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ABSTRACT 

Within the context of a generalized Reggeon calculus we 

study the infrared (J + 1, t -c 0) limit of a class of models whose “bare” 

structure arises from elastic amplitudes of the form A(& t) =~(log&)~ 

Jy(a fi logy). Such amplitudes are suggested by the implementation, 

of s-channel unitarity via eikonalization of a “Born term”, via absorption 

models, and via the multiperipheral bootstrap. We employ the 

renormalization group to study the renormalized Pomeranchuk 

singularity when the interaction involves a triple coupling. Our major 

result is that for v = 0 these theories are infrared free. The total 

cross section behaves as where yf 

factorizes. Scaling laws for the Reggeon proper vertex functions are 

e 
given. 
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I. INTRODUCTION 

Constraints on hadron interactions coming from the unitarity 

relation are potentially powerful tools in isolating acceptable theories. 

The implications of direct channel unitarity (s-channel unitarity) range 

from the Froissart bound to much more model dependent statements 

about restrictions on this or that parameter. In a variety of models 

attempting to approximate s-channel unitarity one finds elastic scattering 

amplitudes of the form 

r,-rj (A$) = jdt) ~d~“(~dp J, la Jyy sj (1) 
cam3 

as outputs. This is familiar from various versions of a multiperipheral 

bootstrap, 
1 

from eikonal production models, 
2 

from models with self- 

consistent absorption, 
3 

and perhaps others. Each of these is characterized 

by a J-plane singularity which has t = 0 intercept one and moves as fi 

in the neighborhood of that point. 

Implementing crossed channel (t-channel) unitarity has 

been slightly more difficult. The tool which has emerged for carrying 

out some reasonable approximations to t-channel unitarity is that of the 

Reggeon field theories first proposed by Gribov. 
4 

Using the further 

analytical help of the renormalization group 5.6 one has learned how to 

study the details of Reggeon field theories in the interesting neighborhood 

ofJ=f, t=O . 
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In this paper we propose to weave these s-channel and 

t-channel amplitudes together. We will study as a generalized Reggeon 

field theory the elastic amplitudes 

Tm T&t) = r(!'t'la) A 
Wp> 

whose Mellin transform 

Fm,t) = ((J-I>"-0%) -b (3) 
will play the role of the bare Greenfs function in our theories. This is 

clearly a simplification of the more general form (1) and represents the 

most straightforward starting point for the investigation in the t-channel 

of amplitudes motivated by s-channel considerations. 

As discussed at some length in Ref. 6 there is a large 

freedom in Reggeon field theories both as to the bare theory which gives 

the amplitude with no Reggeon interactions and as to the interaction one 

chooses to abstract from hybrid Feynman graphs 
4 

or other considerations. 

Three choices for non-interacting theories seem to stand out. First, 

there is the bare linear trajectory 

dW= do +A;+ (4) 

which translates into the free Green’s function 596 

G,(E)%) = i, (E-d;$a-(I-do)+iE)-’ (5) 

where E = 1-J and t = - 1 <I 2 , The appeals of this beginning point are 
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essentially simplicity and the guess of analyticity at t = 0 associated 

with the absence of Reggeon interactions. This has been studied in 

detail in Ref. 5 and 6. 

Second, one may consider beginning with the scaling forms 

G, (E, $)-’ = EA ( I- Qo ra/E B, (6) 
derived in Ref. 5 and 6 and found by Gribov and Migdal. 

7 
Finally one 

may begin with the fi type singularities given by (3) 

Go&, $I-' = h (Eat saga) . I?> 
This is the subject of this,present paper. Other choices are clearly 

possible but appear to us to lack significant physical motivation. 

