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1.

1. Introduction

The Re geon calculus or Reggeon field theerieg whose study was initiated

by Gribovl)

several years ago provides a constructive procedure for investi-
gating the datailed interaction among Regge poles and cuts., It alse vields
an zutomatic and natural way to satisfy the discontinulty relations across
Regpgeon cuts.,

In this paper we continue our discussion of the structure of the Pomeran-
chuk4singularity which arises in interacting Reggeon field theories. As in
our earlier workz) we employ the renormalization group to provide a non-per-
turbative tool for the analysis of the renormalized Reggeon Green's functions
in the nedighborhood of & = 1 and t = 0, Our previous work pointed out the
large ambiguity in choosing the appropriate Reggeon field theory within
which one ought to cast the Pomeron probhlem, We encourage the reader to
review the detailed motivation for Reggeon field theories as given in Reference
2 and only remember here that one must choose both a non-interacting Reggeon
to bhegin with, and then a precise form of the interaction, In Ref. 2 we
studied the physically very interesting case of a linear trajectory
alt) = 1 + aé t whose interactions were given by a triple Pomeron coupling
only. Because of the wide range of possibilities in formulating the field
theories f(a situation hardly special to Reggeons), we feel it is important
to study a variety of other theorles even when their clear connection to
physical processes may be vague,

We shall present here our analysis of the Reggeon theory in which the

-)-
2
non—-interacting Reggeon has the energy E =1 - £, momentum, t = !k[ relation
>2 l
E = a; k , L

appropriate to a linear trajectory, and where the Interaction 1s taken to be

of the h¢4 variety. It is easy to see from the outset that such a theory will
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2.

never possess a triple Pomeron coupling. That coupling is of direct physical

| importance, as, for example, in inclusive processes, However, 1t turns out
that there are a variety of amusing aspects to the quartic coupling problem
which are not only interesting in themselves but also play a role in the
study of the structure of secondary trajectories when Pomeron interactions
are accounted forB). The additional feature to note is the presence of more
than one coupling constant (arising here because of the absence of crossing
symmetry in non-relativistic theoriles with E « ﬁzj which makes the infrared
behavior of the proper Reggeon vertex functions (E + 0, Iil + 0) depend in
detail on the direction of appreach to the limit and on the precise vglues
of the renormalized couplings,

We find that when certain conditions on couplings are met, the infrared
nature of the Green's functions is governed by the effective coupling constants
evalﬁated at zero. That is, the field theory is infrared free. Under these
conditions very mild modifications of the trajectories and Green's functions

are present. For example, the bare limear trajectory

a(t) = 1 + a; t (2)
is modified for t small and positive to

a(t) = 1 + At + Bt/log(Ct)S. (3)
A constant total cross section which would come from (1) is then reached as

5
on(s) v vy, +vy,/(log log s)
T e |k 2 * (4)

where Y1s Yo > 0.
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3.
. : 4
2, Reggeon Fleld Theory with U~ Couplings
We begin by recalling that the Reggeon calculus is a technique for
building partial wave amplitudes out of the propagation and interaction
of quasi-particles (Reggeons) in two space and one time dimension. The
theory we consider here starts with a limear trajectory
= - v : '
a{t) ag Fog t o (5)
Following Ref, 2 we choose to cast this in the form
2 >2 >2
E{(q") =1 -af{q™) = (1 ~ ao) + abq s (6)
where, clearly,
..),2
t =-q° . {7)
This is the bare energy-momentum relation of our quasi-particle, It is
described by the free action
D i+ - .
AO S.d x dt 2 v (x,t) Btw (x,t)
_ab V¢+ e Yo~ (1 - ao) ¢+¢ = .ng x dt LO(;,t) ) (8)

e
where the Reggeon field aperator ¥(x,t) has been written in D space dimensions
3
conjugate to q and one time dimension conjugate to E. Physics takes place at

D = 2. The interaction we choose is described by the addition te the free

Lagrangian
> Moo +2 .2
LI(X,t) i W) W
@n
o 43 4.3
- — [y + @)yl . §))

3!
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4,

The first term represents the two-to-two process in Figure 1 while the second
term gives the one Pomeron in-three Pomeron out (and vice versa) amplitude

in Figure 2. The absence of crossing symmetry means that the couplings AlO

and ko for these transitions need not be equal.

