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ABSTRACT 

We study the Reggeon field theory in 4-e dimensions. 

When the Pomeranchuk singularity has intercept one the theory can 

not be renormalized order by order in the perturbation series. 

Nevertheless we are able to develop systematic techniques for 

constructing the Pomeranchuk Green’s functions. An integral 

representation is obtained for the Pomeranchuk propagator which 

allows us to explicitly display its infra-red (1 = 1, t = 0) behavior 

and to show that the perturbation series is an asymptotic expansion 

for small values of the coupling constant and for large values of the 

angular momentum or momentum transfer. We also obtain an integral 

representation for the intercept renormalization counter-term. We 

find that for the renormalized Pomeranchuk singularity to have intercept 

one, the bare Pomeranchuk pole must have intercept greater than one. 
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I. INTRODUCTION 

Gribov’s Reggeon field theory’provides an elegant framework 

for the study of high energy reactions. In this theory Reggeons are 

treated as quasi-particles and associated with fields in two space and 

one “time” dimension. The space variables are conjugate to the 

transverse momentum, i;, and the “time” to the “energy” variable, 

E =l-P, where P is the angular momentum. 

The field theory approach is most useful in discussing problems 

involving the Pomeranchuk singularity where interactions among 1 - 

plane poles and cuts are important. In these problems it seems 

necessary to take into account the full Reggeon unitarity relations. 
2 

The field theory has the advantage of guaranteeing that these relations 

are satisfied identically. 

The purpose of this paper is to develop systematic techniques 

for constructing solutions to the Reggeon field theory when the Pomeranchuk 

singularity has intercept one. In this case the theory has a non-trivial 

2 
infra-red (E, k = 0) behavior, and the standard renormalization program 

cannot be carried through order by order in perturbation theory. The 

problem is analogous to the one encountered in relativistic field theories 

with massless scalar particles. 

Recently considerable progress has been made in studying the 

infra-red behavior of the Reggeon field theory by making use of the 
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renormalization group and the e-expansion. 3,4 Here one studies the 

field theory in D = 4-e space dimensions. We shall do likewise. Our 

construction of the Pomeron propagator leads directly to the renormalization 

group scaling law when an infra-red stable Gell-Mann-Low eigenvalue exists. 

More importantly, we are able to justify the neglect of intercept 

renormalization in the e-expansion calculations. 

In this paper we consider only a bare triple Pomeranchuk 

coupling and a linear trajectory function. Higher order couplings and 

higher powers in k2 in the trajectory function are generated by the 

interaction. Wilson has shown that in the analogous problem of 

Euclidean o4 theory the inclusion of such terms directly into the bare 

Lagrangian will in general not disturb the infra-red behavior of the 

theory. 
5 The techniques we develop in this paper are also applicable 

to massless o4 theory in 4-e dimensions. A discussion of $4 can 

be found in a companion paper! 

In Sec. II we discuss the structure of a general perturbation 

theory diagram which contributes to the Pomeron self-energy part. 

In general the interactions among the Pomerons will lead to a shift 

in their intercept. This can be compensated by adding an intercept 

renormalization counter term to the Lagrangian just as one adds a 

mass counter term in conventional field theories. When the Pomeron 

intercept is below one the counter term can be adjusted at each order 

in perturbation theory so that the intercept takes on its physical value. 
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However, when the intercept is at one the counter term develops a branch 

point at zero value of the coupling constant, and it is no longer possible 

to carry out the intercept renormalization order by order in perturbation 

theory. Another difficulty with the perturbation theory is that as 

the Pomeron intercept approaches one, the second order approximation 

to the propagator develops a tachyon (an 1 -plane pole to the right of 

one). This spurious pole disappears only after an infinite class of 

diagrams has been summed. Despite these difficulties it is possible 

to systematically construct the renormalized Pomeron propagator by 

making use of the skeleton expansion for the self-energy part. For 

E > 0 the field theory is super-renormalizable, and once the 

renormalized propagator has been constructed, all Green’s functions 

can in principle be calculated. 

In Sec. III we develop an alternative method for constructing 

the renormalized propagator which appears to have considerable 

calculational advantages. We derive integral representations for the 

intercept renormalization counter term and for the full propagator in 

terms of the other (finite) renormalization constants in the theory. The 

latter can be calculated systematically using renormalization group 

techniques. This approach has several advantages. It enables us to 

explicitly display the infra-red behavior of the propagator; it allows 

us to see how the tachyon, which is present in lowest order perturbation 

theory, is removed from the full solution to the field the0r.y; and it 
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enables us to show that the perturbation series is an asymptotic 

expansion when the coupling constant becomes small for fixed values of 

E and k2 , and when E or k2 become large for fixed values of the 

coupling constant. 

From the integral representation for the intercept counter term 

we are able to show that the intercept of the bare Pomeranchuk pole 

lies above one. We should emphasize that this bare Pomeranchuk pole 

is not necessarily experimentally observable at low energies, since 

there are many effects responsible for the complete intercept renormalization 

which are not accurately represented by the Reggeon calculus. 

In Sec. IV we review our results and briefly discuss their 

application to the e-expansion and to direct calculations in two space 

dimensions. 

II. PERTURBATION THEORY AND THE SKELETON EXPANSION 

In the Reggeon field theory a non-interacting Reggeon is treated 

as a quasi-particle with energy-momentum dispersion relation 

E = 1 - ~~(-2~) . (1) 

where E = i-1 and a,(-z2) is the bare Regge trajectory. We take the 

bare Pomeron trajectory to be linear and write 

+2 +2 
cuo(-k ) = a(O) - Ir’k 

0 . (2) 

The free Lagrangian density is then given by 



-6- FNAL-Pub-74/59-THY 

g$;;, t) =; @, t) g+o(g t) - up@, t) .c jb’% t) 

- A G;(;;. t) Go(;;. t) . (3) 

Here Go(g,t) is the bare Pomeron field and A = l-a(O) is the intercept 

gap. We shall work in D = 4-e space dimensions keeping in mind 

that the point of physical interest is D = E = 2 . 

