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ABSTRACT 

We study massless $4 field theory and the Reggeon calculus with 

Pomeron intercept one, in 4-e dimensions. We present sum rules 

which give the full propagator and the bare mass (or intercept) as 

integrals over the remaining (finite) renormalization constants of these 

theories. When an infra-red stable Gell-Mann-Low eigenvalue exists 

these sum rules can be used to extract the infra-red behavior of the 

propagator* They can also be used to show that the perturbation series 

is an asymptotic expansion for small values of the coupling constant and 

large values of the momentum. The sum rules can be combined with the 

Schwinger-Dyson equations for each theory to give a perturbative 

construction of the Green’s functions which is free of infra-red 

divergences. 
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I. INTRODUCTION 

Massless field theories in 4-e dimensions are of great interest 

in both solid state and high-energy physics. In the study of critical 

point phenomena the field theory of major interest is relativistic o4 

theory (analytically continued to the Euclidean region). i-3 
In the high 

energy Pomeranchuk problem the relevant field theory is the “non- 

relativistic” 4 3 theory, better known as the Reggeon calculus, 
4-6 

The unifying feature of these problems is that in both cases the develop- 

ment of long-range order leads to scaling laws for the correlation 

(Green’s) functions in the i&-a-red region. In both cases the critical 

exponents and scaling functions can be directly calculated using 

renormalization group techniques. However, the construction of these 

theories in perturbation theory is (for finite rational E ) plagued with 

infra-red divergences. 2,3,-l If these field theories are renormalizable 

at all in 4-e dimensions, then they are super-renormalizable. That is 

infra-red divergences can be related only to the mass renormalization. 

From dimensional analysis the bare mass m0 in the $4 theory is related 

to the coupling constant go by 

and so it gives rise to terms non-analytic in go, and hence to divergences 

of perturbation theory. m. also contains an essential singularity at 
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E = 0,and so in the usual e-expansion of the theory is taken to be zero. 

It is desirable, therefore, to have a method for constructing these 

theories which avoids the ~-expansion, as well as the difficulties of 

perturbation theory. 

In this paper we present sum rules, valid in both theories, which 

give both the bare mass and the full propagator as integrals over the 

finite renormalization constants of the theories. The integral 

representation for the propagator explicitly displays the anomalous 

dimension infra-red behavior when a stable Gell-Mann-Low eigenvalue 

is present (which in perturbation theory is the case in both theories, at 

least for small E 1. It can also be used to show that the bare perturbation 

expansion is an asymptotic expansion valid for small values of the 

coupling constant or large values of the momentum. We further show 

that our sum rules can be combined with Schwinger-Dyson equations for 

each of the theories to give an iterative construction procedure which is 

free of infra-red divergences. The question of the convergence of this 

iteration procedure goes beyond that of the convergence of the perturbation 

series for massive theories because of the non-analyticity of mo. However, 

at each step of the calculation the approximation for m. is systematically 

improved, as is explained in the text. As a result, one may be optimistic 

about the convergence of our procedure. If it does converge, both 

theories are renormalizable and continuable in E. 

We shall concentrate on the application of our results to e4 in 
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this paper and give only a brief treatment of the Reggeon calculus. A 

more extensive treatment of the Reggeon Calculus can be found in a 

companion paper. 
8 Previous discussions of the existence and construction 

of massless $ 4 in 4-e dimensions, , have been based on taking the zero 

mass limit of the massive theory. Symanzik’l has shown that a non-zero 

bare mass is obtained in this limit and that the bare massive propagator 

can be used to obtain a perturbation expansion of Green’s functions which 

is free of infra-red singularities. Unfortunately, to use this expansion, 

it is necessary to know the bare mass. Symanzik’ has given an integral 

representation for the bare mass in terms of the functions appearing in 

the Callan-Symanzik equation for the massive theory, but it is not clear 

whether this can be used perturbatively. Also Symanzik’s expansion 

cannot be used to study the infra-red behavior of the theory. Parisi 

has given an integral representation for the Green’s functions of the 

2 massless theory, in terms of the e -Inserted functions of the massive 

theory, which can be used to study infra-red behavior. 

A major advantage of our approach is that we work entirely within 

the massless theory. This is a particular advantage in the Reggeon 

Calculus where the massive theory (the mass corresponds to the 

displacement of the Pomeranchuk intercept below one) also runs into 

difficulties in perturbation theory, due to the presence of a tachyon 

arising from the pure imaginary coupling constant. 8 By employing our 

sum rule iteratively, we obtain, at each stage of our perturbation 
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construction, a propagator which vanishes at zero momentum with 

anomalous dimension. Our sum rules can also be used to express the 

bare mass in terms of the parametric functions of the renormalization 

The formula obtained is analogous to that obtained by Symanzik, 9 
group. 

except that Symanzik’s formula involves the parametric functions of the 

Callan-Symanzik equation for the massive theory. 

