in r loop approximation,
C
Eq. (26) then defines the finite part of {(1-B- 3 )r and hence of
. th
2 + 1I . Finite part of {4 8 so defined in r = 1
{ DHV pv)r' i P o [ p(p)]r is so i oop
approximation that WT identity of Eq. (30) below is satisfied by the finite
parts.
The higher derivatives of '% [8] are not renormalization parts.

The proof that they become finite in n-loop approximation once Eq. (26)

are satisfied proceeds similarly.

(II-6) Proof of Renormalizability:

Consider the inverse photon propagator va(p) . Because of the
Lorentz transformation property and the fact that there are no dimensional

parameters in the theory, it follows that,

div 2 t £
[Fw(p)]n = (gwp - pppv)N (e) + ppva {€)

(t) (£}

Define I'""" and T’ by:

(£)

i 2 (t
T o - (gwp pppv)r oyt » 7)) (28)
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Then,

[I,(t)(p)] giv _ Nt(e); I:PE (p)]dlv .. €

n

We shall choose Zn and Wn such that Nt(e) and NJE (€) respectively
become finite, As shown earlier, we can choose ’z“r1 such that [Gni(p)] n
is finite. Then we have to show that proper choice of Y can be made so
that the (ECAH),(A p)3 and (AM)4 vertices become finite and that relations
of Eq. (27) are satisfied.

To this end, we consider the WT identity of Eq. (16). We consider
successive derivatives of this identity at ®=0 and equate the quantities
on both sides in the n-loop approximation.

(A) Differentiate the WT identity with respect to <15k and set

&=0 . We obtain,

2
c #.8T z__i__Waa__i_‘;(_gaﬁ(Aij) 29)
Ba i 5RE B a 7k 27 %] 58

&=0

Writing this in momentum space, using the Fourier transforms

defined earlier [See Egs. (24) and (28}] .

2 b4 2 1 .
app prpt - -2 }‘% p + §Y~:"-‘-’~Av(p)£ (30)

Left hand side of Eq. {30) is finite in n-loop approximation (with

already chosen "z"n and wn), so that

finite = -ng +§mé (p)i ,
Fov 222 v

n



-19- FERMILAB-Pub-74/69-THY

(3 + 20 (-1,
n-1
W §§: -g.C
- (E)npv "5 (1-B 2) [Av(p)]n-r by Eq. (26)
r=0

N

- (¥ £ .
= —(z)pv -3 Anpv. + finite by Eq. (22)
n
div div
[A} = - %(E) . (31)
n Z/n

{B) Next, differentiate the WT identity with respect to @k and

®, and set &0 . We obtain,

?
3 2
B 5§ T & B & I
ar + (G, )8 ———— + (ke £)
e 1626958, 5@ pa i 259,
2.
- L WY @ o © U8y . (32)
@ 52|74k PN 58,58
Let us define:
5°T (3)
F.T. W = -1 PQ'P- v(p: q.n l") @ (33)

Then, the left hand side of Eq. (32) has the diagrammatic representation

shown in Fig. 9.

Now, { F(;&v(p, q, r) }SW must be a polynomial linear in exte rnal

momenta (ptqtr = 0) and a Bose symmetric Lorentz tensor. This implies

that,
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{TS&V(P.CL r)}giv = D(e){gaurv te, » 9, +g p } ) (34)

pv o

As shown in Eq. (18),

(3), ]div_ [ ] _
[G (Pogir, W)y =P, &y, tI@) = a(e)pH . (35)
Similarly,
di
6o ar ] = ae, - (36)

Hence Eg. (32), in momentum space, becomes:

D
2

}apr‘ P q
o

+ +
pa{gaprv 8,9, " 8, P 0"

p p p

div
+ + + fini
2 [ngv. ZDFW(q, r) HP«V(q’ I‘)] } finite

n

- (X g . +§_ W (Zg +20 +11 +finite
azZ pi 2o 'Z-'Z TRV v (Y.

using Eq. (26),

_ (E,WY dlvg +§_
2 ) HY  Za
n

(1- B——) (Zg +2mH +II )  + finite

pv
ol n-r
using Eq. (23),
div
= EWY g -g(i-B—g) g + finite . (37)
Q'EZ Ry o 2 'nuv

Expressing Eq. (37} as a function of p and g

3
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2 a a
-{p+ + + - = + + =
D[ 1§ q)vplhL p-vq}L gwp ] = pu(p q)v ~ pvq*L

div
_E 2| WYYy g-C + fini
= ap — X (1-B 2)n gpv finite.

Comparing coefficients of ppqv and gp'vp2 , we obtain,

~2Z

div
D= -2+ finite =_§ (.VE) - (1-B- g) + finite . (38)
a @ |\ ¥ 2'n

n

But from Eq. (18), a = gyn(e) + Kn(e) can be made finite with appropriate

choice of yn(e) . Then Df{e) becomes finite and
. div
C . div (YW
(1-B- > )n = (~2 ) . (39)
n

As remarked earlier, finite part of (1-B- %) will be defined such

that
(1-B-$)_ (g) : (40)
Z
n
{C) We shall consider, finally, the WT identity differentiated thrice
with respect to <I>k , @1 and @m and set &=0 . With choices of

renormalization constants in n-loop approximation already made, all
vertices entering the equation are made finite except (possibly) the

(A H)4 vertex. From this equation it trivially follows that the (A p)4
vertex is also finite. Thus all renormalization parts of I‘[@] are

shown to become finite.
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Thus we have shown that if renormalization constants are chosen
. . -1 ‘
up to (n-1) loop approximation such that I‘[@] , Gra‘:.5 [(15] and ﬁ@l
are finite in the limit € - 0 in loop approximation, then renormalization
-1
constants z , 2 , W _ , ¥y can be chosen to make F[@], G [<15:] and
n n n n af

j;[rb] finite up to n loop approximation. For n= 1, this is trivially

true if we choose z_ =% = w

0 0 0> Y07 1 . Hence the proof by induction

is complete.