The interactions Lagrangian density will be taken to be 

g(g,tt) = - f iro[+~(~,t)QO(~,t)2 + +i(Zt)2+o(gSt)] 

+ 6A $6) Jb(g,t) . (4) 

It follows from Gribov’s signature analysisI, or equivalently the negative 

sign of the two Pomeranchukon cut 2,7 , that the bare triple Pomeron 

coupling constant, r. , is real. &A is the intercept renormalization 

counter term which is to be adjusted so that the intercept gap, A , 

retains its physical value. 

Our task is to construct the Green’s functions, G n*‘m(Ei, CJ , 

for n incoming and m outgoing Pomerons. The rules for evaluating 

the contribution of an individual Feynman diagram to G 
n, m 

are as 

follows: 

1. For each Pomeron of momentum c and energy E use the 

bare propagator 

GO(E, c2) = i [E-o;g’- A+ie ] 
-1 
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2. For each triple Pomeron vertex put a factor of 

r ,(2rr)(D+w2 
0 

3. For each intercept renormalization counter term put a factor 

of i&A . 

4. For each two Pomeron loop with both momenta in the same 

direction multiply by + . 

5. Conserve energy and momentum at all vertices. 

6. I dDk dE around each closed loop. 

Let us start by studying the structure of the Pomeron propagator 

in perturbation theory. It is convenient to write 

i $.l (E,k2) =iG1’*(E,k2)01= E-,;k’-A- X(E,k2) +6A. (5) 

Z(E, k2) is the proper self-energy part. The lowest order diagram 

that contributes to X(E, k‘) is the bubble graph shown in Fig. 1. It 

gives8 

X2(E, k2) = 5 (2n:i+,, hDk ‘dF l [IS’-a’gk’ ‘-A+i.elWi 

1 
-1 

E-E’+; (2-p)’ - A + ie 

= cri(+ ik2+2A-E) 1-e/2 
(6) 

with 

r(-i+E/2) c= - 
2(8na;) 

D/2 . (7) 
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Clearly if the Pomeron intercept is to remain at a(O) one must have 

r1,i (A.0) = 0 . (8) 

which requires that 

6A2 
= cr2 p/2 

0 (9) 

Many of the difficulties with the perturbation theory already 

appear in this second order calculation. First notice that the limits 

A - 0 and E - 2 do not commute. In fact for A = 0 and E 1 2 there 

is no choice for &A2 such that Eq. (8) holds. Furthermore there is 

a second solution to the equation, 

$,1 (E,O) = 0 (10) 

This spurious solution occurs for E <A when El2 
A i (-i+c/Z)cri and 

E/2 for E < 0 when A < -cri (21-e’2-i) . In the second case the 

propagator has a tachyon, an I -plane pole to the right of 1 = 1 . As 

we shall see, this tachyon is not present in the full solution to the field 

theory. However, its presence in second order perturbation theory 

indicates that the A goes to zero limit is a subtle one. In higher orders 

of perturbation theory one will find tachyon-tachyo.n and Pomeron-tachyon 

cuts. The tachyon pole and cuts disappear only after an infinite class 

of diagrams are summed. 

To analyze higher order terms in the expansion of Z(E, k2) it 

is convenient to use Rayleigh-Schroedinger perturbation theory (which 

is equivalent to performing all the E-integrations by picking up 

propagator poles). Then momentum, but not energy, is conserved 
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at each vertex, and one integrates only over the loop momenta. For 

each triple Pomeron vertex one now puts a factor of r,/(2n) 
D/2 and 

for each n Pomeron intermediate state the free n-Pomeron Green’s 

function 

Let us consider a diagram of order 2n in the triple Pomeron coupling 

but with no intercept counter terms. Making use of the Feynman 

identity to combine the Green’s function denominators one can write the 

contribution of such a diagram in the form9 

k2) = (-)“+‘~;/(Za) 

I 

-(2n-1) 

Aij(z)~;i;;ci+ a(z)k’ + b(z)* - E - ie . ($2) 

Here Aij(z) is a positive semi-definite, symmetric matrix, a(z) > 0 

and b(z) 2 2 for all allowed values of the z. . Notice that Xn(E,k2) 
1 

has no singularities as a function of E arising from the infra-red 

(k: =0) region of integration even when A = 0 . Such infra-red 

singularities are present in relativistic field theories with massless 

scalar particles which makes the analysis of these theories more 

difficult. 
6 
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The only singularities in Z,(E, k2) as a function of E are poles 

arising from ultra-violet divergences. Performing the momentum 

integrations in Eq. (12) gives 

Zn(E,k2) = (-)n+i ri/(4irai) 
n F(-1+ne/2) 

l?(Zn-1) (13) 

l [2z dzi6h FJ[det A(z) [a(z)k2+b (z)A-E-ie]‘Ine” 

The pole at E = 2/n, which arises from the overall ultra-violet divergence of 

the diagram, appears explicitly in the gamma-function in Eq. (13). If 

the topology of the diagram is such that one of the internal lines contains 

a self-energy insertion of order 2m , then there will be an additional 

pole at E = 2/m . It will arise from a vanishing of det A(z) when 

one or more of the Feynman parameters is zero. Some specific 

examples illustrated in Figs. 2 and 3 are worked out in the appendix. 

From simple power counting one sees that for E> 0 the only 

ultra-violet divergences in the theory are those that arise in the self- 

energy part. Once they have been removed by performing the intercept 

renormalization all Green’s functions are finite. The renormalization 

can be carried out order by order in perturbation theory for A > 0 , 

but not for A = 0 which is the theory of interest. To see this let us 

set A = 0 inEq. (13). We can then write 
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c,(E,O) = (-jn 1-ne/2 
Cn (1-ne/2)-1. (14) 

Clearly for n 22/e there is no choice for 5 An such that C,(O, 0)- 6 An= 0 . 

This is the generalization of the difficulty encountered in 

the second order diagram for EL 2 . The problem is that when 

A=O, 6 A has a branch point at r. = 0 . This follows from the 

fact that when A = 0 the only quantity with the dimensions of energy is 

. As a result, 6 A must have the form 

2lf 
6A = i-i/,* 

0 f(E) I (15) 

where f(e) is a dimensionless quantity independent of r. and (Y; . 