The essential problem in constructing massless field theories 

(in 4-e dimensions) is that the divergences which appear in finite order 

perturbation theory only disappear or can be properly subtracted after 

an infinite set of diagrams is summed. Therefore, it is necessary to 

re-organize the perturbation expansion in some way. This could per- 

haps be done by selective re-organization and summation of Feynman 

diagrams and we discuss this in detail for the Reggeon Calculus in 

Ref. 8. The approach we use in this paper is based on the renormalization 

group. 

We first calculate the parametric functions of the renormalization 

group using lowest (non-trivial) order perturbation theory. The 

renormalization constants of the theory are related to these functions 

by well-known formulae and so can be calculated next. Using the 

expressions obtained we employ our sum rules to calculate an improved 

propagator and four -point function. These are then substituted into the 

Schwinger-Dyson equations to obtain the next order calculation of the 

parametric functions. We therefore have an iteration process which 
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is free of infra-red divergences and which, apart from mass counter- 

terms (which are non-analytic in go), gives Green’s functions that 

coincide with perturbation theory to the order we are calculating. In 

effect we use the renormalization group to sum partial contributions 

from higher-order perturbation theory which produce the mass counter- 

term and avoid the infra-red divergences. This procedure works for 

0 < E <i + s r) for the $J~ theory, where n (positive) is the anomalous 

dimension of the propagator. There is no such restriction in the 

Reggeon Calculus. 

In Sec. II, we derive our sum rules and develop the necessary 

renormalization group analysis. We also give our formula for the bare 

mass and show that our formula for the propagator reduces to the bare 

propagator at large momentum. 

In Sec. III, we discuss the infra-red divergences and present our 

iteration procedure using the Schwinger-Dyson equations together with 

the skeleton expansions of higher Green’s functions. We use the skeleton 

expansions to build up all Green’s functions, employing the complete 

propagator and four-point function as building blocks. 

Section IV contains a rather formal general treatment of the 

Reggeon Calculus. This is simply meant to illustrate that our methods 

can be extended to this more complicated problem. For a more detailed 

and less formal analysis of the Reggeon Calculus we refer the reader 

to Ref. 8. 
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II. SUM RULES AND RENORMALIZATION CONSTANTS 

We shall construct the massless theory directly. Therefore, 

we work with “massless” unrenormalized and renormalized Lagrangians 

Su - - $a, $. (x)1’ - s : $t(x): + $ 6rn”$E (xl (2) 

q =- ~Z3[aUQ(~)12-Z,~: b4(x): +$Z36m2$2(x) (3) 

z3 is the wave-function renormalization constant, Zi, is the coupling 

constant renormalization constant and bm 2. is the mass counter-term 

(= -mi). So 

b,(x) = z’; b(x) (4) 

-2 
g0 = z1z3 g (5) 

and if FF)(Pi;go) and l?f’ (Pi;g) are respectively unrenormalized and 

renormalized (amputated) Green’s functions then 

N 
,+N) R (Pig) = Z; r(;+Pi;g,) (6) 

The renormalization conditions we choose to specify Zf, Z3 and 6m2 

are 

I-f’ (P2;g) =o 

P2 = 0 

(7) 
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(8) 

ir(4) R (P,ek;g) =g 
p2= -W2 

(9) 

P is some convenient momentum (which we shall take to be (P1+P2)/2) 

8 k are a suitable set of dimensionless parameters formed from the 

ratios Pi* Pj/P 2 
, r,J = 1, . . . , 4. Note that we have not specified the 

‘k’ 
The only condition on them is that they do not correspond to 

exceptional values of the four-momentum variables. 
7 

Varying the 

kk will simply lead to a redefinition of Z1, and so (9) can be regarded 

as giving Zi a dependence on the pk. 

Conventionally we would impose the above renormalization conditions 

order by order in a perturbation expansion in the renormalized coupling 

constant g. This would determine Zf, Z3 and 6m2 to the relevant 

order. In particular, we would expect that 6m2 could be determined 

by imposing (7) directly on J?(i) (P;g,). Throughout the paper we shall 

define integrals by analytic continuation in E and use dimensional 

regularization to remove ultra-violet divergences. Then, from 

dimensional considerations alone, a general diagram of order k in go, 

which contains no mass renormalization counter-terms, must have the 

form 
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p uk (P,g,) = ak(e) g: t-p’) 
1 - !E 

’ (10) 

From this we see that working to order k, with kc < 2 we would determine 

6m2 = 0, whereas for ke > 2 it is not possible to evaluate 6m2 

perturbatively. 

If we use dimensional regularization to remove ultra-violet 

divergences in the theory then these divergences will give rise to poles 

in the ak(e) appearing in (10) at ke = 2. In fact, in the limit P2 - 0, 

each Feynman diagram of order k also becomes infra-red divergent 

for k E > 2. This shows the inter-relationship between the infra-red 

and ultra-violet divergences. We have to show that the poles can be absorbed 

into 6m2 with (7) preserved. Their presence actually proves that 6 t-n2 

cannot be zero. 