As with the w3 theory it is useful to perform some ordinary dimensional

analysis on the quantities in L = L0 + LI'

) -1 -1 .
time as (energy) and space as (momentum) we write

Noting separately dimensions of

a

(e =+, | (10)

(x] = KT, (11)
Requiring the acticn to be dimensionless yields

w1 = &%, | az)

D) =D =eKT (13)
and, of course,

[o'] = LK% . (14)

It is clear that the couplings A, and A are not dimensionless, We will

1,
shortly define some dimensionless coupling constants to replace the A's,

Qur procedure will be to examine the renormalized proper vertex

(2,m)

functions FR

for n incoming and m outgoing Pomerons. These vertex
functions are defined as the fourier transforms cf the renormalized Oreen's

functions

-

(n,m)
GR (xl, Bys wven X tn+m)
-t
= 2 W +
= Z | TW (xn+m’ tnm)... ¥ (Xn+l’ tn—l-l) X

VG, ) v, ) 10D, (15)
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5.
with the external legs amputated by multiplication by
ntm
ST (1,1) > =1
([ leg™™ By kD71 (16)
i=1

The renormalization constant Z relates the renormaliz ed field operator
to ¥ by

b=y . @)

a

The unrencormalized theory is defined in terms of AlO’ AO’ aé, Ay and

a possible cutoff we'll call A. We choose ao = 1 which means we are dealing

with "massless" quasi-particles; there is no energy gap at ﬁZ = 0. We will

parameterize the renormalized theory by a set of numbers A A, o' and o,

l’

These numbers are determined by normalization conditions on a selected set

of vertex functions. We choose a = 1, which means that in the renormalized

theory the singularities of the propagator, Gél’l), will occur at E = 0,
Kz = (0. This is guaranteed by requiring
i1 2 2
riD @, ¥, e, o, g, By 1) 0. (18)
E =0

%0

Since there is no "mass'" scale in the renormalized theory because o = 1,

we have to provide one by chocsing a normalization point somewhere in the

E, 12 plane. We will choose the point E = =E_ < 0 and Kz = k; » 0. This

N

choice keeps us away from the varilous branch peints which arise in pertur-

bation theory in AlO and AO' This is pictured in Figure 3. Normalizing

away from E = 0, ﬁz = 0 keeps us from any infrared problems. All the vertex

(n,m}

U in T
functions R

will depend on EN and ki {as indicated In Eq. (18) for

Tél’l))as will the renormalized parameters A A, and o',

13
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The remainder of our normalizatlon conditions are given by
3. (1,2 +2 ' 2 |
Sy p D (@, B2, a0, g, By, K -1, (19)
3E
E = —EN
>
12 a2
Oy p LY e 72 4 2 e _al(E . 12
aﬁz i FR ? (E, k7, a', A, ll’ EN, kN) = -0 (EN, kN), (20)
E = —EN
=2 2
K=k
which are not specific to the quartic interaction but are requirements
coming from our choice of a linear E, -122 relation, Further we set Al
by ' 9
. -ix. (E kN)
2,2 > 2 1N’
ré ) (B, Tgr 'y by Aps By, k) = LTNN o)
(2W)D+l
Ei = - EN )
- - kN
o ko= A
ky oK, ; (4th ngny)
here E,, k,, E,, K incoming while E,, k, and T, k, are outgoi
where E,, ky, E,, k, are incoming while E,, ky and T, k, are outgeing,
(see Figure 4), and n, = +1 for an incoming Reggeon and = -1 for an outgoing
-+ . : > >
Reggeon, Finally with El’ kl incoming and EZ’ k2 P E4’ k& outgoing,
ag in Filgure 5, we set
2
~iA(E kN)
(1,3 0 T 2 e
FR (Ei, ki, a', A, Al’ EN’ RN) = D+l (22)
(2m)
El = —EN, E2 = E3 = E4 = —?ﬁ
2 3
> > kN
k . , B — g-- -—
i kJ Z (4 ‘,J ninj)



