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1. 

1. Introduction 

The Kr;geon calculus or Reggeon field theories whose study was initiated 

by Gribov 1) several years ago provides a constructive procedure for investi- 

gati-ng the detailed interaction among Regge poles and cuts. It also yields 

an automatic and natural way to satisfy the discontinuity relations across 

Reggeon cuts. 

In this paper we continue our discussion of the structure of the Pomeran- 

chuk singularity which arises in interacting Reggeon field theories. As in 

our earlier work 7-j we employ the renormalization group to provide a non-per- 

turbntive tool for the analysis of the renormalized Reggeon Green's functions 

in the neighborhood of 9. = 1 and t = 0. Our previous work poi.nted out the 

large ambiguity in choosing the appropriate Reggfon fie1.d theory within 

which one ought to cast the Porueron problem. We encourage the reader to 

review the detailed motivation for Reggeon field theories as given in Reference 

Xand only remember here that one must choose both a non-interacting Reggeon 

to begin with, and then a precise form of the interaction. In Ref. 2 we 

studied the physically very interesting case of a linear trajectory 

a(t) = 1 + a' o t whose interactions were given by a triple Pomeron coupling 

only. Because of the wide range of possibilities in formulating the field 

theories !a situation hardly special to Reggeons), we feel it is important 

to study a variety of other theories even when their clear connection to 

physical processes may be vague. 

We shall present here our analysis of the Rcggeon theory in which the 

+2 
non-interacting Reggeon has the energy E = 1 - a, momentum, t = Ik/ relati0l-l 

+2 
E=a:,k, (1) 

appropriate to a linear trajectory, and where the interaction is taken to be 

of the A$ 4 variety. It is easy to see from the outset that such a theory will 
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never possess a triple Pomero" coupling. That coupling is of direct physical 

importance, as, for example, in inclusive processes. However, it turns out 

that there are a variety of amusing aspects to the quartic coupling problem 

which are not o"ly interesting in themselves but also play a role in the 

study of the structure of secondary trajectories when Pomeron interactions 

are accounted for 3) . The additional feature to note is the presence of move 

than one coupling constant (arising here because of the absence of crossing 

symmetry in non-relativistic theories with E c1 2') which makes the infrared 

behavior of the proper Reggeon vertex functions (E -f 0, 121 -t- 0) depend in 

detail on the direction of approach to the limit and on the precise values 

of the renormnlizfd couplings. 

We find that when certain conditions on couplings are met, the infrared 

nature of the Grem's functions is governed by the effective coupling constants 

evaluated at zero. That is, the field theory is infrared free. U"der these 

conditi.o"s very mild modifications of the trajectories and Green's functions 

are present. For example, the bare linear trajectory 

a(t) = 1 + a; t (2) 

is modified for t small and positive to 

a(t) = 1 + At + Bt/log(Ct)5. (3) 

A constant total cross section which would come from (1) is then reached as 

o,(s) -u y1 +y2/(log log s?, 
2+= (4) 

where yl, y2 > 0. 
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2. won Field Them3 with +4 Couplings 

We begin by recalling that the Reggeon calculus is a technique for 

building partial wwe amplitudes out of the propagation and interaction 

of quasi-particles (Regg eons) in two space and one time dimension. The 

theory we consider here starts with a linear trajectory 

a(t) = a0 -t a; t . 

Folldwing Ref. 2 we choose to cast this in the form 

EC;;‘) = 1 - a(;‘) = (1 - ao) + a$’ , (6) 

(5) 

where, clearly, 

t = -;2 . (7) 

This is the bare energy-momentum relation of our quasi-particle. It is 

described by the free action 

A0 -i,dD x dt{$ $+&t)+$, (x,t) 

dD x dt L&t) (8) 

where the Reggeon field operator $(z,t) has been written in D space dimensions 

conjugate to G and one time dimension conjugate to I?. Physics takes place at 

D = 2. The interact~ion we choose is described by the addition to the free 

Lagrangian 

%O LI(&) = - -__ 
(2!)2 

u+j2 (11)* 

- - 1dJ+dJ3 + c*+j3*1 . 
hO (9) 
3! 
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The first term represents the two-to-two process in Figure 1 while the second 

term gives the one Pomero" in-three Pomeron out (and vice versa) amplitude 

in F-i.guire 2. The absence of crossing symmetry means that the couplings Alo 

and ho for these transitions need not be equal. 