From (4) it follows that in the presence of 6m2 the unrenormalized 

propagator can be written in the form 

ilY~)(P;gO) = P2 

l k 2 
- z 2 

1 (go P-‘Jm+ 6m2.(11) 

(boo = 1 and b =b 10 01 = 0) where we have now displayed the poles 

coming from ultra-violet divergences explicitly. From (6) and (8) 

- ire) a 
(P;g,) 

1 
= - 

aP2 u 
p2: -V2 

z3 
(42) 
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co 

1 
b km(E) (cr2) 

-( : k+m) 
(go ) 

k+:m 
= - (13) 

k, m=O 2 

Notice that 4:’ (P, go) can be written in the form go e times a function of 

g;’ ‘I P2. Therefore, if we write 

z3 = Z3(x) x =g 21E 2 
0 ‘r (14) 

then 
gi’ ‘I -P2 

iFr)(P;gO) = 4gy e J ,F[*-i] +P2+6m2 (15) 

0 

The P2 term has to be dealt with explicitly to obtain convergence at x=0, 

since Z;*(x) - 1 +bzOxE. Therefore, (15) converges at x=0 for E > 1. 

For E < 1 the integral can be defined by analytic continuation from 

E >i. From (6) and (15) we obtain 

6m2 =-g:‘ei : [+ - I] 

and 

dx 1 

(16) 

($7) 

Note that the poles present in (11) result from the x=0 end point of 

integration in (15). and are absent in (17 ). Equation (7 ) is also satisfied 

by (17) and so we have achieved our object--provided that the integral 

converges at a. This we will discuss shortly. Equations (16) and (17) 
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are our promised sum rules for the bare mass (rni = - brn’) and the 

inverse propagator. 

To give a complete construction of the theory in the next section, 

(4) we shall also need an analogous expression to (17) for Iu . However, 

l!:) is specified by the simple renormalization condition (9). It is not 

necessary to use a derivative condition, since the coupling constant 

renormalization is finite for all values of E in the range that we are 

interested in. The analogue of (17) is therefore obtained by noting from 

(5) and (6) that 

and so 

$4) 
U (P2, 0,x,) 

p2=-p2 
= z;“g 

go = 
2/E 2 

Z*(g 0 Ir I Pk) 

$4) 2 u (P > Bk>8) = golZ1 k i’ ‘IP’, e,) 

(18) 

(i9) 

(20) 

This seems a trivial observation but becomes significant when we use 

renormalization group apparatus to obtain integral representations for 

Zi and Z3. Next, therefore, we give a brief development of the 

necessary (standard) apparatus. 
2 

First we define the dimensionless coupling constant 
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u = gl pe (21) 

Next we define 

go, pLk fixed 
(22) 

v(u) = P & Ln Z3 (23) 

go fixed 

In the following we shall generally supress the dependence of p and Zi 

on the pk. Using 

-E 
UP = z; z-l’go (24) 

we obtain 

i 
sin [~Z~(u)Z~~(u)l 

-1 
P(u) = -E 1 

v(u) = P(u) a+kk Z,(u) 

This last relation gives 

U 

I 
du ‘v (u ’ )/ P(u ’ ) 

Z,(u) = e 
0 

We note the familiar fact that Z3 - 0 at the first zero, u, of p if 

(25) 

(26) 

(27) 

y(i)/ P’(U) > 0 

From (25) 

(28) 
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zi (u)z;2 (u) = e” (29) 

Therefore, if 

P’(U) > 0 (30) 

zpz;z (u) - m 
U-+G 

(31) 

So from (24) the interval [ 0, m) in g 
0 maps onto the internal [ 0,; ) in U. 

In particular if 

p w-b(u-;) 
u-u 

(32) 

then, defining q = y(i) 

z3 
- (;- U)qlb 

(33) 

and 

But 

ziz;” -_ (;-,)-e/b 
U-U 

(34) 

g0 
21 E 2/ cjt du’[- ; - +,] 

x=- 

0 

= 3Ee 0 

P2 
(35) 

-_ (; -u) -2’b 
u-u (36) 

Therefore 

2 - ,-1112 
3 x-m (37) 
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z* - 
,-ri + 42 

(38) 
x-m 

and so if a zero of p exists satisfying (28) and (30) then (17) will converge 

provided that 

r1<2 (39) 

Also we obtain 

m 
21 E iF(21P2:gO) - -g 0 

I 

dx v/2 
u 

2 
TX 

-0 x 

g;’ ‘1 rP2 

,gq/ E 2 1-n/2 
o C-P ) 

and from (20) and (38) 

$4) 2 
(P .ekxo) 2v’ E 

u - g, t-p 2 El2 - r) ) 
2 P -+o 

(40) 

(41) 

(42) 

(40) and (42) demonstrate that our sum rules correctly give the anomalous 

(2) dimension infra-red behavior of Tu and F(u4)when p has an appropriate 

zero. That is when aninfra-red stable Gell-Mann-Low eigenvalue is present. 