We shall present the results of one loop calculation in Sec. IIIL.
III. RESULTS OF ONE LOOP CALCULATION

In this section, we state the results of one loop calculation to varify
the relations between divergences [See Eq. (27)] in G;{E [#] , T[®] and
Flal.

(A} The inverse photon propagator4:

The diagrams of Fig. 10 contribute to the inverse photon propagator
in one loop approximation.

We use dimensional regularization to compute these and state the

divergences in units of

[

4

-1 d 2

— S T =T - (41)
(2m) E pole

Let m(a) denote the diagram of Fig. 10(a) evaluated with usual

Feynman rules; let Div { mi{a) { denote the terms in m(a) which have
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pole in ¢
We find:
i£%20°-3 +3] 2 {1 2 2
. - [+ S 14 4 _ s L _ o=
Div{m(a) | 5 Ipp, - it 123 (gwp pp_pv) 7 8,,P ;

2u
| y 2 1 2
Div{mb)} = 1&15—3-(gwp -pppv) -7 8P k

m(c) = m(d) = 0

Therefore,
(42)

.2[ 2 ]
-3a+
Div{i r v(p)}= i€ 2"’2 32%3) 1p P,
2a B
, W =1+w etc. to one loop approximation, the

Writing Z = 1+z

counter term is:
(43)

-iz 2. ) 4 (w-z)
(gwp Pupv e PHpv
Hence, we find that the following choice will make renormalized

inverse propagator finite:
e°r, 2
Div (w) = e [Za -3a+3]1 (44)

Div(z) = 0 ,
Here, we see that the transverse part is unrenormalized to one

loop approximation while the longitudinal part is renormalized.

{(B) The Inverse (Ghost Propagator:
Diagrams of Fig. 11 contribute to the inverse ghost propagator.

We find,
i .2 2
£ (3-2)1Ip (45}

Div{m{a)}
mi{h)

H Fp_l...

0
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Writing 7 = 1+z; the divergence in the inverse ghost propagator

20 .
will be cancelled by the counter term -ip Z if we choose,

(3-0)£T

Div () = 7]

(46)

(C) The Ghost~-Ghost-Photon (ECAH) Vertex: Diagrams of Fig. 12

contribute to the proper vertex. It is found that,

Div{m(a)} = %{E, Ip

54

prmm}=-%§ma
Thus,
Divim(a) + m(b) } = (3;“) §3Ipa . (47)
The counter term is ygpa . Hence we choose,
Divly) - - BrIEL (48)

4
Thus far, we have determined the divergent parts of the renormalization

constants. Now we shall varify the relations between divergent parts of

A ,o ,I 3 , )
BTy pv apv afuy

(D) A (p): The diagram for A (p) is shown in Fig. 7. It is
M [

found that,
Div(A) = 2= (a’-a2)1 . (49)

Then from Egs. (49), (46) and (44) we easily varify Eq. [ZT(ii)] viz:
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Div(A4) = —% Div (w-7Z) . (50)

(E) D!w(q, r)y and II“v(q, r): These are defined in Fig. 7. Here,

we obtain:
2
. _ 38 (1+a)
Div{B) T I
2 2
. _ 3% (3+a”)
Div{C) = 5o I . (51)
Therefore, we can varify Eq. [27('1)] , viz:
. 9 .
-Div(B+ E) = Div(y+w-2%2) . (52)

{F) The 4-photon vertex:
(4)

Diagrams of Fig. 13 contribute to the 4-photon vertex I’a

Buv
The results are,
4
. _5i§
Div{m(a)} = o I A;J.va'ﬁ
-2i §4(ar+2)
Dw{m(b)} = IAHWﬁ
o
4 2
-i +2a+
Div {m(e) } = i€ (17 Zza 5a7) 1 o
4o bvap
ig?
Di d) } = =
ivim(d) } = —>—TIA -
where,
(53}

= X -+ +
Auvap ™ ZuvBap ¥ Buafop * Euptia
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2
Hence, we can verify that the counter term [—i( 2yt+w-27%) £ A ]
a pvep

cancels the divergence in the 4-point vertex,
{G) 3-photon proper vertex:

Diagrams of Fig. 14 contribute to the three-photon proper vertex.

The results are,

ME
Divim(a)} = - 7(2 +o_»>1 ch
[0 4

3
i SE (32,50
D1v{m(b)}—az(4 .2+4cr)11?|wCy

3
. . &
Div{m(c)+m(d) } = - 2= 1 FHW (54)
where,
= + +
Fp.wo~ ppgvo qvgp.a r‘oguv

e . 3
Then it is easy to verify that the total divergence in the (AM) vertex

is cancelled by the counterterm:

uyr

- 2= (gt =
> (ytw Z)FWG

Iv. S-MATRIX

In this section, we shall show that the renormalized three and four

photon S-matrix elements vanish.
First let us note that the polarization vector e”(p) of a physical

2
photon (p =0) of momentum p satisfied p.e=0 { Ep(p)E <p’A“(0)f 0> .
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With the linear gauge condition, SHA’"L=O , it immediately follows that

1
p-€=0 . In our case the gauge condition fa[A] =— (8HAH - «‘;AMA“FO
o

, Ne

means that matrix elements of fa [A] between physical states vanish:
<p ' fa[A] [ 0>=0 . This translates into Eu[pp-a Au(p)]=0 where a is
gome constant, Since Ap(p) =pHA(p) ; it follows that p:e=0 } .