As with the ti3 theory it is useful to perform some ordinary dimensional 

analysis on the quatities in L = LO + LI. Noting ssparately dimensions of 

time as (energy) -1 and space as (momentum) 
-1 we write 

[t] = E-l , (10) 

[xl = k-l . (11) 

Requiring the actio" to be dimensionless yield~s 

[$I = kD" , 

[A] = [A,] = E k-D , 

(l-2) 

(13) 

and, of course, 

[a'] = I? k-* . (14) 

It is clear that the couplings X1 and X are not dimensionless. We wi.11 

shortly define some dimensionless coupling conGta"ts to replace the X's. 

Our procedure will be to examine the renormnlized proper vertex 

fu"ctio"s rF+) - fol n incoming and m outgoing Pomerons. These vertex 

functions arc defined as the fourier transforms of the renormalized Green's 

functions 

Gh,m) (; -t 
R 1’ t1, *... x*,m, t*,) 

= z 
_ (y!!) 

<O 1 T(l/l+(Gnfm, &,,) . . . $+(=n+l, tn+l) x 

*G*, t*)... dl, tl) 1 o> , (15) 



NAL-Pub-74/31-THY 

5. 

with the external. legs amputated by multiplication by 

T [G;l'l) (Ei, it,)-ll, . (16) 

i=l 

The renorm1izatj.m constant Z relates the renonnaliz ed field operator 

to $ by 

QR = z-If2 + . (17) 

The unrenormalized .theory is defined in terms of AlO, X0, (I;, ~(0, and 

a possible cutoff we'll call A. We choose a 
0 

= 1 which means we are dealing 

with "massless" quasi-particles; there is no energy gap at P = 0. We will 

parametcrize the renormalized theory by a set of numbers Al, A, ci' and 'a. 

These numbers are determined by normalization conditions on a selected set 

of virtex fimctions. We choose a = 1, which means that in the renormal.ized 

(l,l) theory the singularities of the propagator, GR , will occur at E = 0, 

;2 = 0. This is guaranteed by requiring 

rR (l~,l) (E, 22, a', A, Al, EN' % 2, = 0. (18) 

E=O 

-z2= 0 

Since there is no "mass" scale in the renormalized theory because cx = 1, 

we have to provide one by choosing a normalization point somewhere in the 

E, s2 plane. We will choose the point E = -EN c 0 and z2 = 4 > 0. TtjiS 

choice keeps us away from the various branch points which arise in pertur- 

bation theory in Xl0 and ho. This is pictured in Figure 3. Normalizing 

away from E = 0, z2 = 0 keeps us from any infrared problems. All the vertex 

functions rc'"' will depend on EN and ki (as indicated in Eq. (18) for 

r(l,l.) 
R )as will the renormalized parameters Xl, h, and a'. 
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The remainder of our normalization conditions are given by 

a i rz'") (E, z2, cl', X, A1,'EN, < = 1, 
8E 

(19) 

E = -E N 

- i r(l'l) (E, Z2, a', X X a 
aZ2 R , 1, EN, k;) = -"'(EN, k;), (20) 

which are not specifi~c to the quartic interaction but are requirements 

coming from our choice of a linear E, z2 relation. Further we set X1 

by 

TR (2'2) (Ed, i$, a', A, Al, EN, k;) 
+(EN><) 

~= ._ J (21) 

(zlTp+l 

where E i: E2, 1' 1' z2 are incoming while E3, +3 k and E4 z4 a-e outgoing, 

(see Figure 41, and qi = +l for an incoming Reggeon and = -1 for an outgoing 

-t 
Reggcon. Finally with El, kl incoming and E2, i:, . . . E4, z4 outgoing, 

as in Figure 5, we set 
0 

rR (1'3) (Ei, ci, a', A, Al, EN, k;) 
-il(EN,l+ 

= 
(21,jD+l * 

(22) 

.E1 = -EN, E2 = E3 = E4 = -EN 

7 
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Now for convenience we shall eliminate the dimensional couplings 

X and Xl in favor of the dimensionless combinations 

x 
Y= EN 

D/2-1 

(ml)D'* 
, (23) 

and 

Yl = 
5 

EN 
D/2-1 

(24) 

(ayDf2 

The space dimension D = 2 seems slated for a special role here. Recall that 

in the theory with a triple Pomeron coupling, 1) = 4 played this special role. 