It is important to note that, when the integral representation of 

(17) exists, the perturbation series is an asymptotic expansion for both 

small values of go, and large values of -P6. To see this we choose an 

x small enough so that the series expansion for Z i’(x) given in Eq. (13) 
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2’e,(-p2)( - can be used for g0 x(x. Integrating term by term over this 

intervalwe find that the leading contributions come from those terms 

with m=O and k< 2. . 
E 

They reproduce the perturbation series to order 

2 21 E - with a correction term of order go 
E’ 

. Similarly the integral from 

21 E x to infinity yields a contribution of order g o . Notice that to the order 

the asymptotic series is valid one need not calculate any diagrams with 

mass renormalization counterterms. Thus 

(21 E) 
bkO 

1-e 

iPF)(P,g ) -- 
0 go-o 

-(-P2) 2 
*- !s 

(43) 

2 2 
or P - -m 

where (4 ) denotes the largest integer less than : . For 4 equal to an 

integer, the propagator develops logarithmic dependence on P2 and go 

as was pointed out by Symanzik’l For example, for E G 1 

x 

iIu(P2, go) - 
21 E 

P2- bzO go dx x” l -’ (44) 
go2- O 

0rP h-m 

z4 P2 - b 2. go In C-P21go ) (45) 

The fact that the full propagator goes to the bare one in the ultra-violet 

limit is particularly significant for the Reggeon Calculus, as we discuss 

in Sec. IV. 

Using the above results 6m2 can be expressed in terms of y and 

p. From (35) 
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dx = -;xdu (46) 

so that 

dx _ 
2 

x 
- -&du (47 1 

which from (16) gives 

u 

21 E 6m2 = go 

0 

du ‘~(u ’ )/ p(u ’ ) 

-1 

(48) 

This expression compares directly with that of Symanzik, 
9 except that 

whereas y and p in (48) are renormalization group functions, Symanzik’s 

formula involves the corresponding functions of the Callan-Symanzik 

equation for the massive theory. This explains why our expression is 

a little simpler in form than Symanzik’s. 

To express I?:‘. ’ m terms of y and p it is first necessary to invert 

(24) to expressu as a function of gOp-e (for fixed pk). If the solution 

of this equation is 

u = z-?gop- ) (49) 

(this defines Z 
-1 as a function) then 

U 

r~)(P2;g,) =-g;’ c 
- du 2u-2/ E e[du# [y + :] 

I 
P(u) 

2 -s/Z 
z-l go(-P ) 

[ 
] 

(50) 

or alternatively 
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(2) 2 rR (P ;g) = -z;‘c+4 (u!z;4’~(u)g2’c 

U 

X 

i 

;duI[F +5-j 
du 2u62/ E )I P(u) eo 

z -1 
C 
g(-P2)-~‘2z;2z* 

3 

(51) 

III. INFRA-RED DIVERGENCES AND CONSTRUCTION OF THE THEORY 

We begin by considering some simple examples of Feynman diagrams 

which contain the infra-red divergences we wish to avoid. Consider the 

simple bubble diagram IO(k) of Fig. 1. From dimensional analysis 

IO(k) = g,” k-e CO(EJ 

Next consider the diagram In(P2) shown in Fig. 2 

(52) 

IJP5 = goi,;;) [yy-1” 

= gO(cOgO)n 
/ 

dDk k-ne 

(P+k)’ 

(53) 

(54) 

This last integral has two divergence problems. The ultra-violet 

divergence (Di) occurs at (n+ 1 )e = 2, and gives rise to the poles in 

a,( E) at ke = 2 referred to in the last section. They have to be 

cancelled by 6m2 as we found in going from (15) to (17). Equation (54) 

is also infra-red divergent (DZJ, for finite P2, at (n+l)t = 4 and c=Z. 10 
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Further sets of divergences of the form (DZ) at (n+t) = Zme, 

n,m = 1,2,3,... can be obtained by considering the iteration within a 

diagram, of more complicated substructures. 

The divergences D2 are clearly the result of performing an 

illegal perturbation expansion in that 

D 
I, (P) = d k 

IO (k) 

n (k+P)’ i-IO(k) 
(55) 

which is not infra-red divergent. It is clear, therefore, that in order 

to avoid both the divergences (D2) and to define 6m2 (that is avoid the 

divergences (Dt)) we need a technique for performing at least partial 

sums to all orders in perturbation theory. We propose to use our 

results of the last section to do this as follows. 

(2) 
We first set up Schwinger-Dyson equations for Tu and I’!) 

as shown in Figs. 3, 4 and 5. Figure 5 represents the skeleton 

expansion of IF) in terms of Tf)and I(t) . This has to be inserted 

(4) 
into the last diagram of Fig. 4 to obtain a closed equation for I u . 

The equation shown in Fig. 4 can be obtained by considering all the 

possible initial interactions for particle 1. If r(u2) and T-y) have been 

calculated to a given order in go, the equations of Figs. 3-5 can be used 

to calculate to the next order. The higher Green’s functions also have 

(2) skeleton expansions in terms of Tu and I’:) SO that once these functions 

have been calculated the higher Green’s functions can be calculated to the 

required order. 