It is clear from Eq. (i5) that one must develop non-perturbative 

techniques for calculating 6 A . One approach is to make use of the 

skeleton expansion for the self-energy part. One starts by summing all 

graphs in which the internal lines have no self-energy insertions and 

no intercept counter term insertions. Examples are the ladder graphs 

shown in Fig. 2. For this class of graphs there is no difficulty in 

carrying out the intercept renormalization after the summation has been 

performed, since the only singularity of each diagram is the overall 

ultra-violet divergence. One then obtains a first order approximation 

to the propagator. The next step is to recalculate the skeleton graphs 

using the improved propagator in place of the bare one, and to again 
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renormalize after summing the graphs. By carrying out this process 

an infinite number of times one generates all the diagrams in the theory. 

At each step of the calculation the inverse propagator is finite and 

vanishes at E = k2 =o. 

Let us consider the first round calculation in more detail. We 

can write 

(-)n(r~/~‘,D’2)n(-E)i-nC’2D(1)(n) (1-ne/2)-: (16) 

where the D(‘)(n) are positive and have no singularities in n for 

n> 21~. If the D(‘)(n) are sufficiently well behaved for large values 

of n as is indicated by the examples ofAppendix I and by renormalization 

group calculations, then the series can be summed using the Sommerfeld- 

Watson transformation: 

ZZ(‘)(E, 0) =i Ic -$& (r~/@~D’2)n(-E)‘-nt’2D(i)(n) (I-nE/Z)l. (17) 

The contour c circles all of the positive integers in the clockwise 

direction. Let us now pull back the integration contour. The right 

most singularity of the integral that one encounters is the pole at 

n= 2/e , so one can write 

#)(E,O) = (r;,a;DI2)2” t 2 D(‘) (;&(E,O), (18) 

E 

where z (1) (E,O) vanishes as E goes to zero. As a result, 
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6A (1) _ - (r$Y; 
D/2)+ ,” T 

sinirZ D(Y) - 
E 

The task of calculating the D(i)(n) is a formidable one, to say 

nothing of the problem of carrying out the higher order iterations. 

In the next section we shall present a more practical calculational 

scheme. The point we wish to emphasize here is the interplay 

between the ultra-violet and infra-red singularities. It is the fact 

that the over-all ultra violet divergence of the graphs occurs at the 

same value of E that the infra-red difficulties set in that makes our 

construction work. This will continue to happen in the higher order 

iterations. 

Although the skeleton expansion does not seem to be of practical 

use, the Sommerfeld -Watson representation of the self-energy part does. 

For example, in the next section we shall show that for small values 

of E the full self-energy part can be written in the form of Eq. (17) 

with D(‘)(n) replaced by 

In this approximation 

6A = DI zE 1 (21) 

The pole at n = 0 arising from the vanishing of sinrrn cancels the 
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linear term in E in the bare propagator, so the small E behavior of 

$“(E,O) is controlled by the right most pole in r(n+$) . One finds 

ir ” ‘(E, 0) z - 

in agreement with the results of references 3 and 4. 

III. INTEGRAL REPRESENTATIONS FOR THE POMERON PROPAGATOR 

Up to now we have concentrated on the intercept renormalization. 

However, in order to derive integral representations for the Pomeron 

propagator it will be useful to carry out the wave function, coupling 

constant and slope parameter renormalizations. We start by 

introducing the renormalized Pomeron field operator $(g, t) , 

qJ(;;. t) = z; + $,(iT, t) . (23) 

Then the Lagrangian density of Eqs. (3) and (4) can be rewritten in 

the form 

9=;Z3Li(&&x,t) - z,rr’o’++(~t)~ &t) 

-7j rZi[ ++(G, t)@, tJ2 + ++(Z. t)2+(G, t) ] 

+ Z36 A$+(;;, t)Jl(g, t) . (24) 

For the remainder of this paper we shall take A = 0 . Z1, Z2 and 

Z3 will be referred to respectively as the coupling constant, slope 
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and wave function renormalization constants. 

a 
-1 

= z3z2 a; (25) 

r =Z 
312 -1 

3 zi r. (26) 

The Zi are determined by the following normalization conditions on 

the renormalized propagator and three point function 

a iFi”(E,k2) 
ET, 

=I , 

a irk’(E,k’) 
ak2 

= -cy’ , 

E= -EN 

k2,k2 
N 

D+1 

(E1,$E2,~233>~3) 
I 

= ir/(2rr) 2 
. 

E1=2E2=2E3=-EN 

(27) 

(28) 

(29) 

ic*= 2C2=2C3=-Q 

Here (-EN, k.$ is a general point away from the singularities of the 

Green’s functions. Our normalization conditions differ from those of 

Abarbanel and Bronzan in that we have not set 6 = 0 , This 

generalization is necessary in order for us to study the k2 dependence 

of the propagator. With the above definitions, the renormalized proper 

vertex function for n incoming and m outgoing Pomerons, I? n, m 
R ’ 

is related to the unrenormalized one by 
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n+m 

r :“(Ei.gi. r,cr’,EN, kl,I = 2, Z3 2 I?n’m(Ei,~i,ro,u;) . (30) 

Let us now turn to the problem of finding an integral representation 

for the Pomeron propagator. We start with the unrenormalized self- 

energy part with k2=0 . From dimensional analysis it can be written 

in the form 

m cc 2 
D/2 

I 

n+;m C 
t-E) 

1-n: -m nj m 

*3m-1 
. (34) 

The (n,m) term in the sum arises from diagrams with n triple 

Pomeron vertices and m intercept renormalization counter terms. 

We have used Eq. (15) for 6A and absorbed f(e) into Cn m . The 

pole in e arising from the over all ultra-violet divergence of the graphs 

has been displayed explicitly in Eq. (31 j . The Cn 
* 

m , which are 

functions of E only, also contain poles in E , but they cancel among 

themselves when the sum is taken. It is convenient to introduce the 

auxiliary function m m 

xnI+mcn m . (32) 

Then Eq. (31) can be rewritten in the form 

ZZ:(E,O) = C i-i/@; s F(x) , 
0 x2 

( 33) 

where 
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,D12 
2/E -i 

x1 0 t-E) . (34) 

The integral in Eq. (33) is well defined for E > 2 . It can be continued 

to smaller values of E by making use of Eq. (32) to explicitly remove 

the poles at E = E (i-m) . The residues of these poles can be 

calculated in perturbation theory. 

