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ABSTRACT 

Rare decay modes of the kaons such as K-t p;, K +T Y ;, Key y, 

K + vyy and K -,e; are of theoretical interest since here we are 

observing higher order weak and electromagnetic interactions. Recent 

advances in unified gauge theory of weak and electromagnetic interactions 

allow in principle unambiguous and finite predictions for these processes. 

The above processes, which are “induced” [AS 1 = 1 transitions, 

are a good testing ground for the cancellation mechanism first invented 

by Glashow, Iliopoulos and Maiani (GIM) in order to banish 1 AS 1 = 1 

neutral currents, The experimental suppression of K 
L -Pi and non- 

suppression of KL -y y must find a natural explanation in the GIM 

mechanism which makes use of extra quark(s). 

The procedure we follow is, thefollowing: we deduce the effective 

interaction Lagrangian for k+n + 1 + 1 and X+n + y fy in the free quark 

model; then the appropriate matrix elements of these operators between 

hadronic states are evaluated with the aid of the principles of conserved 

vector current and partially conserved axial vector current. We focus 

our attention on the Weinberg-Salam model. In this model, K - p ; 

is suppressed due to a fortuitous cancellation. To6 explain the small 

KL-KS mass difference and nonsuppression of KL * yy. it is found 

necessary to assume m /m ’ << 1 where mp is the mass of the p- 
P P 

quark and mp/ the mass of the charmed quark, and m ’ < 5 GeV. We 
P 

present a phenomenological argument which indicates that the average 
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mass of charmed pseudoscalar states lies below 10 GeV. 

The effective interactions so constructed are then used to estimate 

the rates of other processes. Some of the results are: KS +yy is 

suppressed; K S 
- ~yy proceeds at a normal rate, but KL - ~~yy is 

+ TT Y; is very much forbidden, and K’-rr 
+ - 

suppressed: KL vv occurs 

with the branching ratio of -10 -9 ; K+ - rr’e e has the branching ratio of 

-10 -6 which is comparable to the presently available experimental upper 

bound. The predictions of other models are briefly discussed. 

Relevant renormalization procedures and computational details 

are discussed in Appendices. 
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1. INTRODUCTION 

NAL-Pub-741 Zl-THY 

Recent developments 1 in the study of spontaneously broken gauge 

invariance have led to the possibility of a unified and renormalizable 

theory of weak and electromagnetic interactions. Most such theories 

necessitate the introduction of weakly coupled neutral currents, and 

their viability depends on their success in accounting for the observed 

suppression of jasl =I, [AQ[ = 0 semi-leptonic decays. In nearly 

all models proposed thus far, this problem is dealt with by appealing to 

the Glashow-Iliopoulos-Maiani (GIM) mechanism, 2 
which we shall briefly 

recall. 

A criterion for renormalizability is that couplings be invariant 

under a group of gauge transformations. The charged Cabibbo currents, 

J *> 
P 

together with the neutral current J 
3 

P 
defined by: 

J:(~)~~(~-Y) = ~[J:(x),J~(Y)I~(~~-Y~) (1.1) 

+ Schwinger terms 

satisfy the algebra of SU(2). In a gauge invariant theory these currents 

must couple with equal strength to gauge bosons. However, if J * are 
P 

the usual Cabibbo current operators, the neutral current defined in 

Eq. (1.1) contains a strangeness changing hadronic part as well as a 

leptonic part. The gauge invariant coupling then implies that a decay 

+ 
such as K L-PP should occur with a strength comparable to K - KY. 

In the Weinberg-Salam model, 3 the remedy to this unwanted 



-5- NAL-Pub-74/ 21-THY 

prediction is to modify the usual current 

c 
J+ = pyp(l - y5)(ncos 0 + hsine) 

P 
(1.2) 

by adding a coupling: 

C 

J+=J+ - 

P P 
+ p yP(l- y5)(Xcos 0 -nsin 0) (1.3) 

where 0 is the Cabibbo angle; p, n and A are the usual quarks and p’ is 

a charmed quark with the charge of the proton quark. With this modifi- 

cation the current defined in (1. 1) has no [ AS 1 = 1 component. It is 

generally assumed that p’ is much heavier than the other quarks to 

account for the fact that charmed particles have not been observed. 

In the Weinberg-Salam model the electromagnetic current is 

included by extending the gauge group to SU (2) x U (1); other constructions 

which satisfy low energy phenomenology have also been proposed. For 

example, in the Georgi-Glashow model 4 
the Cabibbo currents are 

modified by the introduction of new particles in such a way that J 3 is 
P 

just the electromagnetic current and no other neutral current need be 

introduced. However, when higher order processes are considered, 

an analogue of the GIM mechanism must be used in all models of this 

type--increasing still further the number of quarks. 