Further, if P(z) and TV) respectively satisfy (41) and (42), then 
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one sees from power counting that no infra-red divergences result 

if they are substituted into the right hand sides of Figs. (3) and (4) 

provided 2 + n > E. A more stringent restriction arises from the 

skeleton expansion of l?‘i ) . Here diagrams in which three internal 

particles repeatedly interact will develop infra-red singularities unless 

1+2q >E. 
10 

The problem is analagous to the one arising from the 

interaction of two internal particles discussed in connection with (53) 

and (54). The latter problem is avoided because at each step of the 

calculation we use a propagator and a four-point function which involve 

an infinite sum over powers of go. If this series were truncated we would 

obtain integrals of the form (54) and the (D2) divergences would reappear. 

If one wishes to work in dimensions for which t 2 1 + $ q, it is necessary 

to construct Pr) nonperturbatively so that it has its appropriate infra- 

red behavior at each crder of the calculation. Here we shall restrict 

3 
ourselves to 1 + zq > E. Since n is positive definite this includes the 

physically interesting point D = 3. 

We therefore propose the following procedure: 

1) Calculate PI”) and Ic4) to order go2 in perturbation theory. 

(2) (4) This involves calculating Fig. 6 for P u and Fig. 1 for P u . Both 

diagrams are infra-red convergent for 0 < E < 2. 

2 
2) Calculate .ZiA, y and p to order go. 

3) Use (27) and (29) to calculate new expressions for Z1 and Z , 
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(these constants will now become infinite series in u or go). 

(2) 4) Use (17) and (20) to calculate an improved P.. and l(i). 

If expressed in the form (15) and (20) these will agree with the 

expressions obtained in 1) to order gi ~ (2) Tu will also contain terms 

21 E proportional to go . Since p(u) has a zero to this order in gi , I (2) 
U 

and I?(z) will satisfy (41) and (42). 

5) Use the improved PF) and I(4) and the equations of Figs. 3-5 

to calculate Zi,Z3, y and p to next order in the skeleton expansion. 

6) Again calculate a new Z1 and Z, using (27) and (29 ). 

(2) 7) Finally calculate a further improved ru and r(t). 

This procedure can now be iterated to arbitrarily high order in the 

(2) skeleton expansion. At each stage of the iteration P and I?(4) coincide 
U U 

with perturbation theory to the given order, apart from terms involving 

21 E powers of go , which correspond to mass counterterm insertions. 

We should note the above construction procedure is likely to be 

dependent, for its success, on the existence of a zero of p at each order 

of the iteration. In the usual t-expansion of p(u, E ) this is only true 

for small E, because of the oscillating nature of higher order 

contributions to p. Some technique, such as the use of Pade’ 

approximates, 
3 has to be used to restore the zero. If a zero is really 

present in p for finite E we might expect our iteration procedure to 

preserve this zero at all orders of the iteration (at least for a larger 

range in E than the c-expansion). Firstly p becomes an infinite series 
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in u after the first iteration, and so its asymptotic behavior for large u 

should not oscillate wildly as it does in perturbation theory. Secondly 

$2) and Pc4’ acquire anomalous dimensions (close to the correct 

dimension for small E) after the first iteration and so this should give 

good convergence properties to the iteration. 

As we have noted (17) and (20) ensure that P (21 and Pt4) will 

acquire terms non-analytic in go from our construction. This non- 

analyticity will be reflected in y(u, E) and p(u, E) which will generate 

terms nonanalytic in both u and E (of the form u 21 E , for example). 

It is interesting that the y and /3 functions of the Callan-Symanzik equation 

for the massive theory are expected to be analytic in t. Symanzik has 

argued7 that the critical exponents of the massless theory (e. g., r) 

of the last section) can be obtained from the massive theory and so have 

to be analytic in E. 

We have not been able to prove that the nonanalyticity in E of y 

and p cancels in n, but the following argument suggests that it will. 

By definition 

TI(E’ = Y[lJ(E’, cl (56) 

and u - ; corresponds to go + a. From (17) and (20) go - m is 

equivalent to P2 rf 0 and 

(57) 
$2) - R (u) = “$1.;’ 
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E -VIE (go/ II ) 2 I-012 go”’ E(-P ) 
g,- ,a 

= r*n(-P 2 i-r)/2 ) 

Similarly 

$4)(G) _ p2V(-p2)E/2-n 
R 

(58) 

(59 ) 

(60) 

So in r!) - (u) and r(i)(;) the nonanalyticity in go disappears and if q (E ) 

is analytic in E so will r!)(i) and l?(i)(;) be. Now one method of 

computing r) ( E ) is to determine it self-consistently using the skeleton 

11 
expansion. We cannot use Eqs. (59) and (60) in the skeleton expansion 

for all values of the loop momenta since they would lead to ultra-violet 

divergences. However, for small values of the loop momenta, which one 

11 
expects to control the infra-red behavior, we can use Eqs. (59) and 

(60) (i. e. , we can take the limit go + m through the phase space 

integrations of Figs. 3-5). As a result, we would not expect to encounter 

any explicit nonanalyticity ip a self-consistent determination of r) ( E ). 

The above argument, coupled with the fact that the perturbation 

series is an asymptotic expansion for small go, helps to justify the 

~-expansion calculation of the critical exponents. If one wishes to 

compute them to nth order in E then it is merely necessary to imagine 

working with E < 2/n. The renormalization group functions can then 

be calculated in perturbation theory without ever encountering graphs 

with mass counterterms. Of course, at the end of the calculation 
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one can attempt to continue the results to larger values of E. 