It is easy to see that the three photon amplitude vanishes on mass
shell. Three photons of momenta p, gq, r (with p*g+r=0) can be on mass
shall only when p=aq=8r for some o and $ . Thus there is only one
independent 4-vector. Any tensor with three Lorentz indices constructed
out of it vanishes when dotted with polarization vectors.

Finally, we wish to show that the 4-photon amplitude vanishes on
mass shell. Since the amplitude is a truncated Green's function, it is
easier to use the WT identity for Z[J] , the generating functional of
the connected Green's functions. Referring back to Eq. (16), we can
write the WT identity for Z(r) [J{r)] ; in terms of renormalized quantities
dropping the superscript (r): !

2
B 1W)esZ Y ,af8Z 62 5 Z
Gﬁa[J] 8. -5 . z”z“gij 57, 5, aJiﬁJj . (55)

Differentiating with respect to J. , J Jm and setting J=0,

k* 27

62G
o

&J
6Jk m

4
[ & Z
i 6 J
16Ji k6Jm6Jﬂ

B + 3 _EE
Bﬂ {2 permutations of k, £ ,m) ok s}
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3
__ 1wy a’{ 6 Z 622‘ +permutations}
azzz ij 6Ji6Jk6J£ BJjGJm
iYW .o 65Z
T S TTETET T8 : (56)
274 M09 %y

We show the Fourier transform of the Eqg(56) in Fig. 15. (A shaded
box stands for connected truncated Green's function, )

The first term (and its permutations) does not contribute when dotted
with polarization vectors since it is proportional to s)\(qﬂ, r‘v) . The first
term on the right hand side does not contribute because it does not have
a pole at p2=0 . One can verify that {at least) in one loop calculation
the last term does not have a pole at p2=0 that would contribute with on

mass shell photons, Therefore, from Eq. (56} it follows that

. 2222 v N oa {4
lim P gr s € (g€ (r)e (s)p Gawk(p,q,r. s)

a_(4)

— M v A =
=p Tap.v?\e {q)e (r}e(s8) =0 . (57)

(4)
.

Equation (57) is just the statement of gauge invariance of the T-matrix

Here G i (p,q,r,8) is a connected 4-photon Green's function

1
under an arbitrary gauge transformation AH(X) - Ap(x) s Buw (x).
Since an w (x) exists which can change ffo,£ A(x)]~ fle, £+d€, A(x)] ;

it follows, in particular, that
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9 4 A
gg-[T((r}zv)jp.q.r.S)ea(p)ep(q)ev(r) € (S)] =0 . (58)
Since we know that T(4) =0 at £=0; Eq. (58) tells us that
QPVA
4
T(a;i B a8 @e (e (s) = 0 (59)

for any £ .
V. RENORMALIZATION OF SPINOR ELECTRODYNAMICS

(V-1) In this section we shall consider a Dirac field{electron) interacting

with the electromagnetic field quantized with the same gauge condition

{of Eq. (3)). We shall show that we can remove the divergences in all

the proper vertices by multiplicative renormalizations on the electron

field and electric charge e , in addition to the renormalizations done

in Sec. II, and by choosing a mass counterterm &m . We shall be brief,
The Lagrangian (in terms of unrenormalized fields and parameters)

is,

AuT,8 )= -3 7+ Tip-e fom) o (60)

,%ﬂis invariant under the local gauge transformations,

1
AIJ-(X) - Ap(x) s Bpw (x);

iw (x)

o) » 2y T - e P (61)
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We note that M I3[A] of Eq. (5) is still unchanged and hence
o

<

off [q;, U3 Ap;c, C ]13 given by

Ll ?E;Ap;c,a} [%$,AH]+%auge FEM o (62)

e
We note that there are no basic ghost-electron vertices.
The generating functional of the Green's functions is now constructed
by introducing sources (corresponding to fermion fields) n, and ﬁB .

They anticommute among themselves and with the electron field.

We have,

WF[J, n7J = j[dAdLPd@dCdE jlexp i{_g;ff{A;c,E RS

+IA + T ¥ ﬁiq,i} (63)

We define fields ¥ and yx , the expectation values of electron

fields ¢ and ¢ by,

- & Z & Z
X -7 XapTT: (64)
a ana B & rb
Define;
z[3,7,n}= -i1n W[J,n,7)
We define the generating functional of proper vertices by,
Fel -J. 3 . (65)

r{ex,x] =zl al-%n, -7x, - I8
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The inverse propagator for the electron field in presence of

external sources is,

2
-1 5 I
5. = o—]—e (66)
ij éxié Xj
while, the propagator Sij is given by,
2
s, =-— 2 z_5 . (67)
ij 6n.16 ?’Jj ji

(V-2) WT Identities:

L.et us obtain the WT identity for WF [J, n, ﬁ] . Following the
- procedure of Ref, 2 and noting the transformation properties of fields

(Eq. 61), we obtain the following identity:

1 [1 6] B.. B[ & 5 -1[1 & 185 16
= f == +| T 8" +ietT (f — +n, — S o2
{ Ne oll &6d [Jl i leglj ann. niﬁnj MBai&J.’ 16n’l &7

[where ;B = 64(x -X.)64(X -X.)6..]
B 1 i

ij p 1
Going through the steps analogous to those of Seec, (I1-2), we

obtain:
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Thus, the WT identity for generating functional of proper vertices
T [ti), X, x] is,

o B p 6T - &
(S = 8."‘9 .. P . = 6
r}36¢i i gl](xjﬁx. XJ(SX.) np
L 1 1
-1 -1
5 G 5G
+ ie gﬁ s gnG oL -8 __£&n o1
ij{"jk 6%, BEGX,

