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ABSTRACT 

The effective nonleptonic weak interaction is examined assuming 

the Weinberg-&lam theory of weak interactions and an exactly con- 

served color gauge symmetry for strong interactions. It is shown 

that the octet part of the nonleptonic weak interaction is more singular 

at short distances than the 2,7 part. The resulting enhancement of the 

octet term in the effective local weak Lagrangian, together with 

suggested mechanisms for the suppression of matrix elements of the 

22 operator, may be sufficient to account for the observed 1 AI 1 = i/2 

rule. 
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of weak interactions and an exactly conserved 
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weak interaction is more singular at short 
distances than the 2,7 part. The resulting 
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mechanisms for the suppression of matrix 
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The purpose of this paper is to discuss the effectively local form 

of nonleptonic weak interactions in models in which weak interactions 

are described by a Weinberg-Salam type gauge theory’ and strong 

interactions by an exactly conserved color gauge symmetry group, 
2 

.and to comment on the origin ,of the AI = I/ 2 (or octet) rule 

observed in strangeness changing decays. 

Our discussion is based on the operator product expansion of the 

product of two weak currents. In an asymptotically free field theory, 3 

it is possible to compute the short distance behavior of coefficient 

functions in the operator product expansion; we find that the AI = i/2 

part of the interaction is more singular at short distances. This is much 

as anticipated by K. Wilson. 4 6 
5 ee also Mathur and Yen; however, 

our conclusions differ substantially from theirs. ) 

In the following, we shall use the ‘t Hooft-Feynman gauge 

to ‘describe both the weak bosons and the color gluons. 

In the It Hooft-Feynman gauge, effects of (unphysical) Higgs scalar 

fields may be neglected, since they are of order (m/mwJ2 compared to 

the W exchange, where m is a characteristic mass scale of hadrons 

and m w the mass of the charged vector meson W. 

It is useful to consider first the case of free quarks. The effective 

nonleptonic weak interaction is of the form 

-f2 
I 

d4x DF(x;mk )T [ j :,(x) j:(O)1 (1) 
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where j and j 
rrJ P 

are strangeness-conserving, and -changing charged 

currents: 

jfl =(pcos 6 -p’sin8)y~(l-y5)n+... 

and 

jps=(P sine +;I cos e)yp(l-y5)X+... 

In Eq. (2), p’ denotes the fourth quark field associated with the proposal 

of Glashow, Iliopoulos and Maiani, 
6 

and 9 is the Cabibbo angle. The 

time ordered product of two currents in (1) may be expanded in the 

form 

T [jJNkl j:(O)] = x-@t(x”) o(z (4) 

i, m 

where the&r, c-number functions of the separation distance and the 

o(i) are operators of (2i) quark fields. 

Let us consider the operators bilinear in quark fields (one-body 

operators ). The operators GA and ny. 8 A will have coefficient functions 

which scale as x 
-2 

at short distances. Such terms will have divergent 

coefficients in Eq. (1), but contribute only to mass and wave function 

renormalizations of the quark fields. Operators of dimension 6 or 

higher, such as nv. 8 a2 A, can in principle contribute to Eq. (1) to 

order m i2, but these operators are automatically AI = I/ 2, and are 

expected to have coefficients proportional to (m2 - 
P’ 

mpZ )I mi because 

the contractions of p and p’ quarks contribute to them with the opposite 

sign. 
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Next we consider the operators quartic in quark fields. There are 

two of them: : 

6 
(2) = : ny ~ M-y5tp ;ypWy5)A: 

and 

L?(t)= : “yp (i-y5)p’ ;‘y’(i-y5)A: (4) 