Finally we consider what can be said explicitly about the convergence 

of our proposed procedure. The problem goes beyond the familiar one 

of whether or not the infinite series arising from the skeleton expansion 

of Figs.4 and 5 converges. The additional difficulty is that our procedure 

only reproduces exactly the perturbation theory diagrams with no mass 

counterterms. (the terms bkO in (ii). ) To be able to calculate 

’ the diagrams with one or more mass counterterms (bkm,m >1) exactly 

one must know 6m exactly and this is only possible when the whole 

perturbation series is summed and 6m2determined self-consistently. 

However, it should be noted that our approximation for 6m2 is 

systematically improved at each step of the calculation. With each 

interation an additional b k0 is calculated exactly thereby improving the 

small x behavior of Z,(x) 
-1 

. In fact after n iterations the residues 

of the poles in&m 
2 

at E = 1, z 2 
- are given exactly. In addition 3 ’ e-e n-!-i 

since the critical indices are given correctly to order E n 
after n 

iterations, the large x behavior of Z,(x) -’ is also being systematically 

improved. As a result, one can have real hope that our iteration 

procedure does converge. Clearly, if this is the case, we will have a 

massless solution to the Schwinger-Dyson equations. 

4 
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IV. THE REGGEON CALCULUS 

The “non-relativistic” unrenormalized Lagrangian we consider is 

,yu =; [+; (;,t) ft +,(G,t)] -cY; v 4J,: (z,t) Wo(h 

x 
-0 +;(& ,q;,t)2 + h.c.] + &A +;(G,tl +‘. (‘pt) 

2 C (61) 

+ (2, t ) is a field in D(= 4- E space dimensions and one time dimension. 1 

The Feynman rules for this theory are given explicitly in Refs. 5 and 8. The 

conjugate variables to x and t are the transverse momentum k and - 

energy E. The bare inverse propagator is 

=(I, 1) 
uo 

(E, k2) = E - “ak’ 

Note that the theory is not crossing symmetric and our notation for 

(amputated) Green’s functions distinguishes incoming and outgoing 

particles--that is, Pomerons. In tionventional angular momentum 

plane notation l-E =j-- the angular momentum, and k2 = -t--the square 

of the momentum transfer, Therefore, LYY;, is the bare slope of the 

Pomeron at t=O. X0 = ire is the pure imaginary triple-Pomeron 

coupling and dA is the “mass” counterterm (minus the displacement of 

the bare Pomeron intercept below one). The renormalized 

Lagrangian is 
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d’R = iz,[++g$] -z2av++v+ 

So Z3 is the wave-function renormalization, Z2, the renormalization 

of the slope and Zi the renormalization of the coupling constant. 

$,(&) = Zf$(&) (64) 

, -1 
@O = z2z3 I2 (65) 

-312 
rO = ZiZ3 r (66) 

If +M,N) and rtM’ N, u R 
are respectively unrenormalized and renormalized 

M Pomeron to N Pomeron Green’s functions (amputated) then 

r(M>N) = z 
R 

(M+N)/ 2 $M, N) 
3 (67) u 

The renormalization conditions we impose are 

I-(*‘*) (E k2) 
R ’ 

=o 

E, k2 = 0 

air(k 1) 
R 

aE (E,k2) 1 

(68) 

(69) 

E= -E 
N 

k =k N 
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air(L 1) 
R 
7 @X2) Ly’ 

I-(;’ ‘) (E, k, $m: I 

1 

E= -EN 

k =k N 

D+I 
= -ir/ (2n) 2 

E =-E N 
k =k N 
tJm = urn 

(70) 

(71) 

In (71) E and k are convenient energy and momentum variables (which 

we take to be those of the incoming Pomeron) and the $ are 
m 

dimensionless parameters formed from the variables Ei/ E and ki’ k j/k2. 

Equations (68) - (71) differ from the renormalization conditions imposed 

by Abarbanel and Bronzan’only in that we do not put kN = 0 and the v 
m 

are not specified. Our more general conditions are chosen because we 

wish to build up the complete E and k2 behavior of F”; ‘) and F’y ‘I 

using the techniques of Sec. II. 

There are now two dimensionless parameters we can define (the 

relevant dimensional analysis can be found in Ref. 5). 

2 El4 
g= 

(a ‘1 
D;4 ~14’ 

EN 

y = $ (kN 1 (72) 

If we also define 
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rO 
go = 

(a;)D’4 

% yo = -Ty (73) 

then dimensional arguments enforce 

6A =(g, 1 ’ 2’E A(e) 

where A(E) is a dimensionless function of E only. 

The generalization of (11) is 

m 

(74) 

ir!‘i)(E.k2,g0,yo1 = E 
kn=O 

akmn( E 1 [gi(- E) 

m=n (75) 

+6A 

As in the e 4 theory, ultra-violet divergences give rise to poles in the 

8 
akmn’ 

However, now they occur only in the akmo, so we write 

b 

akmo = 
km 

(76) 
I-tk-m 

Because of the non-relativistic kinematics there are no infra-red 

singularities of the type(Dd discussed in Sec. II. 