The function F(x) can be related to the wave function 

renormalization constant, z3 ’ provided we carry out the renormalization 

at k 
2 

N 
=o. In that case 

-1 
Z3 (xtN) =&iI’i”(E,k’) 

E=-E 
N 

k2= 0 

where 

= 1 - F(xtN) > 

D/2 2/E -1 
XiN EN ’ 

(35) 

(36) 

That Z3 is a function of x 1N only follows from the fact that this is the 

only dimensionless variable one can make from ’ 
ro’cyo 

and E N ’ 
We 

now have 

6A = z(O,O) = rz/,’ 0 

and from Eq. (5) 
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ir D/2 
m dx 

7 z;$q . (38) 
x 

x1 

Notice that the bare propagator has been cancelled by the term in 

z(E, 0) which is linear in E . 

The next step is to evaluate Z3 . This can be done using 

renormalization group techniques. Following Abarbanel and Bronzan3 

we introduce a dimensionless renormalized coupling constant 

g = rw’ -D/4E -e/4 
N ’ 

and the renormalization group functions 

p=E a 
NZNg 

I 
” fixed 
LyIo 

Y=ENg- 
N 

lnZ3 

r. (yc flxed 
0 

L=E ae# 
N =N 

rO cy, fixed 
0 

(39) 

(40) 

(41) 

(42) 

Since g is the only dimensionless renormalized quantity in the problem 

when <=O , p , y , <ICY’ and the Zi must be functions of g 
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only . This tells us that Eqs. (41) and (42) can be written in the form 

d 
y=pqlnZ3 , 

and 

d 
5 = a’p dg ln(Z2 -lz3) . 

Furthermore, from Eqs. (26) and (39) we find that 

-1 g ‘26 -1 = d ln 
dg ( 

Z31z-D/4Z-~zD/4 
3 1 12 . 

Since the Zi are all one at g = 0 our final results are 

[ ! 
g 

z,(g) = exp dg’ vk’) P-h’) 
0 I 

z;h z,(g) 
g 

= exp dg’(5/OP%) > 
0 I 

(43) 

(44) 

(45) 

(46) 

(47) 

and 

,-D/4E-~/4C 
roc’0 N 

g 
dg’(g+‘+ $ p-‘(g*) 1 . (48) 

0 

Several important results can be read off without detailed 

calculations. First since y and p are real analytic functions, Z3 

is positive definite for real values of g . As a result, we see from 

Eq. (38) that II I,1 (E, 0) cannot vanish in the range - m< E < 0 . 

Thus the tachyon which we found in second order perturbation theory is 

not present in the full propagator. Its cancellation is clearly a non- 
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perturbative effect. 

Next let us suppose that p(g) has an infra-red stable zero, i. e., 

a zero of the form 

P(g) gz b(g-gi) 
1 

(49) 

with b > 0 . This is the case at least for small values of E . 3,4 Then 

for 62 s g, Eqs. (46)and (48) yield 

*IN = c,k,-g) 
-1 lb 

z3 = “5 kQ%) y/b _ -Y 
- C3X1N ’ 

(50) 

(51) 

where v! y(g,) and the c’s are constants. We now see that the 

integrals in Eqs. (37) and (38) will converge provided 

y<l . (52) 

2 Notice that the limit g + g1 requires either r. + m or EN - 0 . The 

small E behavior of I? “*(E, 0) is just 

) 

TV 
ir ” '(E,O) E% - c3(ri/a; D/2 E (..E) (53) 

in agreement with the renormalization group result. 3 ‘,4 

The small r. and large E behaviors of F I,1 (E, 0) can also be 

read off from Eq. (38). Let us denote by x1 a value of x small 

enough so that the series expansion for Z 
-1 3 (x) given by Eqs. (32) 
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and (35,) can be used for x 5 x 5 x 1 1’ Then in this range 

one can integrate the series term by term. The dominant contribution 

2 will come from those terms in Eq. (32) with m = 0 and n i E , They 

will just give rise to the first n terms in the perturbation expansion of 

the propagator plus a correction of order 
( 

2 
rO/ff 

,D/2 2/e 
0 1 

The 

integral from X 1 to infinity will also be of order 
( 

2 
r /cz* D/2 2/e o o 

1 

Thus the perturbation series provides an asymptotic expansion of the 

propagator for large E or small r. . However, it is only legitimate 

to work to order n < z . No diagrams with intercept counter terms 

need be included. This result is crucial for the e-expansion calculations 

of the critical exponents. 324 They are generally assumed to have a 

power series expansion about E = 0 . If one wishes to calculate the 

first n terms in this expansion one need merely imagine working with 

E < 2/n . One can then calculate the renormalization group functions 

in perturbation theory, and no diagrams with intercept renormalization 

counter terms will enter. At the end of the calculation one can of 

course attempt to continue the answer to E > 2/n . 

In order to proceed further it is necessary to compute the 

renormalization group functions. In the one loop approximation one 

need only calculate the bubble diagram of Fig. 1 and the vertex graphs 

shown in Fig. 4. We find that 

P(g) = +(4/g;) (54) 
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(55) 

SILT@ = 6g2/g: . (56) 

Here gl, y and d are functions of E only and y and 6 are negative. 

The one loop approximation gives the correct behavior of the renormalization 

group functions to leading order in E . Working to this order one finds 3,4 

(57) 

y = - e/12 (58) 

6 =-e/24 . (59) 

From Eqs. (46) and (48) we see that in the one loop approximation 

E/2 2 2-i 
XIN = g2(1-g /q (6’3) 

and 
10 

Z3 = (+g”,g;J? (1 +x;;2,g:)-ty . (61) 

Notice that the region -gl C g 5 g1 corresponds to - m < r. < m . 