We found there a particular simplicity at D = 4 and were able to make a 

perturbation expansion in 4 - D = c for all vertex functions. Here the 

physi.cal number of dimensions is singled out. We can view this special rol~e 

in a somewhat more general light by noting that if we identify dimensions in 

time .and space (so a' is dimension%css), then at D = 4 the triple Pomeron 

coupling is dimensionless while at D = 2 the quartic coupling constants are 

dimensionless. Further each of the theories is scale invariant i.n its special 

dimensions. 

3. Renormalization Group Equations for the Vertex Functions - -- -.-- --.-_-.___ 

The unrenormalized vertex functions ru (n'm)(Ei, q, n;, x0, XlO, A) are 

related to the I$+) by 

'R 
'("'m)(Ei, iii' a', A, Al> EN, k; = 

ZF r,)-m) (Ei, i$, a;, ho, Xlo, A) . V-5) 

h .d The simple observation that the iYu cannot know about the normalization 

points F,N' ki for the renormalized rR leads to two independent conditions 

on I- 
R 
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i 

a a a 
< --7j + Bk(Y ,Y1) - + B&(YPYl) - f 

akN 9 ayl 

-!zkk(“‘,Y,Y1) ;; - y Y,(Y>Yl) x 
I 

~ ,(n,d(E 
R 

i; 
i’ i’ a’, Y, Yl’ EN>+=0 , 

where 

c$, Ao, Alo, A fixed 

and 

aA, Ao, Alo, A fixed 

Ckb’, Y,Y,) , 

a;, X0, Alo, A fixed 

a 
y ,(Y,Y,) = < - * 1% 2 

“34 
a;, Ao, Xlo, A fixed 

(26) 

(27) 

(29) 

(30) 

These functions could also depend on a’k;/EN, but WC choose not to display it. 

Also one requires 

i 

a a a 
E- 

‘aEN 
+ BE(Y,Y1) -- + BIE(Y,Y1) -+ 

ay ayl 

a Il+Ul 
5 EC”’ ,Y,Y,) - - __- 

aal 2 
Y,(Y,Yl) y 1 

p, WqE. ‘;t a’, y y 2 
K I’ i’ , l.ENl,lcN)=O , (31) 
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with R,, BIE, CE and yE defined just as in Equations (27) . . . (30) with 

EN a/a EN replacin,g < ajaki . 

These are the important equations in our work. We will turn them into 

equations governing the E i, ci variation of the rR hJd (Ei, k;) by using 

ordinary dimensional analysis. 
(n,m) are 

The dimensions of TR 

2 (2 - n - m) 
[++)] = E(k2)4 

R t 

which al~lows us to write 

,(=,d (E 
R , Y> yl> EN, k$ = 

- n - m) 

dJ =,m t 

2 

EN ' kN ' EN 

and lea~ds directly to the result 

(32) 

(33) 

(= ,d 
rR (5' Ei, Co'= ci, a', y, yl, EN, k; ) = 

C"++2 - n - m) ,(n,m) 
(Ei. i$,F; O-" cl' EN kN 

R , Y, Yl' -y , - ). 
5 co 

(35) 

Using this together with Equations (26) and (30) yields our key result 

1 

a 
5 ” - (ciBk + VRE) -- - (UBlk + Mm’ 

a 
-+ 

a< 9 ayl (36) 

I(v - o)a ’ - bfk + u$ 1 ;, + y (or k + YE) 

-"-o$(2-n-m) rR 
3 

)=O 
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The solution to this equation is fairly standard. 4, Define t = log 5, then 

rR (*'=') (C"Ei, ?I2 $, a', y, yl, EN, k; ) = 

r!=,m) (,; 
R i, iti, ii'( ;c-o, +t), EN' 4 ) x 

x exp dt' [v + o $2 - n - m) - K!Z! (oyk(;(t'), iI(t 
2 

+ w,,(;w, Yp)) ,7) (37) 

Where the effective slope and coupling parameters satisfy the auxiliary 

equations 

1 da'(t) 
___ .- 
a'(t) dt 

(38) 

(39) 

and 
dil (t) 
-__ = 

dt 
- (aelk + VBIE) , (40) 

which are to be solved with the boundary conditions: ;m = y, ;,Ko = Yl' 

and n'(0) = a'. By dimensional argument.s, the 6's and the 5/a' 's can 

depend only on y and y,.. 