From (67) and (69) 

air(L 1) 
U 

aE (77) 
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and from (65), (67) and (70) 

air& 1) 
U 

ak2 
;; l”,y = z2(ig. y:lE ii) (78) 

N 

Note that the poles appearing in (76) are absent from both Z3 and Z2. 

lf we now write 
41 E 

g0 
x1 

z- 
EN ’ 

x2 
4lE k2 

=‘O N (79) 

then from (76) and (78) we obtain the analogue of (15) 

+E-aok’+ 60 

where 

-41 E 
1 1 
5 = -“o(Yogo) Z i z--j 

3 
Z 

2 i 

and 

dg=@-. dx2j 

e’= 1, 
[ 

-Qo(goYo) 
-41 E 

I 

(81) 

(82) 

(83) 

Note that the poles in (76) arise from the Tend-point in (80). Imposing 

e (68) we obtain 
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m 
41 E 6A = -go 

I 
d;~ [; - q 

?T 

and 

(84) 

ir(l’ 1) 4/c 
U 

(E,h2,go>yo) = -go d;. is 

z 
(85) 

Equations (84) and (85) are the generalization to the Reggeon Calculus 

of our sum rules (16) and (17). From (66), (67) and (71) we also obtain 

the analogue of (ZO), that is 

$1, 2) 
-ir/ (2rr) F 

(86) 
U 

(E,k2, 4m>go.yo) = 
4/E 

z1 
go 

tJm’ -y’ Y. 
41 E k2 

The necessary renormalization group analysis we develop as 

follows. Define 

a Pn Z3 aen Z3 

YE =EN aE (8-J) 

N kN.gO’yo 
YK = k; 

ak: ~‘go’Yo 

drn fixed &m fixed 

PE 
A- 

= EN aEN 

5, 
=E --CL 

N aEN 

zk2 em&- 
N a,; 

(88 1 

(81) 
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From which we obtain 

8Pn Z3 arm z3 

YE = PET+ L.T 

aenz3 aQn Z3 

YK = P,T+h,y 

p we define 

2 = (g, y), ; = (YE, yK) 

P = P&-P&E 

and 

M= 

(9) 

(91) 

(92) 

(93) 

(94) 

then the inverse of (90) and (‘>i) is 

ain Z3 n& 
-K?j--= P 

SO that g’ 
M’ v” 

Qnz, = d; p 

From (65) and (66) we obtain 

-E/4 = gz z--- 
goEN 

; ~14 yD/4 = 
I 3 2 

2 E/4 =yz-izQ z 
Yo (kN ) 1 3 2 

(96) 

E/4 

(97 ) 

(98) 

(95) 

Therefore 
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goyo (g’ = g Y( $’ 

a Ep El4 
N aEN gy Z2 Z-t 

and so if i = (1, -11, then 

- E- 
El4 fEl4 

g Y z2 = e 

4 I d;. y’ 

3 

z 
-,& 

j0 

$I + $ 2-1 
> 

ZZ 
-1 

2 3 
= e , 

--I 
where g =(g l,y-ll 

From (98), if r= (0, 1) 

(101) 

MA _ 

z-;z+ z 
P 

3 2=e 
0 

(*02) 

(103) 

(104) 

To calculate the quantities defined in (87)-(89) it is necessary to calculate 

the diagrams of Figs. 7 and 8. The details of these calculations can be 

found elsewhere . Here we use only the general form of the result 

4lE 3 p,=-$g+big3+b2(gy) g +... P, = b3(gy) 
41 E g3 + 

. . . 

(105) 
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5, = -di yg2 + . . . 5, = (4’36) 

YE = 2+ -clg -0. YK = -c2(yg) 
41~~2 + 

. . . (107) 

bl, b2, b3 depends on brn but they and cl, c2, di are all positive and 

independent of g and y. 

From (105) we note that p, has a zero at y=O, g = gl= 
J 

-$-- + Ok 1. 
1 

From (105) - (107) we obtain 

and 

Therefore 

y-0 
(5~ YE* - Y$K + YKPE) 

P - 
Y---o 

‘E’K 

-‘E’K + YKPE _ o 

‘Es, y-0 

2 52 
dy. = - 

P y-0 
dg’ k 

0 0 BE 

(408) 

(109) 

(110) 

(111) 

Similarly 

M. F 
P z (142) 

and so 
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Finally 

+z.($- $-$jdg* -;; (114) 

NOW from (72), (89) and (106) 

5, 
2;~ ,^o 4 {EN jj+- [‘a*;e’4]/af4}kN = o -I (115) 

=- 1 I EN $ 4 -1 
-- 

cg * EN aEN -1 1116) 

N kN=O kN =0 

1 am- 
7 

--I =-z 
EN aEN (117) 

g -81 

where Z has the same definition as in Ref. 5. If we now write 

‘E g =+, 0 
b (g - gl)thenfrom (96), (103), (104), (iii), (113)and (*14) 

y-0 v/b0 

z3 ..A @I - g) 
y-0 (rl =vk,) (118) 