This will always be the case if an infra-red stable zero exists Since 

p(g) has the form - : g f(g2) with f(O) = 1 . Substituting Eq. (61) into 

Eq. (37) gives 

Z/E 
f (62) 
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which reduces to Eq. (21) in tke small E limit. For small values 

of E we also find that 

-116 
= E 

C 
i+bri( -E) 

-e/2 /(8rr)20jD’2 E] ( 63) 

This result was first obtained by Bronzan using the renormalization 

group directly. 
11 

He has shown that it corresponds to summing all 

terms in the theory of order ( ri/e)n , but neglecting those of order 

cm( r-i /E)~ . One sees directly from Eq. (63) that there is a tachyon 

in second order perturbation theory but not in the full theory. 

From Eq. (62) we see that 6A develops poles at E = z , 

n = 1,2,... and so the bare intercept is undefined at these values of 

E , and in particular at the physical value e = 2 . This is because 

we are calculating within a pure renormalizable field theory. In 

practice, of course, there will be a natural cut-off in the angular 

momenta and momentum transfers we consider provided by, say, 

secondary trajectories and the two-pion threshold. This cut-off does 

not affect the infra-red behavior of the theory, but it does give a 

meaning to the bare intercept. The introduction of the cut-off can 

be carried out using the renormalization group method of Wilson. 
5 
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This is essentially the method used by Migdal, Polyakov and Ter- 

Martirosyan! In this approach higher-order couplings can also be 

simply introduced from the start since the renormalizability of the 

theory is not a requirement when the cut-off is present. As we discussed 

in the introduction the critical exponents should be the same, whet& r 

or not higher-order couplings are introduced. 

If we suppose there is a cut-off A in the angular momentum then 

this cut-off will apply also to the representation of 6 A given in Eq. (37). 

That is (at least to leading order in A) 

6 A(A) = r-ii”; D/2 

At least in the small E limit Z3 2 1 and so we see that 6A > 0 and hence 

@ ow -I>0 , where a,(O) is the bare Pomeron interecept. At E = 2 

&A = &; ‘[ (1; :[+ + 0(x2)] + $5: :[I-z;~(x] (65) 

x1 
ff’A 

0 

(66) 

Similarly one can show that &A.> 0, for general E, when 1 
h 1s 

sufficiently small. Equation (66) agrees with that obtained by Migdal, Polyakov 

and Ter-Martirosyan. 4 
Note, however, that corrections to Eq. (66) are 
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O(z) and not O(s) as suggested in Ref. 4. It should be clear from 

our discussion that $e do not agree with the suggestion in Ref. 4, that 

6A be determined perturbatively by a self-consistency equation. The 

second-order self -consistency equation given by Migdal et al. is 

2 2 

-6A + 
1 r” In rO 

-- 167 (y; L 1 (Y;[-6A] =’ (67) 

which does not have a real solution for 6 A . 

We can now envision a systematic calculation of the propagator. 

We were able to calculate the renormalization group functions in the 

one loop approximation because that did not involve the intercept 

renormalization counter term. We were then led to the first order 

approximation to 6 A given in Eq. (62). This in turn can be used to 

construct an improved propagator which is exact to order g2 and has 

the Pomeranchuk singularity intercept at one. The improved propagator 

can in turn be used to calculate a new approximation to the renormalization 

group functions in which all one and two loop diagrams are treated 

This procedure can in principle be repeated indefinitely. 13 
correctly. 

12 

In the n-loop approximation the critical exponents will be given correctly 

to nth order in E . 

In order to carry out this program it is necessary to calculate 

ITi’ *(E,k2) for k2 # 0 . It can be expressed in terms of the variable 
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xi defined in Eq. (34) and 

general point 
EN’ N k2>0. Then from Eqs. (27) and (28) we have 

so 

& ax*. x2) 
1 I 

= 

X1=XIN 

X2=X2N 

(6% 

x2 = o’,k2/(-E) . (68) 

Introducing the vector notation g = (x1,x2) and 5 = 
(;s &J and 

noting that the origin of the (x 1,x2) - plane corresponds to r 
0 = 0 , we 

can write the self-energy part as a line integral 

I 

x’ 

C(E,k2) = &’ i;* I: . 

i!i 

In order to evaluate ?Z we must carry out the renormalization at a 

-1 
z3 = 1 - GE T(E, k2) 

I E=-EN 

k2=k; 

(70) 

=1+-1. -&(E,k2) 
a; 8k2 

E--EN 

k2=< 

(71) 

* [(i-z;y + x,,(f-z;*)] (72) 



-27- FNAL-Pub-74/59-THY 

and 

a - X(X 
iax2) 

I 

=- D/2 
2/E 

ax2 
xi-;(l-z,i) , (73) 

X1=XIN 

x2 =X2N 

where xIN is defined in Eq. (36) and 

X2N = &k2/E 
ON N * (74) 

That the Zi can be expressed as functions of xfN and x2N only 

follows from dimensional analysis. They can also be written in terms 

of two dimensionless renormalized parameters which we shall choose to 

be g and 
14 

y = &k;/E, . 

The intercept renormalization counter term is now given by 

+’ 
?,A= dx .o’c . 

(75) 

(76) 

The integral in Eq. (76) can run over any path from the origin to infinity 

lying in the first quadrant of the (x1,x2) plane. Eq. (37) corresponds 

to the special choice of having the contour integral run along the 

x1 -axis. The full propagator takes the form 

iT”“(E,k2) = (rz/cr;D’2 d;;:z(x;,x;)/x;2 , (77) 

X 
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with 

A1(x1>x2) = - [ Z;‘(xt,x2) + x2Z;t (x1,x2) 1 

and 

A2(xi, x2) = x~+~, x2) . 