NAL-Pub-74/31-THY

7.
Now for convenience we shall eliminate the dimensional couplings
A and kl in favor of the dimensionless combinations
N V1
p/2 ¥ s (23)
(a')
and
M D/2-1
y, = —————— E . (24)
1 D/2 N
{a")

The space dimension D = 2 seems slated for a special role here. Recall that
in the theory with a triple Pomeron coupling, D = 4 played this specilal role.
We found there a particular slmplicity at D = 4 and were able to make a
perturbation expansion in 4 - D = ¢ for all vertex functions. Here the
physical number of dimensfons 1s singled out. We can view this special role
in a somewhat more general light by noting that if we identify dimensilons in
time and space (so o' 1s dimensionless), then at D = 4 the triple Pomeron
coupling is dimenslonless while at B = 2 the quartic coupling constants are
dimensionless, Further each of the theories is scale invariant in its special

dimensions.,

3. Renormalization Group Equations for the Vertex Functions

The unrenormalized vertex functions F(n’m)(E E., o', A A A) are
i 8] it i 10’ 0> "10?
related to the Fén’m) by
(n,m > 2
RN AN FTUNE W VRS SR S
n-+u
2 (n,m) b '
Z FU (Ei’ ki, uo, AO’ AlO’ Ay . {25)
(n,m)

The simple observation that the T cannot know about the normalization

U

2 .
points FE kN for the renormalized FR leads to two independent conditions

N)

r
on R
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C s 2 3 3
[kN -;;_k‘g + Bk(y syl) ;_y_ + Blk(}',yl) "E;;_ +
1
' o n-+m
ék(a ’Ysyl) e — Yk(y’yl) x
da' 2
(n,m) i . 2, _
X PR (Ei’ ki’ Oy ¥, yl’ EN’ kN) =0 3 (26)
wheré
2 W
B rsyy) = Ky ;;"NQ“‘ ; o (27)
uo, AO, AlO’ A fixed
Byl
) .
L 10, AlO’ A fixed
o'
¥ —————
g (et yay) = Ky akﬁ ; (29)
N 1 T
ao, AO’ AlO’ A fixed
and
) 3
1 -
s AO’ 110, A fixed

These functions could also depand on a'kﬁ/E but we choose not to display it.

N’

Also one requires

3 3 d
[jEN—T— + BE(y’Yl) — + BlE(y’yl) - +
BEN ay Byl

9 n + o

1 ———— —

E.E(a ,y,yl) ) YE(y,yl{lk
3 2

(n,m) T

2 31
» TR (Ei, ki, a', v, Y1 EN’ kN) =0 . (1)
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with BE’ B and Yg defined just as in Equations (27) ... (30) with

1E° "R
E. . 3/3 E_, replacing 2 3[3k2
N N 8 Ky N

These are the important equations in our work, We will turn them into

(n,m)

3
R (Ei’ ki) by using

-
equations governing the Ei’ ki varlation of the T
ordinary dimensional analysis. The dimensions of Fén,m) are

D

(Z - n - m
(rim™y = 5y : (32)
which allows us to write

(n,m) 7 ' 2, _

FR (Ei 3 ki 3 a L) YS Yl ] EN 3 kN) -
- -2{2 - n - m) oxd &
E_l4 E k. o'k

po | . &a e

N ' n,m ? ’ s ¥s ¥ s (33)

o EN kN EN 1

and leads directly to the result
(n,m) ,.v af2 > 2
g € R, TR, at y, oy, By )

v+02{2 -n~-mn _{n,m) -® g=v EN kN2
E 4 rR ’ (Ei, ki,g o', v, Vi Ty 0 o ). (35)

g g

Using this together with Equations (26) and (30) yields our key result

9 a ]
£ — = (0B, + VB ) -— = (oB,, *+ vB,.) — +
3z k E 3 1k AE 3
y Yl
(36)
¢
s n -+ m
[ - oo -w@+v@naw+ 2 Gory o)
b (a,m) v af2 > . 2