. G - G [Q:-J]
jk 6x, BEOX; na Xa X

1) .o 1 ¢ .
- - & -~ +
agai i 2 gij (tpiq)j 1Aij}E

(69)
(V-3) Renormalization Transformations:
In addition to the renormalization transformations defined in
Sec. (II-4), we define the following renormalizations on fields x, X and
on electric charge e,

and

x [q,(r), () ).((r);a(r),g(r),e(rﬂ

r [@} X, %;a, e‘] LY [(I,(r)‘ X(r)‘ % (r');a(r')’ g(r),e(r)]

In the following we shall express everything in terms of

renormalized quantities and drop the superscript (r)

The WT identity of Eq. (69) becomes,
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+2-(-(_.§~_P—-K _ay_)]G 1? (70)
Z M 934 o

where, -1
g 09
K . = +ie
ni gl;| ik 8x 13
xe
= . B £
K. =ie ' s, = G
ni c‘1:| ik 6 X PE
W .o Y .o .
= 4= -— &+ .
F g {aiq)i o5 548G IAij)} (71)

Diagrammatic representation for I—{ni is shown in Fig, 17,

(V-4) Analysis of Divergences in G_i{é,x,f] s Kni[@,x,i] ,,_9‘:&15,3{,)(]:

(8 G [2,x.%]

Referring back to the discussion of Sec. II-5(A), (See Fig. 3 and
Fig. 4), we need only worry about the internal subtractions for
renormalization parts containing the rightmost vertex in Fig. 3. In
introducing the fermion fields we do not introduce any such additional
renormalization parts; since any diagram with two ghost lines and two
or more fermion lines have superficial degree of divergence D = -1
Thus discussion of Secs, II-5(A) and II-5(B) goes through

(B) f[é,x,i] :

Here, too, we do not introduce any new renormalization parts in

derivatives of,_g'Eb, X, )‘(] which contain the leftmost vertex denoted by
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a cross. (See Figs. 7 and 8.) Here, too, any subdiagram containing
this vertex and two or more fermion lines has D < -1 . Hence, the

discussion of Sec. II-5(C) goes through unchanged. Similar discussion,
2
A

shows that it becomes finite to n-loop
&% 16 X .

as applied to
B=y =y =0
approximation once the appropriate choices of renormalization constants
up to (n-1) loop approximation is made according to Eq. (26).
5 -
We shall show that Kni and K ; become finite to n-loop approximation

once the proper vertices to (n-1) loop approximation are made finite. It
is clear that the lowest derivative of Kni which is nonzero at ¢=x=%=0
6K .

ni

d¥%.
I lg=y=5=0

is ; since Kni [¢=O=x=i] =0 . The first derivative

is shown in Fig. (18).

The blobs in Fig. (18) are made finite by renormalization counter-
terms introduced up to (n-1) loop approximation and it needs subtractions
for renormalization parts containing the rightmost vertex. But there are
no such renormalization parts. A suspect renormalization part shown
in Fig. 19 is not a renormalization part because the lefimost veriex on
the ghost line within this subdiagram must be a ECAH vertex and it
contains a factor of external momentum qpL (external to this subdiagram).

§K .
nl
& X

Thus this subdiagram has D=-1, Furthermore
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it sel f not a renormalization part [D=- ] and hence it becomes finite
in n-loop approximation once the counterterms are chosen up to (n-1)
1oop approximation. Simil ar discussion goes through for higher
derivatives of Kn ; and also for Rﬂ i[@, X, )'(] .

{ V-5) Proof of Renormalizability:

Here we shall deal only with the new renormalization part, the
lTJL|JAH vertex, The discussion for the remaining renormalization parts
proceeds parallel to the discussion in Sec. II-6 and will not be repeated
here.

We assume that renormalization constants and mass counterterm
have been chosen up to (n-1) loop approximation making all the proper
vertices finite up to {n-1) loop approximation. We assume that proper
choice of z w o, “z'n. ZX(H), {5 m)n has been made making the photon,
the ghost and the electron propagators finite to n-loop approximation.
We shall show that it is possible to make ECAH vertex finite with
appropriate choices of X and that we may choose xn=( ZX) n if we
have chosen X = (zx)r; 0<r=<n-1; yielding the usual Ward identity.

Differentiate the WT identity of Eq. (70) with respect to Xm and

;Zn and set &x=%=0 . We get:

B 5T X B 5 T B §°T
+ R -
i 585X _6X ge T ¢Z Sim 5% 86X Sin 5x 5%, Gag
6 K 2 § K 2 azﬁ'
X ni & I 7 6 T 1 o
A P TR N 65X " Zex 6% 74
« ] EX L e BX; X, 6X,8%; @ 6x._6X
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Equating the n-loop divergence on both sides,
div d

3 iv
3 5§71 (X B oot Bt [y
ai 6‘1’]—_6 Xma in ) [:Glsa:l() e(zx )n l} gimsin giHSmi]O l: ﬁﬂ’]o

= finite. (73)

5K div 5 2‘_?— div
ni a
5 =0 =} —— etc.
Xm

Since,

- m -
&=0=x=X], P=0=x =X

It is clear from Eq. (73) that if we choose X such that

div
[—ZX—] = finite (74)
Xdy
we will have
div
8 3F = finite
) @iﬁ xmé Xn i

Further, if we have chosen X, ={z ) , 0=rs£n-1 , then Eq. (74)

x'r
gives:
Div (Xn) = Div [(zx)n]
and we may choose the finite part of x_ such that x = (z )
n n X n

