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ABSTRACT

We give a simple phenomenological analysis of hadronic and
electronic vacuum polarization effects, We argue that the derivative of
the hadronic vacuum polarization, evaluated in the space~tike region,
provides a useful meeting ground for comparing ¢ e = hadron annihilaticn
data (assumed t> arise {rom one-photon ann:hilation! with the predicticns of
parton models and of asvmptotically free field theories, Using dispersion
relations to connect *he annihilation and space-like regions, we discuss

+ - - .
the implications in the space-like region of a constart e e annthilation

cross section. In particular, we show that a flat cross section between

2 . , . u
t =25 and t= 81 (GeV/c) would provide strong evidence against a pre-
cociously asymptotic color triplet model for hadrcns, We then turn to a

consideration of the apparent discrepancy between cbserved and calculated



rmuonic atom X-ray transition energies, Specifically, we analyze the
hypothesis of attributing this discrepancy to a deviation of the asymptotic
electronic vacuum polarizaiion from its expected value, a possibility which
is compatible with all current high-precision tests of quantum electrody-
namics. Under the additional technical assumption that the postulated
discrepancy in the eiectronic vacuum polarization spectral function increases
monotonically with t, the hypothesis predicts a decrease in the expected
value of the muon magnetic moment anomaly ap‘ = %(g}L - 2) of at least

-0.96 - 10-?, which should be detectable in the next round of gH - 2 experi-
ments and which is substantially larger than likely uncertainties in the
hadronic contribution to au. By contrast, postulating a weakly coupled
scalar boson ¢ to explain the muonic atom discrepancy would imply a

(very small} increase in the expected value of ap. Both the vacuum polari-
zation and scalar boson hypotheses (for M¢ > 1 MeV) predict a reduction of

. . 4 +
order 0.027eV inthe 2p,; - 2s, transition energy in [ He, p| , an effect
3

1
2

which may be ohservable.

I. Introduction

A number of recent experiments have brought aspects of vacuum
polarization phenomena to the fore. Most prominent are the measurements
by the CEA and SLAC-LBL groups of an unexpectedly large cross section

+ - 1 . . : .
for e e = hadrons, which gives the absorptive part of the hadronic vacuum
polarization. In another area of physics, measurements of muonic atom

X-ray transition energies, undertaken to probe the asymptotic form of the



electronic vacuum polarization, appear to show a persistent deviation from
theoretical em’.pectattions.‘Z Forthcoming high-precision measurements of the
muon magnetic moment anomaly gp- - 2 will provide an even more sensitive
probe of the asymptotic electronic vacuum polarization, and of the hadronic
vacuum polarization as well. We present in this paper simple phenomeno-
logical arguments which bear on the interpretation of both the annihilation
and the muonic experiments, Although fundamentally different physical
issues are at stake in the two classes of experiments, common elements of
formalism make it natural to consider them together., In Section ¢ we use
dispersion relations to determine what the time-like region e+e‘ annihila-
tion data say about the possibility of precocious asymptotic scaling in the
space-like region of the hadronic vacuum polarization {assuming that the
observed data do indeed result from one-photon annihilation), In Section 3
we analyze the muonic experiments, with the aim of distinguishing between
the possibilities that the muonic atom X-ray discrepancies may arise from
a discrepancy in the asymptotic electronic vacuum polarization, or from
the existence of a weakly coupled light scalar boson. Some technical
details are given in the Appendices,

2. Electron Positron Annihilation and Precocious Space-like Scaling,
The experimental data for electron positron annihilation into hadrons

are conveniently expressed in terms of the ratio Rf{t), defined as

+ -
R(t) - og{e e — hadrons; t) ’ )

+ -+ -
cle e = ;t)
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and with t the virtual photon four-momentum squared. In Fig. 1 we have
plotted (versus E= t%) a smooth interpolation through all available experi-
mental data for R in the continuum region (excluding the p, w and ¢ vector
meson contributions), The CEA and SLAC-LBL data points are indicated,1
while the portion of the curve below t = 2,5 is taken from the '"eyeball"

fit given by Silvestrini.3 When replotted versus t, the data for R(t) rise
approximately linearly, indicating a roughly constant hadronic annihilation

-33 2 . . L
cm . Assuming that single photon annihilation is

cross section of 21.10
indeed being measured, this behavior strongly contradicts the asymptotic

behavior expected on the basis of parton or of asymptotically free field theory

models of the hadrons, which predict
R ~ C , t = ' (3)

with the constants C tabulated in Table I, However, it can always be
argued that while precocious asymptotic behavior is expected from the SLAC
scaling results in the space-like region, the annihilation reaction involves
the time-like region, in which asymptotic predictions may be approached
much more slowly. This objection naturally raises the guestion of determin-

ing what the annihilation data tell us about behavior in the space-like region,



To answer this question we consider the renormalized hadronic

. . 2
vacuum polarization tensor (t=gq )

(H) ()
I = - II , 4
" (q) (qpqv tgw) {t) (4)
which obeys the dispersion relation
(H) ° du %{ 1 1 )
11 = —
0 =t [, = — . (5)
4rnTT

and which is related to the electron-positron annihilation cross section

into hadrons by

(H)

o-(e+e-' — hadrons; u) = 1 Im1II () X (known constants), {(6)
u

Rather than using Eqg, (5) directly, we consider its first derivative

H
d . (H) fw %I ™ ()
dt 4m2 (u-t)z

0
d _H
— II""(t) = f dua _Ru) X {known constantsj, (8)
dt 2 2
4m (u-t)
m
Restricting ourselves to the space-like region t= -s, s > 0 and rescaling

to remove the constant factors, we cbtain from Eq. (8} our basic relation

5 = — I (t) X (known constants) (9)
41'1'1TT (s+u) t=-s



The quantity T(-s) has two desirable properties which make it suitable
for studying the implications of the annihilation reaction for space-like-
region behavior:

(i) The integrand in Eq. (9) is positive definite, and so omitting the

high energy tail of the integral makes an error of known sign.
Specifically. if experimental data on R are available only up to

a maximum momentum transfer squared t_., and if we define

C
Tops!=s! Py
t
C
T s = f, SR (10)
obs 4m (s+u)
T
then we have
- < - < < o0
Tobs( s} < T(-s}, 0<s . (11}

(i1) It is the guantity T(-s) for which parton models and asymptotically
free field theories most directly make pre:dic:t:ions;4 the asymptotic
predictions for R are always obtained from the prediction for T(-s)
by a dispersion relation argument, which is bypassed if we use T(-s)
as the primary phenomenological object. In a model in which R

asymptotically approaches C, we have

C
Tth(-s) ~ g g — 0 (12)

In asymptotically free field theories, the leading logarithmic correc-
tion to Eq. {12} is also determined. Specifically, in the SU(3)® su(3)'

color triplet model of the hadrons, one has



-l -

R (13)

9 in(s/s_) i

0
with 50 an arbitrary momentum scale which, in the numerical work, we
will take as 2 (GeV/c)Z.

Before proceeding to numerical applications, let us briefly discuss
the question of subtractions, Clearly, if the one photon annihilation cross
section were to remain constant as t = ®, we would have R(u} oc u, u=®
and the integral in Eqg. (9) would need an additional subtraction to be well-
defima-d.'rJ However, such behavior of R would in itself contradict Eq. (3)
for all values of C, and hence would rule out all versions of the parton
model or of asymptotically free field theories. On the other hand, if Eq. (3)
is true for any finite C then the integral in Eq. (9) converges as it stands,
and provides a suitable medium for comparing the annihilation data with
theoretical expectations in the space-like region. Note that a constant
subtraction term in Eq, (5), which would be present if we renormalize at
a point other than t = 0, would not contribute to the t-derivative in Eq. (7);
hence the renormalization prescription is not a possible source of ambiguity.

We turn now to the numerical results., In Fig. 2 we plot T (~s5)

obs

. . : 2 . .
[in units where unity = {1 GeV/c)” ], as obtained from all experimental data

= 25 (GeV/c)2

up to t according to the formula

C



T, s = TP ¢ TP v T )
M f(V-"e+e-)
w+d _ On Z Vv
T Tls) = 5 L5 ¢ 2.2 ’
o ? (5+MV) {14)
2 3/2
00 4m
TP(-s) = *_ L) mm.
2 | 2 4 t T -
4m s+t) ‘
v
25
Tcont(l)(_s):f dt - R(t)
0.39 (S+t)

The vector meson parameters appearing in Eq. (14) are given in Appendix A,
while R(t) is the continuurn contribution to R graphed in Fig, 1. In Fig, 3
we plot a family of curves, obtained by assuming that for 25 <t < tC the

- . , + - .
annihilation cross section o{e e = hadrons; t) remains constant at

21-10'33 cmz. That is, we take

T, (o) = T r TPle e TR W g TRt (2 gy
t
C

reontl2) oy - —-——di—z 5. 94 ('.;_5) (15)

25 (s + t)

- o 2 , s+tc (tC-ZS)

oo Bl s+ 25 - s (s+tc)(s+25) -

Rather than plotting Tobs(-s) we have plotted the comparison ratio

T (-s) / T, (-s)}), with T, (-s) the color triplet prediction of Eq, (13),

obs th

h

The tc = 25 curve is just the curve of Fig, 2 divided by Eq. (13); since

this curve lies below 1 the existing annihilation data do not yet challenge

the color triplet model in the space-like region, [However, since the



tC = 25 curve lies well above 1/3, the existing data already definitively rule
out a precociously asymptotic simple quark triplet model.] Evidently, the

curves in Fig, 3 rise rapidly with t_, and show that if the annihilation cross

C
- 2
section should remain constant at roughly 21-10 cm in the region
25 <t < 81 which will be accessible at SPEAR II, a precociously asymptotic
color triplet model would be ruled out in the space-like region.
To explore the consequences of an annihilation cross section which
remains flat up to large tc , we ignore the vector meson contributions to
cont(l)

Tobs and approximate T (-s) by taking R(t) = 0, t < 2; R(t) = 0, 24t,

2 <t < 25, giving the simple analytic expression

tc dt
T (-s) = [ ——5 0.24t
obs
2 (s +t)
(16)
a+t t.-2)
_ C C
= 0.24 £n<s+2> T % (s+t )(s+2)}
C
s+t t
=~ 0,24 [fn( C) - -::t }
5 5 c
Hence,
(~s)
obs
L R(tc) fz) ,
- s
R(tc) = 0,24 tc, (17)
flz) = 'é'fn(l*i-z) -

142z ' % ° tCl/s

A simple maximization shows that f(z) attains a maximum of 0, 22 at



=10~

z;\; = sM/tC = 0, 46, and falls to half maximum at z;_Jl = sL/tC: 0. 063
-1 _ . -1 )
and z; = sU/tc = 3,22, Thatis, Tobs(-s) /s reaches a maximum
value
. -1.MAX
- = x 0, = N

[Tobs( s)/s ] 0,22 24tc 0. 053 tC {(18a)

and lies above half this value in the wide range
< < 3, .
0. 053 r,c < s < ZZtC {18b)

. + - : .
To give a concrete illustration, if o(e e —hadrons; tj should remain
constart up t¢ the maximum tc of 900 obtainable in a 15 GeV/c on 15 GeV/c

storage ring, the maximum of To (-s) /s-l would be 0. 053 X 900 = 48!

bs
This would exclude by a factor of two parton or asymptotically free models

with C < 24, thus covering just about every model which has been seriocusly

proposed.