- v -g Z—(Z - n - m}\ﬁ TR e (& Ei’ £ ki, ¢, v, L LN’ kN ) =0
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The solution to this egquation is fairly standard.4) Define t = log £, then

n v of2 o 2
Fé ’m) (E h‘i} E / ki’ G‘" y’ yl’ EN’ k ) =

N
™, By, a0, v, 3y e, B i) x
o D + ~ ~
xexp [ dt [vtro g2 -n-m - BER o (), y (e") +
= 2
+ WE(;(t'), ;rl(t')))]) (37)

Where the effective slope and coupling parameters satisfy the auxiliary

equations
1 da'(r) 4 -
, =(v-o)—(c}~é—k+v-§—r:), (38)
a'(t) dt a' ol
d;(t) ( ) (39)
= ~{oB, + vB , 39
dt k E
d§l(t)
and —dt = —(GBlk + vBlE) . (40)

which are to be solved with the boundary conditions: ;(0) =y, ;l(O) = ¥i»
and &‘(O) = o', By dimensional arguments, the B's and tlhe /o' 's can
depend only on y and Yi-

If we knew the renormalization group functions R, ¢ and y and could

integrate (38}, (39) and (40), then we could solve for the detailed variation

(n,m)

of the FR

In the Ei and ﬁi' These functions can only be known in per-
turbation theory unless one is capable of solving the full blown field theory

directly. We will proceed as usual, then, and evaluate each of these functions

in lowest order perturbation theory. With them known to this order we will
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solve the auxidliary equations and then determine the behavior of the FR

(1,1)

To determine Z and o' we need T The lowest orxder perturbation

correction to the free propagator is shown in Figure 6. We find for this

a,1,. »2 _ , o2
iFJ (E, k7, s AO’ Alo) = K %q k
2 , 2 D-1
*o gk r(l - D)
+ - E ——— , (41)
P s 5 P P2t
which gives
D-2
1 12 u‘kﬁ r¢ -on)
—=1+ OD : + Ey D/2HL, = W (42)
z () 3 (31 (V8 )
From this we evaluate‘yk and‘YE to lowest order
b-3
, 'kl % (3 - D)
Y 5, y) =y 1 +——=) (43
k71 3E 3E 8 mPanl/z il
N N
and 2 D-3
9 af '3 - D
Yoly, ¥ ) = ¥ (1 -+ ) ——— . (44)
Y71 38, 8 mP@nl/2 1

In arriving at these expressions we have not introduced an explicit cutoff
A to regularize the perturbation theory. Instead we have simply used the
dimension D to provide a way to stay away from infinities. The renormalization
group functions are quite regular at D = 2,

Equation (41) also yields

9 D-2

2
ol 2 A o re2 -mn
—_——= ] - — OD(OkN +EN> ’ (45)
(/“

: 3 @’ \ 3 nPan?/2
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and

for R

and
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12.
, D - 3
2 a'ké , T3 -D) u'kg
ST T Y ey g (Y ’ (46)
9 Eg (V8 1) (31) 3K
N
D - 3
2 ) r(3 - b) ( a'ké
L, =—a'y — 1 4 e X (47)
By 32tz o 3E