Vi: A COMPLEX SCALAR FIELD INTERACTING
WITH ELECTROMAGNETIC FIELD:

In this section we shall discuss the renormalization of a complex

scalar field interacting with electromagnetic field when the gauge
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condition chosen is bilinear. We shall consider only the unbroken version
f the th { 2 > 0)
o] e theory (mn__

The Lagrangian in terms of unrenormalized fields is:
. 2 2 % A, k2001 MY
= - - + - - —
& ’(BP- ie Au)gf)l no o 4(¢ @) I vaF (75)

Fis invariant under the electromagnetic gauge transformation:

-iw (x) fw (x)  *

.Ap.(x) - Ap.(x) - é ai.t""(x) 5 o(x) —» e o(x) , ¢*(X) - € ¢ (%)

We shall show the following:
(i) With a simple counter example, we shall show that if we choose

the previous gauge function f[A] = 7_1_— (E)"LA}l - %S_E,Az) , it is not possible
o

to make proper vertices finite by renormalization on fields and parameters
2
£, e, o, p and X .

(i) However, that, if we choose the gauge function f =

N 2

Ne

all the proper vertices can be made finite,

(BMAH -1EA7 - -;-ngb:ﬁ(b} and renormalize parameter 7 independently,

S

(VI-1) The Gauge Function f =
Ne

(aHA*"- 1£a%)

Since this discussion is similar to that in Sec. V, we ghall be
brief.

Let us introduce two sources Ka(a=1 or 2; Xa) corresponding to
fields qba [1,:1 = ¢*(x} , ¢>2 = gb(X)]. The generating functional of the

Green'fs functions is given by:
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W[J, K] - J[Mid(badcda ]Exp i J%ff[Ai’ qba,c’E ]-l- TA K b

Z[J, K] = -iln W[J, K] . (76)

As before, we define expectation values \I{gl for field (’ba in

presence of external sources by,

‘If=6Z[J,K]/6K .
a a

We note that under an infinitesimal gauge transformation,

1.8 N (P
By By fieg i 8, e, TIE e,

o 4 4 = - = . = =
l:gab =8 e )E )b by T T T Byt by ]

Following the derivation of WT identity, we obtain the following

WT identity for I’[CID, \If] :

-1
5G
B _ .40 oy 2 D A
Coa| % 58, 7 ¢ fac\%lpo”  Fea®ot 5T | 59
1 a [+3
1)@ - .
= - - - 1 o +
p %81 % - 25519 lAij)i (78)

[WhEI‘e, Pca :—W = propagator of qb fIEId.] .

To exhibit the difficulty, let us consider Eq. (78) up to one loop
approximation. Since there are no basic (Cc¢) vertices, the term

5G,
ieP G __tB 4 Y contains at least two loops and hence will be dropped
ca af 6‘Ifa de

in this consideration.
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Introduce the renormalization transformation identical to those of

Sec. (II-4); in addition to the renormalization of e and the scalar field.

&= zi 47 ; e = erXZLLi v . (79)

|

Then expressing Eq. (80) to one loop approximation, [in terms of

renormalized quantities, dropping superscript (r)] ,

i \7
1w a‘_”@,-%g‘f’_(@@wm..)i . (80)
az (11 27271 1] 1]

Let us write Z2 =1+z , W =1+w , etc., etc.

Suppose, we have chosen a, w, sz, sz, Z to make the photon,
scalar and ghost propagators finite to one loop approximation. Then we
shall show that charge renormalization alone cannot remove the divergence
in (gb*(ﬁAH) vertex. KEagsentially, this happens because the (¢:*¢Au) vertex
in one loop approximation has a divergence proportional to photon
momentum in addition to the divergence of the form of the bare vertex,

Differentiating Eq. (80) with respect to \I‘{a and \Ié and seiting

& =0 =¥ (the vacuum expectation values), we obtain:

3 2 2
P__8 T (- p _&T ,,B _B&T
Co%i 53506 % X 2) 0, 425058 T Sde 5UST
i a e e d a d

62

_i(WY) a A5 61
Za\ ~2 ) 5ij 5T 5 @ ' )
Z a e
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I.et us choose a =1, e =2 in Eq., (81),
Remembering that the propagators are made finite to one loop
approximation, we may equate the divergence on both sides of Eq. (81)

in one loop approximation:

3 div 2
B 5 T B & T
[Gﬁa]o % {6@.6\1!6\3] i e(X“zLQ[Gpc:] [gda 555w, (a‘“"’e)]
i a e 1 ot e d 0
5 div
1 o 5 Aij o
= 3= g_lj T T + finite . (82)
1

Let us define:

3
r X
¥ T'{aﬁgwa\p }”P( " tpia,m)
1 a e
(3) div
Then [I‘ (p;q,r)] = (gq*tr) b(e) + {g-r) cfle)
B 1 M o
2
s§°T 2 2
FT{W”,} S TR
d e

div
1 o 62A1
F.T.{GBQ} == 5 RTEL et = X(e)
0 p a e/l
Then Eq. {82) becomes,
‘ qz-r2 (rz-qz) 1
be) + 5 cle) ~ e(x-z ) —5— = 52 Z(e) + finite, (83)

(q+r) (r+q)
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Thus, we can make c(¢) finite be choosing x = ZX + finite. Also,

b(e) = i 2 (e) + finite
2o

An explicit calculation of Z(e) shows that it is divergent. Hence,
it follows that the qb;l:qb A*l vertex will necessarily contain divergence.
[We show the graphs contributing to Z(e) in Fig. 20.]