?z -81 

z;’ z2- (g* - g) 
(Z-U/b0 

(119) 

k, - g) 
; Z/b0 

(120) 

Therefore from (97) and (98) 

4/E -1 
gO EN “gl 4tE (g, - g) 

-I/b0 
(121) 
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41 E k2 _ 41 E 
Z/b0 

YO N ’ k, - g) 

41 E 
421 E 

“Y E,” klko) 

(122) 

(123) 

Note that (118) and (121) show that (85) will certainly converge if the 

large x part of the integral is taken along the x2 = 0 line, and if, 

rl<* (124) 

(121) and (122) with EN-+ -E and kk *k2 can now be substituted into 

(118)-(120) to give the leading forms of Z1, Z2, Z3 which can be 

(I,*) substituted into (85) and (86) to give the behavior of F u and I?(:’ 2, 

as E,k2 -+O. Note that for E, k2 * 0 to correspond to g + 84, y -. 0 

we must have 

k2(-E)-Z - 0 (125) 

From (85) we obtain 

m (YO 41E k) 
-41 E 

ir(*> 1) 41 E 
W2) = g o 

dxl dx2ao(Yo) 
+ 

U x2z (x 
41; -1 

c-g 0 
41 E E-1) 

* i *,x2=0) 
0 

Z2(-go E ,x2) 

(126) 

F-2 ,;q’ ’ (-E)l-q 421 E k” + l+caogo - . . . (127) 

E-t0 
C-E)’ 1 

k2( -E)’ - 0 
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where c is constant. From (86) we obtain 

$132+E k2) + 
-ir 0 -41 E 

I-$q-Z(l- ;) 

u ’ E-O (2Tr) Q+1 
C-g o El 

k2/ (-E)Z -0 
2 (128) 

Equations (127) and (128) confirm that our sum rules again give the 

correct infra-red behavior. Equation (127) is also consistent with the 

general scaling law obtained by Abarbanel and Bronzan5 that 

-ir(*‘*) 4 (-E)*-’ b[k2(-E)-Z] 
U 

E -FO 
2 k -0 

(129) 

(I,21 We have obtained only the leading behavior for Fu , although the 

(1,2) condition (t25) does perhaps suggest a similar scaling law for F u . 

Further discussion of the scaling laws can be found in Ref. 8. Here we 

EZ 
simply note that to study the limit k2 - 0, - 

k2 
+ 0 we could have followed 

an exactly analagous procedure from (72) onwards, simply taking as 

variables g -1 -1 
and y . The expansion of F’,:’ ’ ) corresponding to (75) 

41 E = -$, rather than in (p,y,) 41 E 

0 
= cy* o as in (75). The validity of the scaling law then requires a relation 

between the new critical exponents obtained and those in (127 ). 

We shall not give a detailed discussion of the infra-red divergences 

of the Reggeon Calculus here. This can be found in Ref. 8. Here we 

note only that the poles displayed in (76), which are related to divergences 
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of the type (Di) discussed in Sec. III, are the only ones in the problem. 

There are no infra-red divergences of the type (DZ) in the calculus 

because of the non-relativistic kinematics. Since the bare propagator 

is linear in E, rather than quadratic as in the relativistic case, the E 

contours of integration can always be distorted to avoid the type (D2) 

divergences. Although it is not essential, it may help to speed the 

convergence to construct the theory ~lteratively using the Schwinger -Dyson 

equations of the theory. The necessary equations are shown in Figs. 9 

and 10. It is straightforward to apply to these equations the iterative 

4 
construction procedure described in Sec. III for $J . The relevant 

sum rules are (85) and (86) and the necessary renormalization group 

apparatus is Eqs. (96), (103) and (104). 

All the other results of Sec. II extend to the Reggeon Calculus in 

a simple way. Equations (84) and (85) can be used to express both 

6A and I(*“’ as integrals over the parametric functions defined in 

(87)-(89). Also from (85) it can be shown that the perturbation series is 

an asymptotic expansion for small rO as well as for large E and/or 

k2 (8) The argument is essentially the same as the one given in Sec. II 

for the propagator in $4 theory. As in the b4 case the series is accurate 

to order n < t . In particular for E, k‘ * - m the full propagator goes to 

the bare one provided one stays away from the cuts, i.e., provided 

This result is important since it shows that for positive t 

(negative k’)the propagator does contain a pole. It is only in this case 
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that one is guaranteed that the solution to the field theory satisfies 

full multiparticle t-channel unitarity in the P-plane. 
12 
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FIGURE CAPTIONS 
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Feynman diagram for the integral IO(k). 

Feynman diagram for the integral I,(k). 

Schwinger-Dyson equation for the propagator. 

Schwinger-Dyson equation for the four-point 

function. 

Skeleton expansion for the six-point function. 

Lowest order contribution fo the self-energy. 

Lowest order contribution to the Pomeron self-energy. 

Lowest order corrections to the triple-Pomeron vertex. 

Schwinger-Dyson equation for the Pomeron propagator. 

Skeleton expansion for the triple-Pomeron vertex. 
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