3. The u-Mesic Atom X-ray Discrepancy and gH - 2.

Recent studies of the transition energies between large circular orbits
in p-mesic atoms have shown persistent discrepancies between theory and
experiment., Because the muonic orbits in question lie well outside the nucleus
and well inside the innermost K-shell electrons, one believes that nuclear size
and electron screening corrections can be reliably estimated., In particular,
the disputed nuciear size corrections to the vacuum polarization potential have

-
been reevaluated recently by three independent groups,' in good agreement

with one another. A survey of all known theoretical corrections has been

5 :
given by Watson and Sundarasen (see also Rafelski, et al.g) , with the conclusion
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that all important effects within the standard electrodynamic theory have
been correctly taken into account. On the experimental side, independent
measurements by the groups of Dixit, Anderson, et al, ? and of Walter,
Vuilleumier, et al, 10 agree on X-ray transition energies which deviate by
two standard deviations from the theoretical predictions, as summarized

in Table II. While it may still turn out that systematic experimental errors
or errors or omissions in the theoretical calculations account for the dis-
crepancy, we will assume this not to be the case. Rather, we will treat the
discrepancy as a real effect, to be explained by modifications in the conven-
tional theory,

The unigue aspect of the muonic atom transition energies is that,
because the muonic orbits lie well inside the electron Compton wavelength,
they receive a large contribution from the electronic vacuum peolarization
potential and (unlike the more accurate Lamb shift experiments) they probe

the asymptotic structure of this potential, Motivated by this observation,

our principal focus will be to explore the possibility that the observed
X-ray energy discrepancy arises from a nonperturbative deviation of the
electronic vacuum polarization from its expected value, Such an effect is
dqualitatively expected (but with unknown quantitative form) if recent specu-
lations that the fine structure constant « is electrodynamically determined
11 . . . .
prove to be correct. We will also briefly consider an alternative explana-~
tion which has been advanced to explain the X-ray discrepancy, the possible

existence of a weakly coupled light scalar boson.
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To calculate the effects of a possible discrepancy in the electronic

vacuum polarization we start from the Uehling potential written in spectral

‘v

form,
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If we now assume that the spectral function pe[t] 1s changed by nonpertur-

bative effectsl3t0 p [t] + Gp[t], then V is replaced by V + 8§V, with
e

1
-t°

p o0 dt r
5V(r) = -z +—— [ = (e ) op[t] . (20)

This potential contributes to p-mesic atom energies through the diagram
shown in Fig. 4(a). Since Eq. (20) is a small perturbation and since the
muon orbits of interest are appreciably larger in radius than the muon
Compton wavelength, in evaluating matrix elements of §V{(r} we make

the approximation of using non-relativistic hydrogenic muon wave functions.
[The same approximation applied to Eq. {19) yields the Uehling energy shifts

for all of the levels in Table II to an accuracy of about 5%. ]14 Thus we take

L Z
z " na_7t 1
3 -
O n
R () - (22) (zl)' . (i?z.) , (21)
na, n)! na,
a = 1
0 am ’
"

giving for the change in transition energy produced by &V(r),
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20

2 2 2
= -6 = - 6
6EY 5En En-l f r dr [Rrl n_l(r) Rn-l n-Z(r) ] 6vir). (22)
0

Substituting Eq. (20) into Eq. (22), evaluating the r-integral, and using

2
@ /(3Tra0) = 4,35 eV, we find

_ S5E o0 4
E = - 1 1 = [ el eele] (23)
4.35eV Z - = am2
(n- 1) e
£ [t) = [ 1 _1_] . <__E_)% u}_zm-n
Y (n-1)° 2 (n-l) 4mi Za

.=

Finally, for convenience in doing the numerical work we make the change of

variable
2
t= 4m ew , (24)
e
giving the formulas
[».s]
K = dw f Sp(w) ,
y f \’(W) P
N {25}
f (w) = £ [4m” e™] , bp(w) = 6p[4m° e™].
Y Y e e

Evidently, in the non-relativistic approximation which we are
using, the shifts in the transition energy 6EY are j-independent, and

hence the two transitions for each n,! measure the same weighted integral
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of Splw). Thus, for purposes of comparison with Eq. (25) we average
the two discrepancy values for each n,f, as shown in the fourth column of
Table II.15 The ''reduced discrepancies" 6EY introduced in Eq. (23} are
tabulated in the final column of Table II.