Before proceeding further, one should take note of the 

sobering thought that none of the above forms for Go satisfy the 

requirement of exponential decrease as Re j + m . This exponential 

decrease derives from the Froissart-Gribov formula, and is closely 

connected with the existence of s-channel thresholds. In this case the 

threshold is the diffractive threshold; that is, that energy ,A above 

which one expects that a reasonable approximation to the energy 

dependence of the elastic amplitude is given by a simple diffractive 

term, unrenormalized or otherwise. These diffractive thresholds can 

in principle modify results for the A- m behavior of the theory. This 

certainly happens in strong coupling ladder models. 
8 
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A second point that occurs in conjunction with the above 

remakkd: is that at finite A;;(e. g. In A< 10) , the subenergies in most 

graphs are certainly not asymptotic (e. g. In 4 < 4) . For consistency 

the balre Go must therefore be capable of describing the diffraction 

scattering at corresponding values ofA (ln A* < 4 or ilab< 30 GeV/c) 

Phenomenologically, it is known that this probably entails a rather 

large real part for the diffractive amplitude in this region. Most choices 

of G 0 
will not satisfy this physical requirement, although it can be 

realized by a bare linear trajectory with (Y 
0 

= 0. 85. 9 
We will have to 

assume that the phase generated by our elastic bare amplitude Eq.(3) 

also has this feature. 

After settling on (p) as a free Green’s function one must 

choose an interaction. Now, except for p = 1 , the form of Go in 

Eq. (11) does not represent poles in E and in the conventional view this 

means some form of interaction has already been accounted for giving 

rise to the theory around which we wish to perturb. The better our 

choice of G o the less the perturbation will play a role and, indeed, 

if we choose cleverly in the neighborhood of E = 0, G = 0 the 

perturbation will be weak. This is the idea behind the renormalization 

group bootstrap: find a Go which will reproduce itself via t-channel 

unitarity, at least in the region E =O , F = 0, plus computable small 

corrections due to interaction. This will be elaborated on in another 

10 
paper. 
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In this paper we imagine that our GO has come from the 

solution (no doubt approximate) of an interacting field theory with 

Lagrangian density 

$0 = Lee + L ) 
where 

%ree 
represents poles in E and q is whatever one needs to 

produce (8). To this we add the further interaction of the field o(g, t) 

cf I= - A$ + qt13, (9 

where g and t are the conjugate variables to z and E. With this 

propagator and this q we begin our discussion. 

By starting at this intermediate stage we must modify the 

unitarity relation that is satisfied by such a theory. In a theory which 

begins with poles one puts 61 E - [i-e(z)]} for the cutting of any line 

entering the unitarity relation for any proper vertex function. We need 

here a generalized unitarity where ImG,,(E, c) replaces the insertion of 

a delta function. This generalization and some of its properties have 

been discussed in the literature, 
11 

and we refer the reader to that. 

In the next section we establish our field theory and 

renormalization group equations. After that we study the equations in 

perturbation theory’and learn that for p = + the theory is free in the 

infrared limit in the physical number of dimensions, D = 2 . We then 

study the scaling laws this imposes on the Reggeon proper vertex 
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functions and by coupling in particles find that the total cross section for 

A + B + anything behaves as 

o-j- Id - d.+ca 
‘da ys [I+ c/&?4J~A~a] - jfqqp$-y4~4+‘~‘~’ 

(IO) 

The leading term factorizes while the secondary terms need not. This 

approach of total cross sections to a constant asymptotic limit from 

below is consistent with the observed behavior of proton-proton cross 

la. 
sections at the CERN-ISR. 

II. REGGEON GRAPH RULES 
AND RENORMALIZATION GROUP EQUATIONS 

We begin our discussion by choosing the Green’s function 

in momentum space for the non-interacting theory to be 

G’(E, {,-’ = (Eat dfa)~ 
01) 

where E = 1 - J and z is a D dimensional vector. Physics takes 

place at D = 2 . The theory specified by (11) has a Euclidian invariance 

in D + 1 dimensions with the length of a Euclidian vector 

given by 

The parameter a plays the role of the speed of light and is not 
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renormalized when the interaction is chosen to respect the SO(D+l) 

invariance. We will choose the interaction to be a cubic in the hermitean 

scalar field 4(x, t) defined in D space dimensions and one time 

-Jo @,,t) = - 30 c+r~,~~’ , 
6 114 

In this expression X0 need not be real. 

We pick this interaction on several grounds: (1) it is the 

simplest non-trivial Reggeon interaction; (2) it is renormalizable for an 

interesting range of our parameter p ; and (3) on the basis of previous 

calculations with linear trajectories 1% we may argue that in the limit we 

shall probe, E -. 0, <- 0 - the infrared limit - other polynamials in 4 

are either not renormalizable or give less singular behavior in the 

infrared region. None of these reasons is compelling; each is suggestive. 