To find the functions # we need to compute the graphs shown in Figure 7

(1,3 and those in Figure 8 for P(2,2). This gives
£(1,3) 1 .
U (2“)D+l
Normalization
Point
- nfz2 - 1
9%, 07 /201 - p/2) 2') |
\ - (E + ot , (48)
O 4@p? P en® w0ty
- (2,2) Lt
U (2“)D+1
Normalization
Point
D/2 -1
by 2 WD/ZF(I - b/2) u’k;
A, - A0 r o+ 2 -
10 4(&6)D/2 (2m)P N 3
22 o 2720 - p/2)
0O 0
- /0 5 (49)
(aé) 3 2m)
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From these we find

l.c D 313/3

b/2 ~ 2 2
9y.y ® 'TT(2 - D/2) o' o'
! (1 + it il
L (21

D (3 - n) a'k ol
+{2, -— y3 5 7241 (1 + i x ) (50)
\ 3 (/8 1) (31)

D/2 -
D 9 P/2r(2 - py2) o, /2 -2
S D DA S £h D D72 L4—

2 4 (2n) EN

D -3

3 r¢3 -m o ) 51
+ (2 - D/3) y 1+ ,
/& mPa1yP/2 +l( 3

o

2 D/2 1.2 v, 2
i r(z - n/2) o kN o
yl I kN
SEN 3EN

4 2m)P

B ==

n/2 - 1
2/ 2r 2 - pJ2)

+ v e
3E ) 2m)?

3
2
r(3 - D) @'kl 72
2
+ (2 - D/3) ¥y 1+ —— | ol Ry (52)
1 (/5 W)D(BI)D/ZH_( .

and

D ylz ND/ZI‘(Z - D/2) u'kN
Bipn =[——- 1 y, = (l +

1E 1, 4 (2m)?

, 1y o2 (3 ~ D) ( a'ké\ -
+ (2 - DJ/3) vy " - 1+ . 53
L8 D anyp i

Note that for D # 2 BE and SlE have a linear zero at y or Y1 equal zero,

This dissappears at D = 2 leaving a bigher order zero.
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The slope of the functions B near y or ¥y equal zero is positive for
D = 2, This means that zero coupling may be a stable point of our auxiliary
equations in the infrared regiona). More precisely as we study the § -+ 0
(t + - =) limit of (37) the effective couplings y(-t) and §l(—t) wlll approach
zero, In such a case we may ignore the cubic terms in our 8's since they

will be neglible in the £ reglon of interest., With this in mind we write the

characteristic or auxiliary equations for y and §l needed in Equation (37):

.-.l

- ~ ~ 2 2
dy(t) 3y(t)yl(t) a'kN u'kN
R e e E g + v . (54)
dt 16T EN EN
and
~ ~ 2 2\t 2 ~2
dyl(t) Y1 u'kN a'kN oy
= - 1 + o) + v - » (55)
dt 167 BEN BEN 4

where we have gpecialized to D = 2,

Rather than solve these equations In general, we may now note that the
presence of ki has served only to assure that the last term in (55) was
not missed. That is, had we chosen to normalize at E = - EN’ k; = { as

2)

we did in the triple coupling problem we would have encountered an
infrared divergence in the second graph of Figure 8 at D = 2, However, at

this stage we may with impunity set k; = 0 resulting in

dy (t) 3v
dt 16w
- -2 -
d}'l(t) \’Yl Uyz
= — - . (57)
dt 167 41

To sclve these let p = §l/§, then
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dp vy 9 20
= [-p - ) (58)
dt 8w v
and
dy 3v -y
—— D e —e——— y p ’ (59)
dt 167
or
do* b {o? - 2g/£]
o (60}
dy 3 y
We will seek solutions with a positive effective coupling constant
v(t). The relation between y and p we see to be
9 3/4
p(0)" ~ 20/v
~ 61
) =y i (61)
p(t)" = 20/v

If p(O)2 = y“]z_/y"Z = li / )Lz < 26f/v , then

3/4 1/4
dp vy 2a 2 20
== - | — =~ p(0) [ — = p(t) (62)
dt 8w Y - u

is always negative and p(t) + Zo/v as t =+ =, Then gr(t) + © ag we see from
(61). This is a case where dropping the higher order terms in the auxiliary
equations for § and ';l is hardly justified. Furthermore any confidence one
might have in a perturbation expanslon In A or y must be minimal.