(78) 

(79) 

Just as in Eq. (38) the bare propagator has been cancelled by the terms 

in Z(E, k2) which do not involve the Zi. Equation (77) reduces to IQ.. (38) 

when k‘ = 0 provided one again takes the path of integration along the 

x -axis . 
1 

It will often be convenient to express Eq. (77) as a one 

dimensional integral by simultaneously scaling E and k 
2 15 

. Writing 

a 
x2 = X2N5 

(80) 

gives 

iF “‘(E, k2) = -EN 

a’k 
2 

0 

=.. q Z;t(E;v, kh2) - d$;s”) Z;t (E;,kl;‘) . (82) 

0 

In the last line of Eq. (82) the integrals are to be taken along the path 

2 i/(i+a) 
Eh/EN = (kk2/k,) 
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The Zi can again be calculated using renormalization group 

techniques. There are now two p-functions. 

P,k> y) = EN &- g 
N I 

rO’ a’O,W N 
fixed 

a 
P,(P*Y) = WN wNg 

I 
rO’ 

“;I, F 
N 

(83) 

(84) 

fixed 

where W 2 
N = kN/EN . Similarly, we define vE, yw, 5, and cW in 

analogy with Eqs. (43) and (44). In keeping with Eqs. (80) and (81) we 

let EN + EN5 and ki - ki ga’l . The 5 dependence of g and y 

can be determined from the differential equations (t ? ln5) 

Q(t) _ 
dt - P,I g(t),y(t) 1 + aP,[ g(t), y(t) 1 

and 

F = y(t) a+a ‘(t) { -i[5E(g(t).yWl) +aiw(g(t),y(t$]} 

with the boundary conditions 

g(O) = g 

Y(O) = Y . 

(85) 

(86) 

(87) 

(853) 

The renormalization constants of interest can be obtained from the 
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differential equations 

-$-lnZ3(t) = YE(t) + avw(t) 

and 

i In [ Z,(t) -lz,(t) ] = a ’ (t)-l[!,Ett) + aLW(t) 1 

with 

Zi(0) = z. 1 I 

(8% 

(90) 

(91) 

Since 5- m corresponds to r 0 
4 0 we also know that 

Zi(rn) = 1 (92) 

In order to see how the calculation goes let us consider the one 

loop approximation. In order to simplify the algebra we shall work in 

the small E limit. Then the renormalization group functions can be 

written in the form 

YE = vG21g; (93) 

Yw = Y +Y(l+; y,-‘G2,g; (94) 

CE/d= 6G2/gf (95) 

L,W= 6 ; y(i+ + y)-‘G2/g:. (96) 

P, = +[~&~~I (97) 
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with 

E 1 1 
P,= ,gzY(f+zY) -‘G’/g; 

(98) 

G2 = g2(i+; y) -e/2 
(99) 

gfs Y and d are again given by Eqs. (57)-(59). Eqs. (85) and (86) can 

be rewritten in the form 

2 G(t)2= - ; G(t)2 
t 

l+a i y(t)(i+ i y(t)) -9 [ 1-G(t)2/gi] (100) 

and 

y$ y(t) = y(t) {a + 6[ G(t)‘/g: ] h+a i y(t)( i+ i y(t))‘1 > . (101) 

As long as the quantity l+a i y(t)[ 1+ i y(t)] -t > remains positive, G(t)2 

will approach the fixed point limit gz as t + -m (c- 0) . Combining 

Eq. (100) with Eqs. (89), (90) and (91) gives 

ilnZ3(t) = -:Y$G(t)‘/gi a (102) 

so 
% 

z,(t) = [ i-W2/gf 1 ’ . (103) 

Similarly we find that 

2 2-;(6 -9 
z,(t) = [i-G(t) /g, 1 (104) 

E There are three cases of interest. First, if a < -6 = z;r , 

then y(t) tza 0. From Eq. (100) 
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ft 
1-G(tQ2/g; jCoe2 , (105) 

t --aI 

where C,, depends GRI g and y, but not on t . Equation (82) then yields 

il? 1’1(E,k2) __) 
E, k2+0 

-ENC;‘y~-y[~+x2N&a++ (106) 

Only terms of leading order in E have been retained in Eq. (106). The 

renormalized propagator takes the form 

2 -- 

ir ;‘(E,k’) 
E, k2+0 
--+-EN Co’ ’ (-E/EN)1-Y 

26 c I l+C,E p 
0 

where 

LY ‘k2 
P= 

EN(-E/EN)‘-h ’ 

and 

I 
-1 

“o . 

(107) 

(1’38) 

(109) 

Equation (107)is inagreement withtheresult of Abarbaneland Bronzan. 3 Again, 

it holds for a < - b , i. e. , p<<i. 

For a > -6 , y(t) tzm m . Then 

i-G(t)2/g: +Cme 
+ (l+a)t 

2 
t+ -@J 

(110) 



-33” FNAL-Pub-74/59-THY 

and 

- Z(y-6) 
ir ;‘(E,k’) --+-~~k$~ (k2141-y+6 t - -m 

2 2-1 
for p>> 1 . Again Cm and Ck = Cm(l-G(0) /g,) depend only on 

g and y . Finally for a = - 6 + O(E’) , y(t) approaches a constant 

as t+-m , as does the scaling variable, p . Working to leading order 

inc, the y dependence in Eq. (100) can be dropped and we find 

1-G(t)2/g; -j-[G(0)2,g~]-‘[i-G~O)2/gf] j t . 

and 

ir ;“(E, k2) x -e,[o(o)2,g$ ykE,EN)i-y 
, - 

. {i+[G(0)2,g;]‘6 ‘) 

%6) 
-d~[G(0)2,g;]’ (k2/kI$i-y+6 

* {f+[G(0)2,$ 6 p-l+ } , 

(112) 

(113) 

for all values of p . 

Equations (107), (Ill)and (113)provide an example of a general 

relation among the scaling indices. If we write 
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ir ;‘f(E,k’) = (-E/EN)l-YF(p) = (k2/k;)vG(p) , (114) 

then 

1-y v== > (115) 

in agreement with our results to leading order in E . 

If we go beyond the one loop approximation we will still obtain 

scaling results analogous to Eqs. (107), (111) and (113) provided the 

effective p-function p, + a(3W , has an infra-red stable zero. The 

scaling indices y and 6 will again be given by the values of yF+ayW 

and (SE+aSW)/@’ at the Gel1 Mann-Low zero. The integral 

representation of Eq. (82) will converge provided y < 1 and 

[y-(a+b)] < 1 . Under these circumstances we can again show that 

the perturbation series is an .aSpPtotic expansion both for small values 

of r o and for large values of -E and (or) k 
2 

. Again the perturbation 

series is valid only to order n < 4 . The argument is essentially the 

same as for the k2 = 0 case. 