Using GO(q2) and q we may derive the following rules for 

evaluating the unrenormalized Green’s functions G ($ (4, , * - - 9,) in 

perturbation theory in A0 : 

external legs. 

I+ Draw all topologically distinct graphs with n 

2. Integrate dD+iq around each loop. 

3. At each vertex put the factor kO/(2a) p+w 2 . 

propagator 

4. For each Reggeon of momentum qi use the 
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Go ($ = ($?Y 4, 
5. For each loop with only two Reggeons multiply 

by; . 

6. Conserve D + 1 momentum at each vertex. 

From Gt)(ql,. * qn) it is convenient to form the propa r vertex functions 

and we concentrate on these quantities. 

To determine whether the theory we have established is 

renormalizable in any conventional sense we now study the degree of 

divergence of the graphs computed by the rules above. Suppose we have 

a graph with gexternal lines, 7 internal lines, K three point vertices, 

and 9100~s. These quantities are connected by 

an CL x= &l-v;. 
When each vertex carries zero powers of derivatives and each propagator 

carries 2p powers of q , the superficial degree of divergence, b of 

graphs is 

s = (bl, if - a$ 

= ID-t1 tzr, [P!$k) - iz (DY)) (is) 
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using the identities above. In order to be renormalizable we must require 

that the coefficient of q be less than or equal to zero 

Ob- /33-$) la I) 
for the physical number of dimensions. In the limiting case p = i 

(also the most interesting case as it will turn out) only graphs with 

&?= 2 and g 3 are divergent. So one must add d2 and $3 counter 

terms to our 
3. 

Equivalently one may specify the renormalized 

theory by making “subtractions” in P (2) and P(3’ . We will carry 

out subsequent calculations for general D and p . The conditions 

(20) and (21) will make their role felt. 

The l?:’ are functions of the qi, of X0, p. D and 

possibly some cutoff to regularize the integrals. We will employ D, 

continued away from D = 2 , as this regulator. The renormalized 

proper vertex functions P (n) depend on the qi, and on p. D, and a 

renormalized coupling X . The two vertex functions are related in 

the usual manner 

To specify the renormalized theory we must choose the value of certain 

vertex functions at appropriate points. Since we are dealing with a 
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“massless” theory: Gi*(q’) = 0 at q2 = 0; we require a normalization 

momentum q; to define quantities like A away from the infrared 

singular point q2 =o. Noting that 

rta’ (f) = G, b$-’ = 
0 

(8”) ’ ) Ca3) 

we choose to normalize our theory by 

and 

The first condition assures us that whatever the detailed nature of the 

renormalized singularity it occurs at q2 =o. This is tantamount to 

assuring that the renormalized theory remain massless. 
ie The second 

equation will serve to define Z via (22), and the third gives A(qk) , 

which parametrizes all P(n). 

Before writing the renormalization group equations it is 

useful to carry out some conventional dimensional analysis. Since a 

only appears in q 2=E2+a2/z12 , we may identify E and I;] 

dimensions. Calling the dimension of q 
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we -Find 
$7 = $- ) Cat) 

r$il= % 
DJ - 

(48s) 

an d c3-j= p- BY . cad 

We now trade in A as an argument of r (n) for the dimensionless quantity 

(30) 

Ordinary dimensional analysis now allows us to write 

I+) (gi, 3) g/i?)= (*;)vta-n)+~ $!j [ f3) 3) ) 
!N” 

(31) 

SO 

r (n) c syat", y&J = E 
Q$(a-n) t 2 

a p (n)(ti, 1) t$/&. (3a) 

The so called renormalization group equations are constraints 

on r(@ (qi) which guarantee that the I?:’ are independent of 
2 

q 
N’ 

They 

follow from 

c$ s-; Pp = 0, (33) 

the chain rule, and (32): 
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I fZ ii&- p($$ t 2 NY) - ( b#bnl + TL$?)] r(“‘kfajl,~,~;) = 0, [3+) 

In this we have defined 

a,,D, /I fwid 

and Y(J) = a,? $a 
N lo, D, p rlied ’ 

> (35) 

(36) 

The solution to Eq. (34) is given in terms of an effective coupling constant 

3 (li) satisfying 
dyq/+ = - p y/))o 

With n = log 5 this solution is 

PI (g”a &‘, ‘d, g,“) = 

pcnJ @, ;r^(-q),fi)q [i~l~$bnl+~ -2 ~(j(q:‘)]. (38) 

-7 

Solving (37) with the boundary condition y(O) = y would enable us to 

determine the detailed behavior of l? (n)(E+qi) as E- 0 or q+ -m . 