If p(0) » /20 , then we see from
v

341 1/4

dp vy T 9 2 9 20
— = = |00 - —| [e(t)" - — (63)
dt 8w Y v
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that p(t) is ever increasing and for large t, which is the regime of
interest,
3/2
¥Vt 2 2g
p(t) 7 - p(0)" - — . (64)

t > LéT v

Clearly in this case y(t) goes to zero for large t as t_3. This means

that the neglect of higher order terms in 8 is allowad and more interest-

ingly the behavior of I' for small energies and momenta is governed by

zero coupling. This theory is infrared free, It is amusing to note that

the condition of infrared freedom on the behavior of PR (5\J Ei’ €G/2 Ki’ o',

a

Ys ¥ps EN)

Gy Ol2e) > 1 (65)

depends on the path (that is o and v) one takes in reaching the infrared
point as well as the values of the renormalized couplings Y1 and y.

The behavior of §(t) and §l(t} for large t is

16T 3 1

- i
vy v 5 3/2 » (66)

3
A B T O

and .
. lén
y|(t) F ] ——

t + » vt ) 67)

From the equation for &'(t) and the perturbation expression for r we have

e~ wte, VTR e v, (65)
t = o«
where
¥ lon > 5 20 -3
¢ne (=) po? - ---:[ , (69)
1357 yv v
and ”
3
y 9 20 A} jl dx
C =exp -~ — | p(0)" = — —_——————— . (70)
“ S54m v (X2 - EU/V)7/4

p(0)
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oldr
i) E / ki’..l).

We nced one more ingredient for the study of PR(évE
That is the dintegral
0

Id
exp - S ac” 2XE o, T F Vgl (71)

Using our expressions for Ty {zero when k; = {)) and'yE wa find (71) behaves

as
3 {(nm)
oy 3(n+m
©)” T4 -2’ 72)
for large t.
3. Properties of the Renormalized Trajectory

We have now discovered that by a propitious choice of renormalized
coup;ing constants, we can determine the small Ei’ small ii behavior of
the renormalized vertex functions in a perturbative manner since the
effective couplings entering the right hand side of our expression (37)
for FR go to zero as £ » 0, A function of particular interest is the
inverse propagator)for its zeros determine the Regge trajectories.
(1,1)

We are instructed to take the renormalized propagator TR

determined to some order in perturbation theory (lowest order will do in

our case) and place it inteo Eq. (37). FR(l’l) to O(yz) is
c ALY, w2
iV, 12 ar, y, v, By
42 yz 12 ' %2 E N
E-a' k" + ] e E log - —\-1 . {(73)
288771\ 3 3By By 3

in D = 2 dimensions.



NAL-Pub-74/31-THY
18,

We now set v = ¢ = 1, for we expect the zero of the inverse
propagator will remain approximately linear in the iInteracting theory.

This means that we can confirm the existence of a Pomeron pole In this

theory only if Alfk p(0) 2 V2 . The quartic coupling theory is otherwilse ﬁ10+

infrared free. The requirement that Al/A 2 V2 is not as stringent as it first
5)

appears sincg,when Al and X are small, the vacuum is unstable unless Al/l 2 4/3.

L(1,1)

R with v = = 1 is

The renormalize&

iFéL,l)(E I, 22, 4, y, 5., B = E(Ca)~3/2 .

3 C C
X [} - — —*-mw*—?{] E - a'C kz (i +o——
2 (~log &) (-log E)

15 C a'cuﬁz a'C k E
— - - EJ| log [—=tum o — (74)
2 (~log &) 3 3E,

+
3 C a'lc
- (cu)“3/2 g[; c o' B2 4 - (’ Sl E
2 (-log 5) 3
15 C hte 2 a'C B2 R
I z G m E) logf —E— - —V -1l +.... [ L 75)
2 (-log &) 3 3B, By

The left hand side is a function of EE and ékz only. To cast the

right hand gide in this form we write

1 5 Co't? B
— | log | — | - 1/=
(~log &) (-log &) 3E, e
1 1 7
+0f(—
- ¢ o2 E > ~log & : (76)
a
-log ( - )
3eE ek