IV. DISCUSSION 

In this paper we have studied the problem of constructing solutions 

to the Reggeon field theory when the Pomeranchuk singularity has intercept 

one. We have seen that this theory cannot be renormalized order by 

order in the perturbation series. In fact our integral representation 
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for the intercept renormalization counter term 

shows explicitly that b A has a branch point at r. = 0 . This is the 

case even for E =2. The integral in Eq. (116) has a pole in E at 

SA = rile; (116) 

this point so 6 A is well defined only if one introduces a cut-off into the 

theory. One then finds that 

&A= - (117) 

At least for small values of E, or (r,2/ (Y 6 
D/2 1 

) n , 6 A is positive which 

~means that the intercept of the bare Pomeranchuk pole must be greater 

than one. 

We have given a non-perturbative prescription for constructing the 

Pomeranchuk propagator by use of the integral representation 

5 

iF ‘+,,k2) = - 
s 

dc’ E,Z;‘(c’) + egk~(a+i,)~~aZ~i(~O) (*I@ 

0 
1 

where c= (-E/E 
N 

) = k2/k2 l+a 
( 1 N 

. The renormalization constants Z2 

and Z 3 which enter into Eqs. (116) and (118) can be computed systematically 

using renormalization group techniques as is described in Sec. III. 

Equation (118) is useful for a variety of purposes. In Sec. III we saw 

how it could be used to derive the infra-red behavior of the propagator. 

It also allowed us to see how the tachyon which is present in second 

order in the perturbation series is removed from the exact solution. 



-36- FNAL-Pub-74/5’+THY 

The tachyon arose from a cancellation between the bare inverse 

propagator and the second order approximation to the self -energy part. 

However, our integral representation for Z:(E, k2) contained linear 

terms in E and k2 which exactly cancelled the bare inverse propagator 

and left us with Eq. (128) which is explicitly free of tachyons. The 

cancellation of the bare inverse propagator is also crucial for the infra- 

red behavior, since it goes to zero for small E and k2 more slowly 

than the full inverse propagator. One might be concerned that this 

cancellation would be destroyed if one altered the large E and k2 

behavior of the theory by, for example, introducing a cut-off or 

introducing E and k2 behavior into ro. 
3 

Such effects must be taken 

into account in a more general formulation of the Reggeon field theory. 

In fact under these circumstances we can obtain integral representations 

analogous to the ones given in Sec. III, and again demonstrate the 

cancellation of the bare inverse propagator. The infra-red behavior of 

the theory appears to be unchanged provided r. approaches a constant 

for small values of E and k2 . 

We have also used our integral representation for the propagator 

to show that the perturbation series is an asymptotic expansion for 

small values of r o as well as for large values of E and/or k‘ . The 

perturbation series is accurate only to order n < 2/e , and to this 

order one can neglect all diagrams involving intercept renormalization 
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counter terms. The small r. result is important for the e-expansion 

calculations of the critical exponents. 394 If one wishes to calculate 

them to n th order in E , then one can imagine working with E < 2/n 

and use perturbation theory to calculate the renormalization group functions. 

Of course at the end one may attempt to continue the answers to larger 

values of e . 
16 

The large (E, k2) result is also of considerable importance. The 

full propagator will approach the bare one for large negative values of 

E and k2 provided one stays away from the cuts, i.e., provided 

a*k2/E < 2 . This means that for large positive values of t (negative 

values of k2) the leading P -plane singularity will be a pole. It is only 

in this case that one is guaranteed that the solution to the field theory 

satisfies full multi-particle t-channel unitarity in the e -plane. 2 

Since the order l 2 calculations of the critical exponents indicate 

that the e-expansion is not converging rapidly, it seems worthwhile to 

ask whether the approach presented here can be used to perform 

practical calculations directly in two dimensions. It is crucial for our 

procedure that an infra-red stable Cell Mann-Low eigenvalue exist at 

each step of the calculation. As we have seen, this is the case in the 

one loop approximation. If one wishes to go beyond the one loop 

approximation in two dimensions, it is not possible to use perturbation 

theory to calculate the renormalization group functions. Instead one 
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must use the latest approximation to the propagator at each step of the 

calculation. This may actually be an advantage. Since the improved 

propagator has the type of infra-red behavior that one expects in the 

exact solution, our iteration scheme may converge more rapidly than 

the perturbation series for small values of E . Even if this is the 

case, the higher order calculations will certainly be difficult. 
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APPENDIX 

We have seen in the text that for many purposes it is sufficient to 

study the self-energy part at k2 = 0 . For simplicity we shall do so here. 

Let us start with the bubble diagrams of Fig. 3. We denote by 

2 n k ‘n k the contribution to .X of the diagrams in which the upper 
11’ 2 2 

and lower lines have n 1 and n 2 inserted bubbles and k 1 and k 
2 

intercept counter terms respectively. From Eq. (6) we see that 

c n k .n k (E,O) =i 
1 1’ 2 2 

+A-E+E’-ie 1 
-(n2+k2+1) 

E 
+;q2+2A-E’ -ie 1 n1(1-E/2) 

1 
n,(l-E/C 

. o’Oq2+ZA-E+E ’ -ie (Ai) 

The factorials count the number of ways of ordering the bubbles and 

counter terms on each line. Making use of the identity 

(Y sinrru cy 
x =-- dx’ x’ 

il X.+X 
0 

l-42) 

and introducing Feynman parameters to combine denominators with the 

same E dependence we find 
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sin TT nf(i-e/2) sin n n2(1-e/2) 

TT lT 

1 i (0 
n +k 

dzl z1 
1 1 . 