If we knew the renormalization group functions B, 5 and y and coul.d 

integrate (38), (39) and (40), then we could solve for the detailed variation 

of tlie r;)m) in the Ei and gi. These functions can only be known in per- 

turbation theory unless one is capable of solving the full blown field theory 

directly. We will proceed as usual, then, and evaluate each of these functions 

in lowest order perturbation theory. With theIn known to this order we will 
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solve the auxiliary equations and then determine the bthavior of the r 
R' 

To determine 7. and a' we need r (1,l) . The lowest order perturbation 

correction to the free propagator is shown in Figure 6. We find for this 

JlJ)(E, $2, a;, x0, u Alo) = E - a;, $* 

r(i - D) 
--E , 

(JE; n)D (3!)D',* + l 

which gives 

1 -= 1+ -$ ($L EN)D-2$&;f . 
z 

(41) 

(42) 

From this we evaluate yk and yE to lowest order 

2 
a'kN 

Y,(Y, Y,) = Y2 - 

3EN 

r(3 - D) 

(~?j ,)Dc3!)D/= + 1 ' (43) 

and - D-3 

Y,(Y, Y1) = y’(i + $) 
r(3 - D) 

(I6 x)D(3!)"'2 +l * 
(44) 

In arriving at these expressions we have not introduce~d an explicit cutoff 

A to regularize the perturbation theory. Instead we have simply used the 

dimension D to provide a way to stay away from infinities. The renormalization 

group functions are quite regular at D = 2. 

Equation (41) also yields 

D-2 
r(2 - D) 

E 
N > (di n)D(3!)D'2 +l ' 

(45) 
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and 

and 

' (46) 

2 2 r(3 - D) 

3E 
= - "TY __-- 

(3!)D'2+1(4i 7T)D 
(47) 

3 

To find the functions 5 we need to compute the graphs shown in Figure 7 

for r.(l,3) and those in Figure 8 for I' (2,2) . This gives 

(1,3) 
-i 

ru 
I 

zz- 
(2n)D+l 

x 

Normalization 
Point 

g;llOAO n 
D'2r(l - D/2) 

xo - 
4(c$)D'" 3D'2 (27T)D 

EN + a;< 

(232) 
-i 

ru =- x 
(Zn)D+l 

Normalization 
Point 

2 $)/2 
D/2 - 1 

50 
r(l - D/Z.) 

50 - 
(2njD 

EN + 

(48) 

(49) 
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From these we find 

and 

9YlY v "'%(2 - D/2) 
Bk = __ -- 

4 (2*)D 3D'3 

D-3 

v~'~I'(~ - D/2) D/2 - 2 

(21T)D 3D'2 

n D-3 

+ (2 - D/3) y3 
r(3 - D) 

(JiT n)D(3!)D'2 +l 

2 
y1 ll D'2r(2 - D/2) 

%k = G 
(2njD 

n/2 - ' .D'2r(2 - D/2) 

(WD 

I'(3 - D) 
+ (2 - D/3) y2y 

l (I@ 7r)D(3!)D'2f1 

(50) 

(51) 

(52) 

+ (2 - D/3) y2yl 
r(3 - D) 

(JS nD(3!)D'2+1 
(53) 

Note that for D + 2 BE and BIE have a linear zero at y or y 
1 equal zero. 

This dissappears at D = 2 leaving a hither order zero. 
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The slope of the functions B near y or yl equal zero is positive for 

D = 2. This means that zero coupling may be a stable point of our auxiliary 

equations in the infrared region 4) . More precisely as we study the 5 + 0 

(t + - m) limit of (37) the effective couplings 9(-t) and 51(-t) will approach 

zero. In such a case we may ignore the cubic terms in our 8's since they 

will be neglible in the 5 region of interest. With this in mind we write the 

characteristic or auxiliary equations for $ and ;l needed in Equation (37): 

and 

di$(t) 
dt 

(55) 

where we have specialized to D = 2. 