N N
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This enables us to conclude
1,1 22
BV, 2, e, y, vy, 5
..).
2
372 o 3 Cuu'k
(C) E-Coa'kh +-~ Cl—p—— - E +... (a7
o o 2 3
ca¥® BN\’ ~
3eEN eLN
as E, ﬁz go to zero. This function has a zexo very close to
.)2
) cc a'k
E = a'C Ez + a -
& -2 o' ¥ P
| ( o ) (78)
BeEN
which yields a Regge trajectory for v 2 0
N = + 1 1
o L) 1 Cau t + CaCoL t , (79)

ZCaa't'. 3
3e EN

which 1is a very moderate modificatlon of the original linear trajectory.
For £ £ Q0 the trajectory becomes complex and there are two trajectories

at complex conjugate positions,
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5.  Conclusions

We have investigated the behavior of the renormalized Green's
functions for Pomerons when the interaction among the Pomerons is only
of the ¢4 type given explicitly in Equation (9). Under the condition
that the ratio of two renormalized couplings be larger than a given
value, we found that the effective couplings that determine the infrared
behavior of the field theory approach zero. That is, the infrared
behavior of a Pomeron field theory with quartic couplings can be deter-
mineé to high accuracy by the use of perturbation theofy around the
coupling constants equal to zero.

Within this framework we examined in detail the inverse propagator
and found that the interactions give rise to a very mild modification of
the non-interacting linear trajectory. If one couples in particles by
simply tacking them on the ends of Reggeons (as in Figure 9), then our

Pél’l) of Equation (77) gives rise to

UT(s)»v‘y1E+-§~C/(log log 5)5 +'”J (80)

where Yq is positive and factorizes. Since the present theory is infrared
free, correcticns to this result from multiple Pomerons being emitted from
the particles are essentially like that of the non—interacting theory;
that is, each correction is smaller by powers of log s than the term
exhibited,

The ¢4 theory is of a medium amount of interest in its own right but
fails to provide a model of significant physical consequence because, by
its very definition, 1t lacks a triple Pomeron coupling. {The problem

of combining beth a ¢3 and w4 is intriguing and is relatively easy to
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formulate, Its solution has somevhat eluded us because it seems natural
to investipate the ¢3 theory In an expansion about D = 4 space dimensions
while we have just demonstrated in this paper how the wa theories are
simple in the physical dimensions D = 2,1 HNevertheless, the quartic
coupling problem has proved ingtructive in dtself by demonstrating how

one may substantially alter the infrared behavior of the Green's functions
or cheoosing an inappropriate path by which to approach Ei - 0, ﬁi + 0

or having an unfortunate ratio of renormalized coupling constants. Such
trickery did not appear in the wB theory which possesses a single coupling

and provides a richness of sclutions not explorable there.
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Figure Captions
Figure 1: The transition Two Powmerons -+ Two Pomerons which has a
bare coupling constant 110.
Figure 2: The transitions Three Pemerons -+ One Pomeron or One
Yomeron -+ Three Pomerons., Both have a bare coupling AO.
-
Figure 3: The E, k2 showing the lowest order perturbation theory
172 ) s . 2
cut along E = uok /3 and the normalization point (—hN, kN)

used to define the renormalized theory.

Figure 4: The definition of momenta in the vertex function Féz’z).
Figure 5: The definition of momenta In the vertex function Fél’3).
. . (L1
Figure 6: The lowest order correction to T .
A . . (1,3)
Figure 7: The lowest order correction to T .
(2,2)

Figure 8: The lowest order correction to T

Figuré 9: The coupling of particles (heavy limes) to Pomerons (wavy
lines) which dnteract in all possible ways. This set of
graphs gives GT(s) =Yq +-Y2/(1og log 5)5. Multiple Pomeron
emission by particles is smaller asymptotically by powers of

log s.
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