Before proceeding further with our discussion of the p-mesic X-ray
discrepancy, let us turn to consider another electrodynamic measurement
which is sensitive to the asymptotic electronic vacuum polarization, the
muon gp. - 2 experiment. Here the conjectured deviation in the electronic
vacuum polarization spectral function contributes through the diagram of

Fig., 4(b). Introducing the standard definition
a = z{(g, - 2) (26)

. 16 . .
and using well-known formulas” for the photon spectral-function contribu-
tion to a, we find that changing the electron vacuum polarization spectral

function induces a g - 2 discrepancy
V8

ba = = [ Sty ] sppeg, (27)
B 3m2
4m
! © (1-x)
f(t]= 2 dax > X _ATX , £ [0] =1,
0 x +(l-—x)t/mp.

Using a2/(3ﬂ2) = 1.80: 10"6 and making the change of variable of Eq. (24),

we get the convenient formula



20
-6
ba, = L8010 i dw f_(w) bo(w) ,
0 (28)
f(w) = £[4m° e¥] .
a a e

The result of carrying out the integrations in the expression for fa(t) is
given in Appendix B,

Let us now return to our analysis of the p-mesic X-ray discrepancy.
The kernels f\’ {w) for four representative transitions are plotted in Fig., 5.
Our numerical evaluation shows that the six transitions listed in Table III
have weight functions fY which are nearly identical (their spread around
curve b in Fig. 5 is less than one third of the spacing between curve b
and curve aj); averaging the weight functions for these transitions gives the
function f_Y plotted in Fig., 6. Substituting the average of the reduced dis-

crepancies for these six transitions into Eq. {25), we find

3 —

(54.5 + 10) - 107~ = Average of six (- 5Ey)
00 (29)
= - dw T (w) bp(w)
Y
0

indicating that the sign of the discrepancy corresponds to a reduction in the
e_lectronic vacuum polarization spectral function from its usual value of
Eq. (19). Referring back to Fig, 6, we note that the function fa is always
greater than ?Y . Hence if we assume that dp(w) is always of negative
sign in the region where f, and ?Y are non-zero [as might reasonably

be expected if we are just entering a new region of physics where the

discrepancy &p(w) is turning on| we learn that
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o0
3

[ aw £ w) bp(w) < -(54.5110) . 107" (30)
0

Comparing Eq. (30} with Eq. (28) we then get an inequality for the gkL -2

discrepancy,

r
-6, -3 -7
<‘JaH < -1,80-10 2 (54.5 +10) - 10 = ~(0.49 + 0,09) -10 ,
bp f 0 %4
ba
“‘Ea S -42t 8 ppm, (31)
\, ™

A stronger prediction follows if, in addition to our assumption on the sign
of 6p , we assume that the magnitude of bp increases monotonically
with t [again as might reasonably be expected for an effect just turning on].

Then defining

f(w) = 0, w <0, (32)

we find that we can represent fa(w) as a superposition of displaced

curves [ ,
Y

10, 2
f(w) = 1016 fy (w) + f dw' c(w') f\{ (w-w') , (33)

0

with the positive weight function ¢ plotted in Fig. 6. Maultiplying by

bp{w) and integrating we get

s o) 20
fdw [ (w) dp(w) = 1016 f dw?Y(w) 6p(w) (34)
0 0

10, 2 ©

+ f dw' c{w") f dw ?Y(W-W’) bp(w) .
0 0
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But using Eq. (32) and the assumed monotonicity of p, we get

X _ o0 -
f dw f\’ (waw') bp(w) = f dw f\{(w) Sp(w+w')
0 0
(35)
m —
< f dw fY(W) Sp(w) '
0
and so we learn
0 10. 2 ©
[dw [ (w) dp(w) < [L 016 +f dw'c({w')] fdwa(w) 6p (W)
0 0 0
o (36)
= 2.00 of dw—f;’(w) Splw) .

Thus adding the assumption of monotonicity doubles the prediction of Eq. {(30),

giving
, -7
°p < 0 éaH < -(0.98 + 0.18) ¢« 10
=P  sa (37)
fep | 1 —+ < -84 +16 ppm .
pHs

Eq. (37} is the principal result of our analysis,
Two remarks about Eq, (37) are in order, First, the discrepancy
in ap. predicted in Eq, (37) is compatible, within errors, with the present

Tagreement of experiment with the conventional electrodynamic prediction

17

for a ,
o

. -7
2, (expt) - ap(conventional QED) = (2.5% 3.1) - 10 ", (37)
However, it should be readily observable in the next gp- Z experiment,

7 -7
where it is anticipatedl that the current experimental error of +3.1+10
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(= + 270 ppm in a /ap) will be reduced by a factor of 20, Second, the

- B
predicted effect is substantially larger than the likely remaining un-
certain contributions to a . Specifically, these are:

g

(i) The Bth order electrodynamic contribution to a*l » which has been

. , 18 -9 . :
variously estimated " as 6-7 -10 *, with an uncertainty of perhaps a |

. -9
few parts in 10 °,
{ii) The uncertainty in the hadronic contribution to a“ . Including the
+ - e .
P, w and ¢ resonances and integrating the e e annihilation continuum
up to tc= 25 gives a known hadronic contribution of 71 . IO"9 with an
estimated uncertainty of +7 . 10"9 (See Appendix B}. The unknown
+ - . . . .

contribution of the e e annihilation continuum beyond tC= 25 will of
course depend on the behavior of R(t) in that region. To get a crude
estimate, let us make the (hopefully extreme) assumption that R(t)
rises linearly upto t= (460)2, where the one photon annihilation cross
section violates the J=1 unitarity limit,l9 and cut off the integral at this
point, This procedure suggests a bound on the high-energy hadronic
contribution to aH of 15- 10-9. (Again see Appendix B),
(iil) Unified gauge theories of the weak and electromagnetic interactions

- . . , , 20
which do not have charged heavy leptons typically give contributions to
aH in the range from a few to ten parts in 10-9. Specifically, the Weinberg-
Salam SU{2) ® U(l) model predicts a contribution to aH of less than 9. 10-9,
Thus, from (i), (ii) and (iii) we conclude that the sum of unknown contribu-

9

tions to ap' is likely to be no bigger than ~35-10" ', and hence should not

mask the effect predicted in Eq, (37).