The second is automatically AI = I/ 2 and the first a mixture of AI = I/ 2 

and 3/ 2. The associated c-number functions ~~)andfl~) are 

constants, so that the operators (2) 0 1 and 0’;’ contribute to Eq. (1) 

with the coefficient 

5- f2 d4x DF (x2;m$ = f2/ MG = G,M 2 

The quartic operators (or two-body operators) of higher dimensions 

such as : { a21 n ycL(*-y5)pl } pyP(i-y5)A: will have coefficients of 

order GFm-i and may be neglected in Eq. (1). Thus the effective 

local form of the interaction (1) to leading order in rnz is 

[ .$?wleffective=G~6 jh(O) jg (0): + kc. (5) 

We shall now extend similar considerations to models in which 

strong interactions are mediated by unbroken color gluons. For 

definiteness we consider the model of color SU(3). We write the color 

quark fields as column matrices. Strong interactions are described by 

the Lagrangian 
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2g= z + iyp (0’ - $gi* gbqi (6) i=p,nA,p’ 
+ mass terms 

where C,’ are the octet of color gluon fields. The comments made for 

(1) the free quark model onthe one-body operators grn that appear on the 

right hand side of Eq. (4) also apply to the color (or singlet) vector 

gluon scheme; in particular, as shown by Weinberg, 7 the terms con- 

taining the operators n A and &.SX in Eq. (1) are “transformed away” 

by the mass and amplitude renormalizations of quark fields: the 

remaining operators are AI = I/ 2, but their coefficients are in general 

of order G,(m2 - 
P’ 

We need only consider two-body operators of lowest dimensions 

which conserve char:;: an d which are antislmmetric in p and p’. Tllere 

are two operators we must deal with 

(2) 
0; = ;N [(np)(pX)~&)(;p)- (np’)(p’X)*t(nX)(p’p’)l (i) 

where we have dropped the reference to the spinor structure; thus 

(kB)(CD) = Ayi”(1-y5)B 6 &l-Q00 The symbol N stands for 

Zimmermann’s normal ordering, 8 
except that the subtraction point 

should be chosen in the Euclidean region of the external momenta to 

a-,Toid infrared difficulties. The combinations 17 ) are chosen so 

that each one transforms like the Ux component of a U-spin triplet. 9 

That the two combinations form a complete set of operators is a 
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consequence of the Fierz identity. Note further that the first 

operator in (7) is pure AI = 1/2, while the second is a mixture of 

AI = i/2 and 312. The first operator @(2)is anti-symmetric with 

respect to color indices of ni and pj (or pi and Aj) while the second 

is symmetric. To lowest order in g2, the two operators in Eq. (7) 

are r enormalized mult iplicatively. 

The associated functions 9-J 2 
8,8’, 27 

may be evaluated for small x , 

m2x2 << 1 by the method of Christ, Hasslacher and Mueller, 
10 

using 

the Gell-Mann, Low, 
11 Callsn, Symanzik 12 equation. We consider the 

irreducible vertex 

in the limit of vanishing quark mass, and choose p 
2 
1 

= - c12, s = t = u = -4 p2/ 3 as the subtraction point. The renormalized 

matrix element 

<T[ot2) m qp2i3441 >- 

has the form, as far as the dependence on )J. is concerned. 

{I +ym[Pn p +....I} 

where y m is a number which can be computed from one gluon exchange 

diagrams in perturbation theory. AS discussed explicitly by Georgi and 

Polit zer , 13 the functions satisfy the Callan-Symanzik equations; 

(2) 2 2 
m (II x ,g) = 0 (8) 
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with the usual meanings for p and y. 12 

In asymptotically free theories, the asymptotic form of5 Q2) 
m 

can be reliably estimated. Denoting 

I%) = -(g3/ 16~~) [b + o(g2)] 

= k2/ 16rr2)[ dm i o(g2)] ‘rn 

(9) 

and recalling that y = (g2/ 16a2)(4/cj2 we find that 

r’z (1,O) -gf_bIn(pp) 1 dm/ 2b 

877’ 
1 (10) 

where 

(cos @ sin e)-T(~(l, 0) = (l/G, l/m 2/&i ) 

for m =8-, E and 22, respectively. 