We may express this in another way., We saw in Eq. {83) that a

Zg
6 Ja
BRI
a ‘e

=0
¥=0

derivative of ,d?;-[rﬁ, ] viz, contained (nonrenormalizable)
divergence and by virtue of WT identity, there must be divergence in its
left hand side which must come from a proper vertex. The reason why
‘9:[@, \If] cannot be made finite as against the previous two cases is that
the derivatives of Z-Eb, \Ir] at &= ¥= 0 need additional internal
subtractions, {(in addition to those shown in Fig, 8. See discussion of
Sec, II-5), For example, we may consider Au(p) defined in Fig. 7.
The additional subtractions needed are shown in Fig. 21 (a,b). Clearly
these subtractions cannot be expressed as (divergent constant) XAp(p);
unlike the subtractions in Fig. 8. These are rather generated out of
derivatives of a loop consisting of a scalar propagator. See Fig. 21(c).
This suggests that we modify the gauge functional to f~ =—-i-—[8I.LAI'L -

7
5

5 o , I+

2 %
1A - 3in¢ ¢] . Then we may be able to make fa[<I>+ iA

. (3 . L
iP 6\If] 1 finite.
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2 5
(VI-2) The Gauge Condition f* = % [BHA” ~1ea%- 1ng ¢]

Let us choose the gauge functional

. 1 o g e 1.2
fa[A"I’] NG {ai Ay - 2888 T 2, ¢a¢b} ‘ (84)

In this section, we shall use hermitian fields.

o 4 4 = =
[So that m = 8 (X)) 8 )y 3Ty T Ty Ty T 0]
Since the last term is gauge invariant, Ma‘3 of Eqg. (5) 1s unchanged;
i.e., the ghost Feynman rules are unchanged. The Feynman rules for

e s ¢ _1
¢ ¢AH , (¢ ¢)2 and (¢ d)AZ) vertices are changed. G [fI), \If] is still
given by the same formal expression of Eq. (14). The new WT identity
of ]_"[45, \If] is,

-1
s a 8G

g - Ep | 6T
P L _ v - B el
Caal % 5% e lPop e "t Pce Yot 5% | ¥

,_f'|¢+ 2 T+ P_I.j
1A _,\I" 1 ]

Ay @ ) . : }
a{ai % Egij (‘bicbj ’ IAij) M (BTt Pl (89

[4122 Thap Tt by Tt 0]
We define renormalized fields, parameters and renormalization

constants by
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1
\I'a = Zi\lr;r) n= n(r)V
2 2(r)
S

in addition to those defined in Sec. (1I-4).

+

FERMILAB-Pub-74/69-THY

2

6

(86)

Expressing WT identity in terms of renormalized quantities(and

dropping the suffix (r) ),

] 5G
1.p 61 X .o )
_— a2
Gpa 8i 6'1:'i ezq; g’ac 6crﬁ e 'ce ot 8T
= - lj;—[(bs \I‘]
o o
where,

F [@,\Ir]= —‘f—{aasb - L% @e +ia,)

ZU1 1 2771 1]

23 .
1 +
: Ve (% 1Pb)}
We define:
sG ot
p__ X B _ i ¢@ £p
La le c‘ab‘li) lgac ce of &%
Then the WT identity reads:
6, [ L v 1f 20 - L gr[a ]
Baj 1 63 ad o o
i a

The second term in LZ [Eq. (89)] is identical in form to

1i

(87)

(88)

(89)

(90a)

(90Db)

K[2x,¥%] of Sec. (V-3) and has the same diagrammatic representation

(See Fig. 17).
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We shall see that, like the general linear gauge (discussed in

Ref. 2), the scalar field develops a vacuum expectation value even though

Consider the WT identity of Eq. (90a) for cI’i =0, ¥ =u_ ,

where ua are real constants. Let Va be the vacuum expectation value

of d)a . In vacuum,
§T = . ST -
T =0 ; 6<I’.""0 . (91)
a i
vac,
Here, the meaning of E% = 0 should be carefully noted.
Yoae
5T .
For &=10, ‘Ié = ua H N has, in momentum space, the form,
i
F.T. Bﬁ—g— = pIJ« J(pz f\/uiﬂlg) and thus it is zero for any
i B=0, T =u p—~0
a a
ua . However, it is not true that J(pz, ’\fu?"'u;)' 18 zero for any
p—>0
ua . In vacuum, J( 2,wvi+vg)= 0 ; so that
8T 1 2 /2 2
P 8L ~ m /
F.T. Gﬁo: -y - pIJ.P J(p V1+V2
tlg=0 P p-+0
W=V
a a
2 } 2, 2
= J( s V1+v2) is zero too.
p—~0

Hence from Eq. {90a} we obtain that Va satisfies:

Z'Eh 0, ¥ = va]= 0 . (92)
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v is, in general, nonzero and e-dependent. (1i.e., infinite in
a

the limit e-0). va's are to be determined from solutions of

=0 , (93)
=y ,8=0
a a
We, then, define the shifted fields \Ifa by,

rd

A\ = v + I
a a a

and make this substitution in the effective action. The proper vertices
of the theory are obtained by expanding T" [<I>i, \Ifa] around @,1 =0,

”

We note that as a result of the substitution ‘Ié = \Ira + v in the
effective Lagrangian, there are new vertices ((f)’AH, d)'AZ, o’ 3, 67)
created in higher orders. All these vertices have dimensions three or
lower.