-19-

Although we have shown that the inequality of Eq. (37) does not
contradict the current gH- 2 experiment, we must still verify that it is
possible to find specific functional forms op(w) which [it the u-mesic
X-ray discrepancy without seriously viclating any of the conventional
tests of QED, including the very high precision g,." 2 and Lamb shift
experiment’.s.21 A postulated vacuum polarization discrepancy contri-
butes to o ¢ through the diagram of Fig, 4 (b), giving a formula identical
to Eq. (27) apart from the replacement of mp in fa[t] by m_ . The small-
nessg of m then permits use of the large-t asymptotic expression 3} fa =

2
m;/(Bt), giving the simple expression

2
20 m
, -6 dt e
=~ 0 . — — 4
ba_ L L — oplt]
4me
{39)
6 %0
= 0,150 1077 [ dw e " op(w)
0
Comparing Eq, (39) with the current difference between experiment and
22
theory {or a ,
e
ae(experiment) - ae(conventional QED) = (5.6 T 4.4) - 10-9 (40)
we yget the restriction
°° 3
[ awe ™ ép(w) = (37+29) . 107" , (41)
a

Next we consider the Lamb shift, which receives contributions from a

vacuum polarization discrepancy via the diagram of Fig, 4(a). Working
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again in the nonrelativistic hydrogenic approximation, we find for the

change in the 2s-2p Lamb transition energy

>

0

: Z 2 2
& = & = - a
el EZS"‘Zp of rodr (R, (r)7 - R, ()] 8V(r)
A ~-(42)
_ 2% P _arbp[t]
T 6Tr fz 1 ao 4
2
4me (1+t Z)

, 3 -1 4 -1 -1 _ _
Since t ao Z = {t /me) o Z > 1, we can neglect the 1 in the denomina-
tor of Eq, (38), giving

5 2
Z4a me %0 dt rne
a . = L — = — — Splt , : |
o j‘z = o orlt] (43)
4m
e

which evidently measures the same integral over 0p as does g -2, It
e
1s easy to see that the formula for the ns—~ np Lamb transition is obtained

3
by multiplying Eq. {43) by (2/n} . Hence, using the fact that

5
o m
= M .
oo 27.1 MHz (44)
we get the relation
3
w0 w n | L Z(conventional QED) - L Z(exptH
[ dwe ™ bplw) = - = . (45)
0 Z 271 MHz

In Tahle IV we have tabulated the right hand side of Eq. (45} for a series
o 23 _ _

of measured Lamb transitions, Taking a weighted average of the four

best determinations [the two measurements for H(n=2) and the measure-

+
ments for D{n=2) and He (n-2)] we find



-21-

20
dee
0

3

Woep(w) = (0.29+41.0) 1077, (46)

evidently a much tighter restriction than is obtained from .- 2,
Our procedure for searching for satisfactory functional forms o6p

is now as follows., Let

6 EY (i), o(i) = experimental reduced diacrepancies and standard

deviations from Table LI, i=1, ..., 12,

F{i) = theoretical fit to reduced discrepancies,
i=1, ..., 12; {(47)
th , .
da = predicted change in a ,
B o
6Ith = predicted value of f dw e-wﬁp(w) .
0

We form two chi-squares,

1!

12 , = ., .2
Ri) - SE (i)
2

i=1 oi)

. 2 ) (48)
ez, [0 -meCIO , (2370107
X, = X - "
2 1 3.1 - 1077 29 + 1073
2
51" _ 0, 291073
+ 3 H
1.0 « 10°

the first tests the fit to the p-mesic X-ray discrepancies alone, while the
second tests the combined fit to the X-ray data and the gp- 2, 8," 2 and
Lamb shift experiments, For each assumed functional form of bp, we

treat the overall normalization as a free parameter and adjust it to
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2 yd . .
minimize either Xy °F X, o corresponding respectively to 12-1=11 or
15-1 = 14 degrees of freedom. A sampling of results of this procedure
. , . 24
is shown in Tables V and VI, We conclude from these fits that:
A
(i} Functional forms giving good X, fits can be found. When these same

2

2
functional forms are fit by the X

1 procedure the coefficients change by .only

about 25%, which is satisfactory.

(i1) The forms which give good XZZ fits are all nearly step-function-like

in character, with a turn-on at w =~ 2-3 [i.e,, at t =(30-80) mi] . The
smallness below w ~ 2 1s required by the Lamb shift data, while the slow
growth above turn-on is needed in order not to violate the current limits on
deviations in gp.- 2.