In the three-color quartet scheme 

b= 2513 2 

and 

(11) 

dm 
= ~8 for 8 

(12) 

= - 4 for g and 2,7 

[ If the color gauge group is SU(N), we have b = (11N - 8)/ 3, 

d8 = b(N+f)/N, d8, 27 = -6(N - 1)/N. 1 Thus, we see that the 
-‘.V 

short distance behavior associated with@:) is more singular than those 

associated with@:’ 27: the former is of the form (.fn 1x1 )“‘48, the latter 

’ (an 1x 1 )-O+ 24 

This difference in the short distance behavior is reflected in the 

coefficients of the operators fl (2). m m the effective local Lagrangian for 
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nonleptonic weak interactions. Substituting Eqs. (4) and (10) in Eq. (i), 

and performing the integration over x after the Wick. contour rotation, 

2 
we obtain 

cos .9 sin e 

I 
Cl o’s”’ + c (92’ fC L/J) 

2 8’ 3 27 

where 

0;’ = v[ 6p)(pX) - (nA)(pp)l/fl 

Q$’ = N[ (nP)(pL) ir (nX)(PP) +~ 2(nXhil~ + 2~nx)&a)J/“/G 

Oy7’ = N[2(iP)6JA ) + 2&X)&p) - &A)(&) - (nA)<A~)]/fi 

and 

-0. 24 (14) 

1 
To get some idea of the magnitude of these constants, we choose ~~.to 

be the onset of scaling of the form (10), which we assume optimistically 

to be = 1 GeVt4 The gluon-quark coupling at that subtraction point is 

assumed to be (g2/4v) 2 1. Taking mW = 100 GeV, we have 

1 + (g2/4v)(b/2a) ln(MW/p) = 7 (15) 

so that cl/c3 = 5. 

The relative enhancement of sn octet piece in Eq. (13) is not by 

itself sufficient to account for the observed small violation of the 
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AI = i/ 2 rule of about 5 % (in amplitude) in nOdeptOniC decays OI 

hyperons and K-mesons. [For a review of this and related subjects, 

see for instance (9). ] It has often been remarked that the effective 

strength of 1 AS 1 = 1 nonleptonic transitions is of order GF, rather 

than GF sin 0, and that some enhancement of the AI = I/ 2 part by a 

dynamical mechanism is necessary. 
15t Since we expect c1 sin e 1 1 

in Eq. (13) we do have such a mechanism for enhancing the AI = i/2 

part. (2) However, if the typical hadronic matrix element of 027 is 

comparable to that of o(2), 
s 

one expects only a 20% validity for the 

AI = i/2 rule, which is not sufficient to explain the data. Thus to 

explain the observed AI = I/ 2 rule, it is further necessary that the 

matrix elements of 0 ($) are suppressed by a factor of - 4 relative 

to those of 8:‘. - Such a suppression may come about in a number of 

ways; for example, the duality considerations of Nussinov and Rosner 16 

indicate the suppression of the 2,7 operator. Pati and Woo 17 
have shown 

in the context of free color quarks that the baryon to baryon matrix 

elements of the 2_7 operator vanish. This result, which is a consequence 

of the color symmetry of &?27 in Eq. (7), remains true for quarks 

coupled to color gauge gluons, provided the SU 
6 ground state wave 

function is assumed. It then follows from the usual lore of current 

algebra that the AI = 312 amplitudes vanish in the soft pion limit for 

both baryon and K decays. (Of course, the continuation in pion momenta 

is problematic as always!) Consequences of our results for AS =O transitions, 

the decays of charmed particles and Q- decay, and a detailed account of 
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the results discussed in this letter will be presented elsewhere. 

We have benefitted from discussions with D. J. Gross, H. Georgi, 

H. D. Politzer, S. B. Treiman, and S. Weinberg, and participants of the 

Weinberg seminar at Harvard University. 
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