We do not know A(qi) and, thus, p(y) except in perturbation theory. If 

we are to make any headway in determining I’ (n)( t+q.) for small 5 we 
I 

must hope that 7 (-0) is small as r)- -m . Then we know p(y) 

consistently in that regime and may use (38) fruitfully. 
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III, RENORMALIZATION GROUP EQUATIONS IN 
PERTURBATION TBEORY 

Before we launch into the perturbative determination of 

9 
and y(y) we make a few observations about the crucial function 

P * From its definition and the definition of y in Eq. (30) we see that 

p(g)= + [D"-6/$ + 0 (8') . (3q) 

In any number of dimensions where 

4 
c Jk! 

6 140) 

p(y) will have a zero with positive slope at the origin. Such a zero is 

an infrared stable point of y ; that is, as n -m , y(d goes to such a 

zero. When 
D+t 

P= -g- 
(41) 

then the sign of p ’ (y) 
I 

is determined by the coefficient of the y3 
y=o 

term in p(y). The advantage of the infrared free theory, a stable point at 

the origin, is that the Green’s function we begin with G,(q’y reproduces 

itself in the infrared limit with small computable corrections. 

In our case the only allowed value of p which is both 

renormalizable and infrared free is 6p = D + 1 or p = + at D = 2. - 

From the point of view of physics this is also the only value of interest 

since at D = 2 the total cross section behaves as 

r7 IA-I - @a ) 
A 9’ 

) 
and p < + means a falling cross section. Several arguments then 
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single out p = + as the sole significant physical example of the theories 

15. 
we consider here. The constraints of infrared freedom and renormalizability 

are quite restrictive. Attention now focuses on the y3 term in p . 

To compute p and y in lowest order of perturbation theory 

we evaluate the graphs shown in Fig. 1 for l? 
(2) and r(3) . For the 

wave function renormalization constant we find from (25) 

I -= 
z 

I + rh; (f;)‘-34x ‘4 r(lta~-D~)B(~-~,~-P))~(43) 
ah r+la (a?r:jD+’ 

where B(a,b) is the ordinary beta function. From this we learn 

f(J) = 
a zD+ila B(~~-~,D~-P)(3P‘D~)r(lta~-~). 144J 

3 ap rt+F 
D+1 

It is amusing to note that at p = 7, y(y) = 0 to this order of 

perturbation theory. 

Next we evaluate p(y) finding 

p(p = + Cnti -913 - 

At D=2, p= + this becomes )= ” j3/4J9 ’ 
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For y = ig with g a real number and p(g) defined to be the coefficient 

of a/ ag in Eq. (34) we have 

p cg = s3 /4na ’ (479 

This definition of y (or x) as pure imaginary is suggested by Gribov’s 
4 

signature analysis for singularities lying at J = 1 at t = 0 . 

Now g = 0 is an infrared stable point of the renormalization 

group equations. Solving for g (17) we find 

c48) 

So we have learned that when D = 2, p = fr our theory is infrared free 

with a purely imaginary $3 coupling constant. Looking back at the 

solution to the renormalization group equations as given in Eq. (38) we 

see j-l(m) ( (pa (& &) $) = 

E q I-+) (%I) 8’k’i)) gN” c5d 

in the regime of 5 - 0, n+ -m where the approximation of keeping 

only lowest order terms in p(y) and y(y) has now been justified. 
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IV. SCALING LAWS AND SOME PHYSICAL CONSEQUENCES 

Combining the solution to the renormalization group equation 

given in Eq. (50) with the dimensional analysis embodied in Eq. (31) puts 

constraints on the form l? b-4 w3 bare; Definin 
3 

~,(x,w)= 9% (“lgl ) w= q+“) (51) 

we obtain 

jj& (QkJ+) = $2 i& ( v%,paw) C-J 
9,” Al 

m-I’m 4 
$ k$-’ = sea - 7 /axa. 