(iii) All of the good fits satisfy &p £ -0.03 for large w. This is a general

feature for any monotonic form 9p which is small in the Lamb-shift region

w < Z, since (using the fact that -f-\(k 0 for w 2 9) we have

) g
-54,5 -10_3 = r dw f\{(wJ bp{wi = f dw fY(W) Sp{w)
0 2
q —
> 6p{9) dw f 49
> op ,f W (w) (49)
2
= L6 op(9y
that is
20,034 2 0p(9) . (50)

Possible implications of Eq, (50) for QED tests involving time-like photon

-~

) . ) 25
vertices will be discussed elsewhere,
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One additional place where a vacuum polarization discrepancy
should produce interesting effects is in the Lamb shift in muonic helium,
Applying Eq. (42) to this system (and noting that the 2p level here lies

above the 25 level) we find

6E - r dt __._E)_.B.[..E]____a

6L ([ *He, u] ") 2p—

it
w
c‘\
3
g .
T
—
+
-t
|
N[
\--_../N

2
2 me oo
- = b
oo [ dw g (w) Splw) (51)
P 0
eW
= 0 = Oa N
fHe(W) ( M w/2>4 ! fI—Ie( ) L3
l+— e
@
Numerical evaluation of Eq. {31) shows that fHe(w) /0.13 lies within 20%
of ?Y {w) in the range 0 < w < 6 where neither is vanishingly small.
Hence independent of the detailed form of 8p . we find the prediction
mZ
+ 2 2 =3
6L (*Hewl™) ~ £ & —2 x (-54.5°167°)x 0.13
31 m
H (52)

o -0,027 ev,

which may be an observable effect,
At this point let us conclude cur examination of vacuum polarization
effects and turn to an alternative explanation for the p-mesic X-ray dis-
. . 12 )
crepancy, the possible existence = of a weakly coupled scalar, isoscalar
boson ¢ . Interest in this explanation has been stimulated by the fact that

such particles {with undetermined mass) are called for in unified gauge
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theories of the weak and electromagnetic interactions, Letting g

b pp

and g - denote the ¢ -muon and the ¢ -nucleon scalar couplings, and
¢ NN

M,  the ¢ mass, the potential produced by ¢ -exchange between a muon

¢

and a nucleus of nucleon number A [Fig. 4(¢)]| is the simple Yukawa

27
form

B, = £,
_ ¢ "o NN e
V¢(r) = - py A " ] (53)

Since a repulsive potential is required to remove the X-ray discrepancy,
fitting ¥q. (53) to the X-ray data will necessarily give g g _ <0
$ppe $NN

As shown in Appendix C, this sign for the product of couplings is not possible
in the simplest forms of gauge models, in which there is only one physical
scalar meson and in which the chiral SU(3) @ SU(3) symmetry breaking
term in the strong interaction Lagrangian transforms as pure (3,3) @(E, 3.
Nonetheless, let us proceed in a purely phenomenological fashion and make

a2 quantitative fit of Eq. (53} to the X-ray data. Replacing &V(r) in Eq. (22)

by V (r), we find

o
§E
SE' = AY = 2.82- 104 g g f [MZ] , (54)
Y (ZZ) b oNN Y ¢

with 5E:{ the "reduced discrepancy' appropriate to a potential which couples
to A rather than to Z. The experimentally measured values of 61*_3\; are
tabulated in Table VII. Since in all gauge models the ¢ -~electron coupling is

expected to be of order (*:nefm the ¢ will have a negligible effect

b’ Bopp

on the electron g." 2 and Lamb shift measurements. So in fitting Eq. (54}
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to the data we minimize xlz defined in Eq. (48}, giving the results shown
in Table VIII, in good agreement with the results quoted by Sundaresan
and Watson.

Since a light scalar boson, as well as & vacuum polarization anomaly,
can satisfactorily fit the X-ray discrepancy, let us examine ways of distin-
guishing between the two possible explanations, First we consider the
muonic helium Lamb shift, Since fHe(w) =~ ?Y(w) for 0< w= €, a scalar
boson in the mass range from 1 to 22 MeV predicts an effect within about
20% of -0, 027 eV,while for scalar bosons lighter than | MeV {corresponding
to w < 0), the muonic helium Lamb shift decreases as

-0.178 M 2

4
5 ([ "He.p|T) ~ S eV, (55)
(1+0.65M¢)

M ‘n MeV ,
$

Hence the muonic helium experimen: could cnly digtinguish between a very
. 29 . e .
light scalar boson ~ and the jcint possibilities of a heavier scalar boscn or
a vacuum polarization effect. On the cther hand, the muonic vertex cor-

. . . .20 .
rection involving scalar meson exchange makes a small pesitive contri-

bution to a , as distinct from the sizeable negative contribution predicted
o

by a vacuum polarization anomaly. So the next generation of gu- 2 experi-

ments should unambiguously distinguish between the vacuum polarization

-

and scalar meson explanations for the p-mesic aterm X-ray discrepancy,
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Appendix A: Vector Meson Parameters

For the w and ¢ vector meson parameters we take

M = 784 MeV, l_‘(w-"e+e)

W

H

0, 76 keV,
{A. 1)

M, = 1019 MeV, 1‘(¢-—e+e“)

b 1. 36 keV

tl

3 ) .
For Fﬂ(t) we use the Gounaris-Sakurai formula 1 with an w— 2w interference

30
term,
2 2
M- (1+#6T /M ) : M
F(t) = 2 p__ 2 + Ae@ 5 = ,
3 o r
Mz-t+H(t)—iM r (—1-‘~) M /Nt M, -t-iM T
p PP kp P
r oM 2 2 2 2 2
H(t) = B2 Ck“(h(t) - iMD) ] + xS R MM
k3 p p p p
ol
2 k Nt + 2k
hit) = — = —
(®) T Nt log( Zmn)
2
5 ! m_ M + 2k
h'(M )= > + ——— log (_P?____E . {A, 2)
P anM 3 m.
p ™M k
p o
1 1
ko= (3t-m2)?, k- (AM° - m®)? ,
T p p T
1
6 Bé(w—ee) " 1
W F
a M B
[#3) T
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with the fellowing values for the parameters,