We note that the presence of these vertices do not create any new
renormalizat ion subdiagrams in Gﬁi[@, I '] , L [cIa, IIr’] andg?"; [@, \Ir’] s
of the kind that would need further internal subtractions{i.e., subtractions
not taken care of by renormalization counter-terms — See the discussion
of Sec. II-5 and Sec. V-4) . This follows because, as mentioned earlier
such renormalization parts have D = 0 at most, and inclusion of any
of the new vertices lower D by one.

The presence of these vertices creates new renormalization paris

3

in derivatives of r[@,@'] andy; [cI:, qx'] , they are:B“ifaI\;u ,6\?9 I;é_ ,
: 5@06 %
1 a a i ]
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Fd

6°T ¢F .,

5 \I,;(S \If’6\IfC’ H ; \Ir; We need to show that these become finite with others.

b
2 - -1
8 Z 8G,
35807 and WE are not renormalization parts.
lg=0=u" >=0=10 "

Taking these facts into account, we can carry out the analysis of

-1 a -
diverge i [@, \If’] , L [@,w'] 4 [q‘:, \If’]
ivergences in Ga‘ﬂ . a .| an j‘a o analogous to
. .
that in sections (II-5 and (V-4). In the discussion forﬂ [dé, \If’] , we
only need to remember the presence of additional subtractions needed
which are shown in Fig. 21. Qualitatively, the result is the same,
namely, with appropriate choices of W, Y and V in each loop
z 2=
8F 5 Z
5@ M 32 3\ og

Ulge o=y o) o=
a a

627
[o4

§B6T°
i

approximation, and higher derivatives

.
of “97-(1 can be made finite. also becomes finite, since

&=0=¥"

a
it is not a renormalization part. This, however, does not apply to
® ¥

5 7
a

Also, derivatives of LZ [@, \Ir’] become finite in n-loop
$=0=0 "~
o
approximation once the counter terms up to (n-1) loop approximation
are chosen to make 1"[@, \If’] and G[@, \If’] finite, L:[<I=0=\I’;]may
contain divergence, which in momentum space, is independent of external

momentum.

To prove renormalizability, let us assume that the counter terms
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chosen up to (n-1) loop approximation, and the choice of v up to (n-1)
loop approximation make derivatives of P[@, \If;] s G;; [@, \IJ;],

LZ[@, \If;J and'_?;'[@, ‘If;] around <I==\Ifé= 0 finite., Then we have to show
that we can choose the counter terms to n loop approximation (and

determine v to n-loop approximation) which will make the derivatives

MESARRNEL AT S P EE
” & T II" 4 .
of F[@, ‘Ifa], Gaﬁ 2 PR . andﬁ; ®, ¥ | finite in n-loop

approximation,

Let us choose z 'En 80 as to make the transverse part of the

(n)’

photon propagator and ghost propagator finite in n-loop approximation.

Let us further choose divergent parts of w 1)’ y(n) and v so as to

( (n)
Fd 2 L 2 L
8F aﬁ; 65;

and

make % © 0.6 0. R
Volg=0=v- Vo) lgep=w F=0=V*
a a a

finite in n-loop approximation.

Ditferentiate Eqg. (90b) with respect to ¥7 and set =I’1=0=\If;

b
P 5 °T . 1P s 1G~1‘5~9a 94
. T - » FA -
i 538, a SEGL’ a P 8

In momentum space, the right hand side and the first term on the

2
2
left hand side are proportional to p . Since 6_&7:3*\1"_’ does not have
a b
2
a zero in p° (for any a and b) it follows that Lz(pz) [for both a=1, z]

2 1di
and in particular [Lg(p )] v are proportional to pz. [This can be

seen more easily if one performs a global U(1) transformation on
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¢1, q&z such that only one of them has a vacuum expectation value =

[2 2 i 2
vy +v2 } But since [Lz(pz)] gw must be a constant independent of p ,

it must be finite.

Differentiate Eq. (90b) with respect to <I>j and set &IJ=O=\I';

2 2 7
3'3_52._1_‘_.{.]_‘3_6-1_1_;_16 aG-i (95)
i 686% a 6076 D @ §& af

1) a ) J

We equate the n-loop divergence on both sides of Eq. (95) in

momentum space, noting

2
LS SN [G-i] = finite 69f°‘ - finite
Y58 ’ ap | e ’

we obiain:

pt [r (p)]d“’ = finite.
weo f

Hence the longitudinal part of the photon propagator is also finite, Further,

- 2
since Lz(pz) and G 1(pz) are proportional to p , we find, from Eq. (95),

M
pr,= PP,

Hence, the photon mass is zero.
Henceforth, let us use a compact notation for derivatives of I', G,
L, fa , for convenience. The letters a,b,c,... will be used for the

scalar fields, letters 1i,j,... will be used for the photon field. Thus

2 sL
_ § T o
Uay = 5% 5% La,i—oe ete, etc.

&=0=0" V lg=0=v-
a a
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Differentiate the WT identity of Eq. (90b) with respect to 'IB’ and

@j and set ¥ =0=% .

p P P B
r .+ + r _+ r
ai bij La I‘a.bj La, j ab La, b aj

_.1 1 P4 1 Ld
= Gop 7 v 5 @,b aga j ""5 o, aﬁ b o (96)
Now LI3 L‘3 f‘ and G - are not renormalization
’ a,j’ a,b , bj ap,b
ﬁ ﬁ = - . = [ = 1
parts and [La ; LY il [ﬂ; b.]o I‘aj]o 0 . Hence, equating the

n-loop divergence on both sides of Eq. (36), we get

_ di ,
% [Fbij]jw ' [Lzb]o[raJ]dw— ——[?‘ ] W[ "ap, J.I ' o

We define:

(a)(r) )

F.T.{I‘bij}= —11" (., ) F.T.{raj}z r T

: g _ : .
Then, using [Lab] e;ab , £g. (97) yields:

0
wl.b div o div £ L, div
M1 ., r)]n reg v [rin] --% ﬂv[?f’ab}n 99
Since,
b div
[I‘ (p, g, r)] =g X (divergent constant) ,
v n RV
It follows from Eq. (98) that
b div
l:]." (p, g, r'):' = finite
(T34
n
and,
a div 1 . div
e r’ab [1" (r)] = - E.[Zb] + finite (99)

n n
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while Eq. (94) gives:

div iv,
2f_b 1 . 2. ...,
= o — + .
r [r (r)]n ” [J@"a’b]dnr finite (100)
Equation (99) and Eq. (100) imply:
b iv , div
[1" (r) = finite ; [ﬁ' ] = finite . (101)
n a,b
n
Differentiate Eq. (98) with respect to tIf{) , \If:: and set &=0=¥"
B p LB
airbci * La 1_‘abc La br La cFab
1 .-1 ?—’ ?- ?-«
C EGa’ﬁ a,bc @ a'[3 b , b a'ﬁ,c (102)

Eqguating the n-loop divergence on both sides of Eq. (102},

B div + div div
8‘1 [Pbci]n N §’ab [Pac]n © gac [Fab:’

n

+ e(z—}:) ;;ab[rac}o vy [Fab]o} = finite . (103)
n

Choose b=1, c¢c=2 [C'iz = '§'21 = 1] . In this case, we express

Eq. (103) in momentum space using:

1 (psq, r) = F.T. {Pbci} = +i [A(q'#r)p + B(q-r)p]
F.T. [Fac]zivz rz(c2+z¢(n)) - (DZ- S*E.n)

di
F.T. [Pab]nlv= q2(01+z¢(n)) * (Di’ 6&(n))



~-51- FERMILAB-Pub-74/69-THY

H
~
—
=

w
o
[
|
a
N
|
=

t
=
—
=

v
e]
(R
=)
[E]
]
o
I
+
)

Then we obtain:

A(q+r)2 + B(qz-rz) + e[q2 (C1+Z¢(n)) - r2(02+z41(n9]

2y

n

+ e(—-X—> (qz-rz) +(D,-D,) = finite . (104)

Hence, it follows that:

A = finite

D‘l = D2 + finite {105)
_ + fin

C1 C‘2 finite (106)

From Eq. {(105) and Eq. (106), it follows that a mass renormalization
. . . Z 2 2
term and a wave function renormalization term of the form -§ pn(¢1+¢,z)

1) . . . .
+ +
and ZLKH) (aquia ¢1 apcf;zf‘ﬁbz) respectively, will re move divergences in

the propagators for qbi' and gb’z fields with the choices
2

_ + fin s —o 4 fini
6p(n) D1 finite , c1 zZ finite

Once this is done, Eg. (104) yields:

B = e(X/ZLJJ)n + finite

Hence the choice of X such that (X/ZqJ) = finite will make
n

cbh ] L. . .
T . s =
[I“}L {(p,4d, 1) n inite. In particular, if we have chosen X Zq.l(r)

(0 = r = n-1), then we may choose x =z .

Y(n)
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Now, choose b=c=1 in Eq. (103). We write:

]div

[Pﬁc(p, q, r)_ = E(qﬂ’}p + F(q—r)LL

n

F.T. [Pac] div = rz(} + [a=2, c=1] ete.,

Then, we obtain:
E(qtr)” + F(qo-r2) = eG(ro+q>) + 2He + finite
Therefore, it is clear that E,F,G and H are finite.
Finally, we differentiate Eq. (90b) with respect to ¥~ , \11; and
¥’ and set #0=¥" ., We equate the n-loop divergence on both sides.

d
We obtain:

div
t"ab[ acd]n + permutations = finite . {107)

choosing b=c=d=1 in Eq. (107), we obtain,

T div
241) = finite . (108)

Choosing b=c=d=2 inEq. (107),we obtain,
T div
[ 122]n = finite . (109)

Choosing b=2, c=d=1 in Eq. {107) and using Egs. (108) and (109),

we find

div
[Fiii] finite .
n

Choosing b =1, c=d =2, we get

T ]di"’ = finite
[ 222] 4

1
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Thus we have shown that symmetric mass and wavefunction
renormalization counter terms remove divergences in the propagators of
¢I and qS'Z . We have also shown that all the newly introduced
renormalization parts become finite in n-loop approximation. The rest

of the proof (4-point functions and etc,) is trivial and hence will not be

given here,
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FIGURE CAPTIONS

Feynman rules.

Diagrammatic representation for the last term in
Eq. (14).

Diagrammatic representation for G-i (p).
Subdiagrams of ZX(p) needing subtraction.

(3)(9, Q1 p).

Diagrammatic representation for G
Subdiagrams of Yy needing subtraction.
Derivatives of Z[@] which are renormalization parts.
Subtractions needed for A“(p), D].w(q’ r), IIFW(q, r).
L.eft hand side of Eq. (32).
One loop diagrams for the inverse photon propagator.
One loop diagrams for the inverse ghost propagator.
One loop diagrams for the ghost ghost photon vertex,
One loop diagrams for the (A”)4 vertex,
One loop diagrams for the (AH)B vertex,
Diagrammatic representation for Eq. (56).
Diagrammatic representation for

R i d=x =X =0

Diagrammatic represertation for Kni[ ®,%,%X]
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Diagrammatic representaion for [6 K ./5 X ] .
i m -
I=x =% =0

A suspect renormalization part of diagram in Fig. 18.
Diagramrmagic repregentationof £~

Additional subtractions needed for Au(p) .
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