This re 
8 

urres 

where X 
n 

is undeterminedland q is some convenient momentum, say 

& = ,L,np * 
c=J 

From perturbation theory v.e know that the lowest order 

contribution to I’(@ is propcrtional to gnm2: Using Eqs. (5Cr)(:3)we see 

that as q2 + 0 

156) 

Now we choose to couple particles into the theory using the 

procedure described in Ref. 6. The contribution to the elastic amplitude 
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AtB+A+B ofthe n Reggeonin, m Reggeon out graph in Fig. 2 is 

Zn,m ($, = N,A N: 1 d3g, .,. d3p,+,,, 5” (8 - j 8~) y 

S3(g- yp,) Gcntm’(g,;- f,+m) , 
j-n+1 

(5 79 

where tik is a number describing the amplitude for b Reggeons to be 

emitted or absorbed from particle A . According to Gribov’s signature 

analysis N 1 A is real , 4 is pure imaginary,’ N”, is real, etc. 

This gives rise to a heirarchy of contributions to %(s) 

which follow from (56) 

EThB bd Aym %I b - 1 AB /IPdg,d ‘.e, ,-$? 

t R,, /[j&-&(~ %A) - I*” “‘) 
Corrections to the leading constant term of 0 I (log log&) 

-2 1 from the 

expansion of P (2) in K are order E4 , there being an amusing 

cancellation of the 2 
2 

terms at D = 2, p = + . In passing we note that 

the renormalized triple Pomeron vertex I’ (3) vanishes as J + i , t + 0 > 

albeit only as (log q2) - $ . 
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V. DISCUSSION 

In this paper we have studied the modification to a Reggeon 

Green’s function 

G,‘iJ,t) = ((J#- aat)4 

arising from a triple Reggeon coupling. To perform this job we first 

generalized the usual Reggeon field theories to take account of cuts in 

the J-Plane in the non-interacting Green’s function. Next we employed 

the renormalization group equations’ to argue that in the infrared region 

J+i,t-0 , the theory is infrared free in the very amusing case of 

p = $ in D = two transverse dimensions, the number occuring in real 

physics. Since the theory is renormalizable only for p #$ at D = 2 , 

this value of p is certainly picked out on a number of grounds. Indeed, 

this constitutes an example of the renormalization group bootstrap 4o of 

serious physical interest. 

Using the infrared freedom we determined that there is a 

heirarcby of contributions to the total cross section A t B + anything of 

the form 

+ f ,$ (-I,” [ h-p ~~~d”~-~ ) 

n=l 

(cd 

with computable corrections to each term of 0 [ (log log s) 
-1 

1. 

Since the original Green’s function was chosen to be 

representative of partial wave amplitudes arising from considerations of 
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s-channel unitarity, it is most pleasing to find a physically very attractive 

example which, in the manner explained in Sec. I and Ref. 6, also 

satisfies t-channel unitarity with small computable modifications. That 

expressions like (59) are also acceptable respresentations of the very 

high energy proton-proton data t’ is also satisfying. 
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150ne might well imagine studying theories with i/2 < p < 3/Z (the 3/Z 

comes from the renormalizability requirement that the coefficient of 

iif. m Eq. (19) be positive) using the e-expansion methods of Ref. 5 

and 6. One can demonstrate, however, that the sign of the coefficient 

of Y 
3 

m p(y) depends on the renormalization conventions at least in 

the region 3/4 < p < p. < 1 . This indicates that such an expansion 

is likely to be unreliable except in the very immediate neighborhood of 

p = 1/Z where the coupling X is dimensionless and the theory possesses 

a scale invariance. 
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Fig. 1 

Fig. 2 

FIGURE CAPTIONS 

a. The lowest order correction to the propagator 

which yields Z and y(y) , 

b. The lowest order correction to the three point 

proper vertex which yields p(y) . 

The n Reggeon to M1 Reggeon contribution to the 

elastic amplitude AB + AB. Using the behavior 

of $n+m) given in the text we find this gives a 

contribution to 
AB 

uTotal(s) of order 

log 
1 2-n-m 

s (log log s) 2 I 
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