5 = 0.6, o = 860 .
M = 775 MeV, i T = 9.2MeV,
P 1 .2 (A, 3)
rp = 149 MeV, B3 (w=ee) = 0.906°10 7,
1
m = 140 MeV, B3{w=2mw) = 0.19. -

As discussed in Appendix B, approximating the small-t region in this
fashion as a sum of w, ¢ and p contributions should yield the small-t
contribution to Tobs(-s) (which is only a small fraction of the total for

large -s) to an accuracy of about 15%,
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Appendix B:

Formuias for fa[t] and the Hadronic Contributionto g -2

The function fa{t] appearing in Eq. (27) has been evaluated by

3
Brodsky and de Rafael, . who find

a
Of'-';ié}mi T:t/4m2,
K(t) = 5 « 47 - 47(1~ 27) £n(47)
1 1 (B.1}
2 2
_2(1-81'1-872)( T ) arctan(l T) ;
L-71 T
2 1
> 1 - (1-4m /)%
t > 4m |, X = L
- e

2 i
1+ (1-4m“/t)a

1 2
J4 -x+ 7z
% x2(2~x2) B (1+x)2(l+x2) ) n(1+x)2 X+2zx

l-x
X

2
+ Lt x % Inx.,

Correspording to the divisicen of Tobs(-s) into four pieces in Eq. (15)

5}, we
write the hadronic ceontributicn to a as
0
a = 13 f dt cr(e+e- - hadrons; t) K(t)
M 4 4 2
w (B. 2
: t 2
a:\-fcp : ap L g con (1) N ac:ont( }
} i

m a

Working in the same narrow resonance approximation as ir the text we find
.

w
for a the expression

+ -
+ r -
aw'qJ = Z 2 K(MZ) V=>ee) ) {B. 3]}
18 m v wE
Vow,d v
while ap

1s given by the integral



2 © 4 4’ \3/2 >
2P . 2 J 2 < 1- ”) ]Fw(t)l K(t) . (B, 4)

Substituiing the parameters from Appendix A and evaluating Eq. (B. 3} and

(B.4; rumerically gives

aLU'H.’.D . 9,7 . 10"'7 , a_p = 45 . ].0-9 ) )
(e M
(B. 5)
Jfetosmallt 54 . 10—9
M

A more elaborate evaluation of the small-t contribution has been given by
33 . . . .
Bramon. Efim and Greco, who sum the contributions of the various im-

per:ant hadrcenic states directiy from Eq. (B, 2), giving

a;or:,small-t = (61 + 7). 10" , (B. 6)

indicating that cur method of treating the small-t region is good to about

cont(l] t(2]
15%, To evaluate a{;omu} and a:cm( ) we approximate K(t} by its
asymptetic form
JA
T
K@) ~ ¢+ —& E= o (B.7)

: ;L2
giving [ in urits where unity = (1 GeV/c¢)"]

25
ac:ont(l; - 6.7 10-9 f dt R(t) s
2 ¢ 2
.3
%39 (B. 8)
tC
t(2 -
acon() _ 67'109 J« dt R(t)
- ¢ &
25
. cont(l) . . . . :
Evaluating a.}‘L numerically using the data plotted in Fig. 1 gives
2P g oy (B.9)

B
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with the error a rough guess, Thus the total known hadronic contribution

to a s
}.L

(61 + 7) - 1077 4 (9.6 + 2) » 10?7 - (71 + 7) - 1077, (B. 10)

Estimating the unmeasured contribution by assuming a linearly rising R(t)
2
up to tC = (2.230) , we get

2
IS PRTIL TIPS C LI R FPELS (B. 11)

as stated 1n the text.



-32-

Appendix C:

Sign of the Scalar Meson Exchange Potential in Simple Gauge Theories,

Consider a gauge theory of the weak and electromagnetic interactions
in which only one scalar field ¢ develops a vacuum expectation, ¢=o¢+ X ,
as a result of spontaneous symmetry breaking. Since % is the source -of
the lepton masses, the interaction Hamiltonian (= - the interaction Lagrangian)

coupling ¢ to the muons is

e -
JJ/WTL S Mo (C.1)

Since in the hadronic sector A is the origin of chiral SU(3) @ SU(3) symmetry

breaking, the interaction Hamiltonian coupling ¢ to the hadrons is

e M (C. 2)

¢ hadron A chiral breaking.
Hence the sign of g g is the same as the sign of
¢pE ¢NN
<N IN>. Now if s transforms under

chiral breaking chiral breaking

SU(3Yy @ SU(3) as (3,-';) @ (_3:, 3), then using the notation of Gell-Mann,

5
Oakes, and Renner3 we readily find that

3o
NN
N LN s T ey RN N
chiral breaking (NZ+cIN? N2 8
2 2
m., - m
r K L N ~
RN S 125, (C. 3)
mtam_
<N5u8|N> = baryon mass splitting parameter = 170 MeV ,
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That is, we have

< N| o2 IN> = 12,94 -333 MeV , (C. 4)

chiral breaking NN

Recent determinations of the sigma term o suggest a value in the

NN

range 45 - 85MeV, 36 making < NJGJJ'

S .
chiral breaking [N > positive and

giving an attractive scalar meson exchange force, A value of ¢ NN smaller

than 25 MeV would be needed to make the scalar meson exchange force re-

pulsive, as is required to explain the p~-mesic X-ray discrepancy.