Rather than solve these equations in general, we may now note that the 

presence of k; has served only to assure that the last term in (55) was 

not missed. That is, had we chosen to normalize at E = - EN, < =o as 

we did in the triple coupling problem 2) we would have encountered an 

infrared divergence in the second graph of Figure 8 at D = 2. However, at 

this stage we may with impunity set < = 0 resulting in 

d;(t) 3v 
-=-- 

dt 16~ 
; Gl 

d+) v;: 09~ 
z---e . 

dt 1611 4n 

(56) 

(57) 

To solve these let p = $,/;, then 
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z2j p3 (58) 

and 

du 3v 
-a -- ;* P 
dt 16~ 

(59) 

dp' 
-=-- 

d; 3 i 
(6’3 

We will. seek solutions with a positive effective coupling constant 

Y(t). The relation between y and p we see to be 

(61) . 

, then 

(62) 

is always negative and p(t) + 20/v as t -t m. Then y(t) -t m as we see from 

(61). This is a case where dropping the higher order terms in the auxiliary 

equations for ; and ;l is hardly justified. Furthermore any confidence one 

might have in a perturbation expansl.on in X or y must be minimal. 

then we see from 

(63) 
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that p(t) is ever increasing and for large t, which is the regime of 

interest, 

P(t) ym (~jpo+ - ;jrl , (64) 

-3 Clearly in this chase y(t) goes to zero for large t as t , This means 

that thp negl~ect of higher order terms in B is allowed and more interest- 

ingly the behavior of r,, for smll. energies and mornentn is governed& _. __- 

zero coupling. -- This theory is infrared free. __. It is amusIng to note that 

the condition of infrared freedom on the behavior of r R (Ev Ei, ?I* zi, a', 

Y, Y1' EN) 

(Y;/Y*)(J/*o) ' 1 (65) 

depends 011 the path (that is a and v) one takes in reaching the infrared 

point as ~11 as the values of the renormalized couplings yl and y. 

The behavior of G(t) and 51(t) for large t is 

3 1 
y(t) % -_____ (66) 

t-t- yt 
b(o)* - $1 

312 ' 

and 
16~1 

i+) rk - 
t-+"J vt (67) 

From the equation for Z'(t) and the perturbation expression for 5 we have 

S'(t) .- a'Ca e (" - Ojt [l + c/t5 +,,, 1, (68) 
t+m 

where 

and 

, 

C 
cl = exp -k (p(o)2 - :Tpjo) (x2 :x21,")7,4 * 

(69) 

(70) 
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We need onp. more i.ngrC+diE!nt for the study of l'R($%i, 5 o/2; ,,...). 

That is the integral 

0 

s 

/ 
exp - dt “+f!kJYkfVYEl . 

-t 
2 

Using our expressions for yk (zero when 4 = 0) andyE WC find (71) behaves 

as 
3(nim) 

(car -4 --[l - 3(nfm) C/(-t)5 + 4 . . . 1 (72) 

for large t. 

3. Properties of the Renormalized Trajfctory -__---.- _ - 

We have now discovered that by a propitious choice of renormalized 

coupl.ing constants, we can determine the mall Ei, small %i behavior of 

the renormalized vertex functions in a perturbative manner since the 

effective couplings entering the right hand side of our expression (37) 

for rR go to zero as 5 + 0. A function of particular interest is the 

inverse propagator,for its zeros determine the Begge trajectories. 

We are instructed to take the renormalized propagator TR (1,1) 

determined to some order in perturbation theory (lowest order 1~111 do in 

our case) and place it into Eq. (37). rR (1,1) to O(y*) is 

ir("l)(E S*, a', y R ) > y , , EN) = 

(73) 

in D = 2 dimensions. 
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We now set v =z G = 1, for we expect the zero of the inverse 

propagator will remain approximately linear in the interacting theory. 