I 

dz2 s;2+k2 

i 
0 0 0 

m 

s 
dx x 

n2(1.-c/2) 
2 2 

dE*dDq 

0 

eiq2+A-E0) + (I-zi)(xi+~N~q2+2A-E’) -ie]-(ni’kf+2) 

* z2 u;q’+A-E+E [ ( l ) + (I-z2) (x2+~~~q2+2A-E+E*)-ie]-(n2+k2+2) 

(A3) 

The E’ integration can now be done by closing the contour in either the 

upper or lower half plane and picking up the pole arising from the 

appropriate denominator. We next use the fact that 

to do the q integration. The x1 and x 2 integrations then yield p- 

functions, and we finally find 
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1 1 2 2(E,0) = (Cri)n1+n2i’ 4D’2 
I? [ki+k2-i+: (nl+n2+:)] 

n k ;n k l3-1+</2) 

. (-6 A)ki+k2 rdzl rdz2 z:I+ki z;2+k2 
nl!kl!n2!k2! o 

0 

( 1 
-(1-e/2)nl-1 

( ) 

-(I-e/2)n2-1 
’ l-z1 ‘f-z2 

. (2+zi+z2)-D/2 [~-z~-z2)~-~,-~‘+k2-~+~~~+n2+~)1 (A5) 

We see explicitly from Eq. (A5) that there is no difficulty in taking the 

limit A- 0 provided E is off the positive real axis.. Then using the 

mean value theorem to remove the harmless factor ( 2+a1+s2) -D/2 

from the integrand, we find 

,D12 
n k .n k (E,O' = A 

1 1’ 2 2 
r(-i+c/2) 

I? [kfk2-i+; ( ni+n2+1)] (ni+kl)! (n2+k2) ! 

n !k ! 1 1 n2!k2! 

(-6A)k~+k2(-E)i-kl-k2-f(nl+n2+1) , (A6) 

where 2 5 A 5 4 . Recalling that the graph is of order n = nI+n2+i in 

2 
rO 

and has m = k 1 +k 2 factors of 6A , we see that the E dependence 

and the position of the pole arising from the over-all ultra-violet 
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divergence of the graph are in agreement with the general result given in 

the text. Clearly the position of the poles in E would be unaffected by 

taking A and k2 different from zero. 

In addition to the simple pole at E = 2 (i-kf-k2)/(l+ni+n2) 

arising from the overall ultra-violet divergence of the diagram, there 

is a pole of order ni+n2+ki+k2 at E = 2 . ni+n2 powers of (e-2) 
-1 

come from the inserted bubbles and ki+k2 powers from the intercept 

counter terms. Notice that in the neighborhood of E = 2 the simple 

e 
bubble graph is proportional to E-Z For E = 2 this pole leads to a 

In (-E) contribution to X(E, 0) as E -0 . On the other hand the graphs 

with N = ni+n2+ki+k2> 0 are prOpOrtiOna to r-i [ ri /(e-2)]” for 

A>O. At each order in the coupling constant, they are the most 

divergent graphs in the limit E +2 , so one might hope that their sum 

would soften the small E behavior of the simple bubble graph and lead 

to a reasonable approximation for Z . In 44 theory the corresponding 

set of graphs does soften the infra-red behavior and leads to the screening 

approximation. 
17 Unfortunately, this is not the case in the Reggeon 

calculus because of the presence of the tachyon in the second order 

approximation to the propagator. The leading P -plane singularity of 

the sum of the Xn k .n k is a tachyon-tachyon cut, which has all of 
1 1’ 2 2 

the bad features of the Pomeron-Pomeron cut of the simple bubble graph 

plus the added difficulty of having its intercept to the right of 1 = 1 . 
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We now turn to the ladder graphs of Fig. 2. They are a subset 

of the skeleton graphs discussed in the text. Denoting by Cn the 

contribution to Z of those graphs with n-i rungs on the ladder we have 

c n(E,O’ = + 
-pD 
11 d ‘i dEi 
i=l 

i [~E+Ei-~;q~+i,]-i[+E-Ei-e;q~iF] -* 

g] [Ei+i-Ei-~; (qi-zi+,)” +ie] -i 

i=l 

The first product of Green’s functions in Eq. (A7) arises from the sides 

of the ladder and the second product from the rungs. A sum of two 

Green’s functions is associated with each rung because of the two 

possible directions of propagation of these Pomerons. 

For simplicity we shall consider the case E << 1 . Then the 

integrals in Eq. (A7) can be done in the following way. We first do the 

E 
1 

integration. For the term containing the rung 
[ 

Ei-E2-aG(<1-<2)2 

+ ie 1 -1 
we close the E 1 contour in the upper half plane, and for the 

rung we close in the lower half plane. In 
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either case we pick up only one pole from a Green’s function associated with 

a side of the ladder, and we are left with a q 
1 integral of the form 

1 
-r/2 

-$2)-i< (A@ 

Now when we do the E2 integration we can ignore the contribution 

of the cut in E 
2 arising from the term in Eq. (Aa), because the 

discontinuity across this cut is of order E. As a result, we can close 

the E2 contour so as to pick up a single pole arising from a side of the 

ladder. The q 2 integration can then be done using Eqs. (A2) and (A4) . 

Proceeding in this way we find that to leading order in E 

,(E,O) = $ -4ri/(Rna;) C D/2 1 F n (YE) 
i-m./2 

n! (i-ne/2) . (A9) 

As a result, from Eqs. (35) and (38) 

z;l(x) =;++exp 
[ 

-4x E’2/(8TI)D’2E , 1 (AlO) 

and 

i ri”(E,O) = -(rE/, ‘OD’2 

x1 
2 

‘0 
(-El 

-c/2 
D/2 11 . (All) (8Tcu;) E 
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Again the tachyon, which is present in second order, disappears when 

the infinite set of graphs is summed. The essential singularity in 

$2 1 (E, 0) at E = 0 was also found by Bronzan. 18 As we have seen in 

the text, it is not present in the full solution of the theory. The ladder 

graphs simply do not give a good indication of the small E behavior of 

the propagator. 
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FIGURE CAPTIONS 

Lowest order contribution to the self-energy part. 

A typical “ladder” graph. 

A typical “bubble” graph - x denotes an intercept 

counter-term. 

Lowest order contributions to the vertex function 

needed to calculate p(g) in the one loop approximation. 
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