4
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TABLE I,

Values of C in Different

Models

Model
Simple quark triplet
Color quark triplet
Color quark quartet
Han-Nambu triplet

Han-Nambu quartet

i

2/3

o~

10/3
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TABLE IIL.

Transitions with Nearly Identical {

Element Transition Reduced Average
ZE n, . n-lﬁ-l Discrepancy -ﬁfY
e %~ q (49.3 + 30) » 107>

4 3 -3
43Cd f d (20.5 + 27) -+ 10
4 3 -3
Sn f - °d (43.5 + 26} + 10
50 -
5 4 -3
goHe g f (71.8 + 27) * 10
e 5g - 4 (55,3 + 26) » 1073
g, PP 5g - 4 (73.7 + 21) » 10”2

Weighted average of six

reduced discrepanciesa: {54.5 + 10) - 10"3

a

We have treated the errors as if they were purely statistical and
quoted the RMS error for the average,
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TABLE IV,

Lamb Shift Measurements

>

System Conventional QED (MHz) Expt (MHz) Right-hand Side of Eq. (4])
Hin= 2) 1057. 911 + 0,012 1057.90 + 0, 06 (0.33 + 1,80) » 107°
1057, 86 + 0. 06 (1,50 + 1.80) + 107"
H(n= 3) 314,896 + 0.003 314,810+ 0.052 (8,57 + 5.18) - 107>
H(n= 4) 133,084 + 0,00t 133,18 + 0,59  (-22.7 + 139) + 107°
D(n=2) 1059, 271 + 0.025 1059. 28 + 0, 06 (-0.27 + 1,92) » 107>
He'(n= 2) 14044, 765 + 0.613 14045.4 + 1.2 (-1.18 + 2,49) » 107"
He (n=3) 4184,42 + 0,18 4183.17 + 0, 54 (7.79 + 3.55) « 107"
He'(n=4) 1769, 088 + 0.076 1769, 4 + 1.2 (-4.60  17.7) « 107"
++ -3
Li (n=2) 62762 + 9 62765 + 21 (-1, 1 +8.3) « 10
5+ -3 -3 -3
C”(n=2) (783,678 + 0,251) - 10 (744.0 + 7) + 10 (904 + 159) .+ 10
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TABLE VL

Results of Step Function Fits

Functional Form 6p X; bda 10? 5+ (H) MHz
-0.004 o({w - 0,5} 38 -0, 23 0. 08
-0.014 6{w-1.5%) 21 -0.69 0,10
-0,032 B(w-2.5) 14 -1, 3 0. 09
-0,072 0(w-73,5) 12 -2.3 0. 07
-0, 16 B(w-4.5) 13 -4, 0 8. 06
-0.37 0(w-5.5) 22 -6, 7 0. 05
-0,39 0(w-6,5) 43 -5, 0 0,02

See the comment in Ref. 25,
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TABLE VII,

Reduced Discrepancies for Scalar Meson Calculation

Element Transition Reduced Average
. = 1
ZE n, n-lﬂ_1 Discrepancy -6EV
LG 24~ % (37.2 + 54) - 107>
,, T 34 ~ 2p (11.0 + 41) - 1073
Fe 4~ % (35.1 + 30) + 107"
26 -
385F %~ 3 (15.5 + 37) - 107
Ag o3 (42.9 + 26) - 107>
47 =
4 3 -3
4gCd f d (17.5 + 23) » 10
5050 %~ 3q (36.6 + 22) - 1073
5 Ba %~ 3a (81,0 + 19) - 1073
g~ (20.0 + 32) - 107>
5 4 -3
gotis g f (57.0+ 21) * 10
g1 11 5g ~ % (43,9 + 21) - 107>
Pb 5g ~ 4 (58.5 + 17) - 1077

82
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TABLE VIII,

Results of Scalar Meson Fits

10. 1

(g _g _)/4r
P NN
S1.3 . 1077 -
“1.4.10°"
22.0- 107"
3.8+ 107"
6.9 107"
1.2+ 10°°
~2.5+10°°



Fig. 4

Fig, 5

Fig, 6
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FIGURE CAPTIONS

"Eyeball" f{it to the continuum ete™ annihilation data. The

p, w, and ¢ vector meson contributions are not included.

The function TO (-5) as obtained from all experimental data

bs
2 . : ) 2
up to t_ = 25 (GeV/c)”, in units where unity = (1 GeV/c)".

Ratios of TO s(-s) to Tth(-—s), with Tth(-s) the color triplet

b
prediction of Eq, (13), The tC = 25 curve uses the presently
known data; the curves for higher tC assume a constant
. i1 . -33 2

hadronic annihilation cross section of 21-10 cm above

2
25 (GeV/c) .
{a) Diagram by which a vacuum polarization modification
{denoted by the shaded blob) contributes to p-~ and e- atomic
energy levels,
{b} Diagram by which a vacuum polarization modification
contributes to g -2 and g - /2.

e e

{c) Diagram by which a scalar meson contributes to u-

atomic energy levels,

(d) Diagram by which a scalar meson contributes to gp- 2,

Kernels EY for some representative transitions,

Plots of the kernels fY and fa.- [see the discussion which

follows Egs. (28) and (29) of the text],
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