This means that we can confirm the existence of a Pomeron pole in this 

theory only if Xl/X = p(O) 2 J2 . The quartic coupling theory is otherwise 710 t 

infrared free. The requirement th:at Al/X t J2 is not as stringent as it first 

appears sincF,when h 
1 and ;\ are small, the vacuum is unstable unless Al/h 2 4/3. 5) 

.(l,l) The renormalize~ IR with v = V= 1 is 

iT('$l)(< Et Liz, a', y, yl, EN) = C(C )-?" x R a 

(74) 

The left hand sj.de is a function of SE and gk2 Only. To cast the 

right hand side in thi.s form we write 

c civic2 E 5 
+o 

a - - 
3eEN eEN 

(76) 
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This enables us to conclude 

&‘l)(E p, al 
R ' , Y, yl, EN) = 

(Cal 
-312 E-Ca&2+; +I” YE) 

[q+&j5 

as E, c2 go to zero. This function has a zero very close 

E = %Z2 k[b16g;:;;;:-;; 

which yields a Regge trajectory for y 2 0 

a(t) = 1 + Caa't -i CaCa't 

peg pyj' 

+ . . . 1 (77) 

to 

(78) 

(79) 

which is a very moderate modification of the original linear trajectory. 

For t c 0 the trajectory becomes complex and there are two trajectories 

at complfx conjugate positions. 
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5. COllClllSiOX 

We have investigated the behavior of the renormalize~1 Grcen'n 

functions for Pomerons when the interaction among the Pouxrons is only 

of the Q4 type given explicitly in Equation (9). Under the condition 

that the ratio of two renormalized couplings be larger than a given 

value, we found that the effective couplings that determine the infrared 

behavior of the field theory approach zero. That is, the, infrared 

behavior of a Pomeron field theory with quartic couplings can be deter- 

mined to high accuracy by the use of perturbation theory around the 

coupling constants equal to zero. 

Within this framework we examined in detail the inverse propagator 

and fcund that the interactions give rise to a very mild modification of 

the non-interacting linear trajectory. If one coupl.es in particles by 

simply tacking them on the ends of Reggeons (as in Figure 9), then our 

p(l,l) 
R oi Equation (77) gives rise to 

crT(S).-dyll+ 2 C/(log log s)5 +*.,I 
L 

where y 1 is posi.tivc and factorizes. Since the present theory is infrared 

free, corrections to this result from multiple Pomerons being emitted from 

the particles are essentially like that of the non-interacting theory; 

that is, each correction is smaller by powers of log s than the term 

exhibited. 

The $4 theory is of a medium amount of interest in its own right but 

fails to provide a mode.1 of signifi~cant physical consequence because, by 

its very definition, it lacks a triple Paneron coupling. [The problem 

of combining both a $ 3 and $ 4 is intriguing and is relatively easy to 
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fornwlate. Its solution has somewhat eluded us bccanse it ~ecms natural 

to investigate the $' theory in an expansion about D = 4 space dimensions 

while we have just demonstrated in this paper how the $ 4 theories are 

simple in the physical dimensions D = 2.1 Nevertheless, the quartic 

coupling problem has proved instructive in itself by demonstrating how 

one may substantially alter the infrared behavior of the Green's functkms 

or choosing an inappropriate path by which to approach Ei + 0, gi + 0 

or having an unfortunate ratio of renormalized coupling constants. Such 

trickfry did not appear in the I$I~ theory which possfsses a single coupling 

and provides a richness of solutions not explorable there. 
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Figure Casons -- 

Figure 1: 

Figure 2: 

F-igure 3: 

Figure 4: 

Figure 5: 

Figure 6: 

Figure 7: 

Figure 8: 

Figwe 9: 

The transition Two Ponxrons -f Two Pomerons which has a 

bare coupling constant A1.O. 

The transitions Three Pomerons + One Pomeron or One 

Pomeron + Three Pomcrons. Both have a bare coupling AO. 

The E, c2 showing the lowest order pertwbation theory 

t-Q cut along E = a0k /3 and the normalization point (-EN, s 2, 

used to define the renormalized theory. 

(2,2) The definition of momenta in the vertex function rR . 

(1,3) The definition of momenta in the vertex function rR . 

The lowest order correction to r Cl,0 . 

The lowest order correction to r Cl,31 . 

The lowest order correction to r (2,2) . 

The coupling of particles (heavy lines) to Pomerons (wavy 

lines) which interact in all possible ways. This set of 

graphs gives ti,(s) =yl +y2/(log log s)'. Multiple Pomeron 

emission by particles is smaller asyuiptotically by powers of 

log s. 
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Fig. 6 
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