Rare decay modes of K mesons, such as KL -pL or KL - yy 

are of immense theoretical interest because here we are dealing with 

the workings of higher order weak and electromagnetic interactions, 

and a renormalizable theory of weak interactions provides in principle 
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unambiguous and finite predictions for these decays. There is a general 

problem associated with higher order transitions and it arises in the 

following way. The coupling constant g for charged bosons is comparable 

in strength to the electromagnetic coupling e. In the low energy limit 

where the boson propagator reduces to m -2 
Iv’ 

first order transitions 

are effectively governed by the Fermi constant 

GFF-- g21 mW2 

For second order processes, however, massive virtual bosons can be 

exchanged and the effective second order coupling strength is found to be 

g41muf- GFa 

Empirically, the strength of second order processes involving a change 

of strangeness is characterized by GF2A2 = GFa(h2/mW2), where A is 

typically of the order of several GeV, as for the KL-KS mass difference 

and the decay K 
L 

* JJ.;. A mechanism is thus required to suppress the 

contribution of order GFa. 

Consider for example, the decays: 

KL ‘YY, (1.4) 

KL - PL. (1.5) 

Diagrams contributing to the decay amplitudes are shown in Fig. 1. 

Setting g = e as is the case in unified theories of weak and electromagnetic 

interactions, both amplitudes are fourth order in the coupling e. Since 

the Feynman integrals are convergent, and since mW is the dominant 
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mass occuring in the propagators, each graph will give a factor 
-2 m 

w - 

Then by virtue of the above discussion the two amplitudes will be of 

comparable strength: 

d- 4 - GFm (1.6) 

mW 

Experimentally the decay rates are related by 5,6 

IX, -tl.L;,= 2~‘1O-~~r(K~-y~)r 4x 10-91.(K+-;v) (1.7) 

As expected, the amplitude for (1.4) is suppressed by roughly a factor (Y 

with respect’to the first order process K 
+ 

*p V. However, (1.5) is 

suppressed in amplitude by a factor of 

2 
c! = 5Mp2GF 

In fact a major contribution to the decay rate for (1.5) is from the higher 

order electromagnetic process shown in Fig. 2. The imaginary part of 

the amplitude is dominated by the graph of Fig. 2 with the two photons 

on their mass shell; this contribution may be calculated in terms of the 

on shell K L - yy coupling and is found to be7 

I-W, - p p.1 
-5 

absorptive 
= 1.2x10 r(KL - Y-f) (1.8) 

The rate (1.8 ) is known as the “unitarity bound” for KL + )I p as it provides 

a lower limit for the partial width: 

r(KL +ptd 2 rwL+wp) absorptive 

Thus a mechanism is required which suppresses the rate for 
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KL 
+ p p to the experimentally observed level, and which leaves the rate 

for KL+ yy essentially unaffected. The role of the GIM mechanism is 

illustrated in Fig. 3. As the product of coupling constants [ Eq. (1. 3)] 

which enter in the virtual transition 

n-p c +w- 

1 x+ w- 
is equal in magnitude and opposite in sign with respect to the similar 

process involving the p [ Eq. (1.2)] , the graph of Fig. 3a will exactly 

cancel the graph of Fig. la in the limit of equal p and p’ masses. However, 

in the same limit the graph of Fig, 3b will also cancel the graph of Fig. ib 

which is clearly not a desired result. 

The problem can be posed most acutely in terms of symmetry 

properties. In the Weinberg-Salam model (as modified by GIM), the 

quarks transform according to the fundamental representation of SU (4), 

with components (p’, p, n, A). In analogy with I-spin which mixes p and 

n, or U-spin which mixes n and A, there is an SU (2) subgroup of SU (4) 

which mixes p and p’. Let us call this group of transformations P-spin. 

Then in the limit of p and p’ degeneracy P-spin is a symmetry of the 

strong interactions. The electromagnetic current is a P-spin invariant. 

The lowest order hadronic operator with AQ = 0 and 1 AS 1 k 0 which 

can be constructed from the current of Eq. (1.3) is of the form 

sin 0 cos f3 ii~(pp -F/p’) + h.c. 

+ charm changing components (1.9) 
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The operator (1. 9) is a P-spin vector; that is, the effective [ AS 1 k 1, 

AQ = 0 hadronic operator has 1 A< 1 = 1. Since the photon and leptons 

as well as 
- - 

K mnX+Xn L 

are P-spin scalars, the transitions (1. 4) and (1. 5) are forbidden in the 

limit of P-spin invariance. 

We know that P-spin is badly broken in nature. Charmed particles-- 

if they exist--must be much heavier than the observed hadronic states. 

The question to which we address ourselves here is how KL- p p may 

remain strongly suppressed in the broken symmetry case while the 

suppression of K L - yy essentially disappears. 

A hint to the solution may be seen by considering low energy 

phenomonology. 
8 

Consider the pole diagram of Fig. 4a. Both the 

transitions KL * no and TT 
0 

* yy are allowed by P-spin. Similar non- 

vanishing contributions occur via n andX” exchange. As SU (4) is now 

the basic symmetry, we must add a fourth pseudo-scalar meson: 

X 0’ 
- P’p’. While in the SU (4) limit the contribution of the X 0’ necessarily 

cancels the others, in the physical world it can be considered negligible: 

(m 2 2 -1 
) <<(m 

2 2 
K 

-m 
xo ’ K 

-m 
x0> flI, rl 

) 
-1 

Then we obtain a contribution to KL +yy which is of the correct order: 

_diK~ L - y~)-~(K~~rr~)x~,~~yy)“G~a 
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The analogous contribution to KL-pp is shown in Fig. 4b, where the 

0 
IT + )I p transition can occur via two-photon exchange 

dWL - ~+J&K’ -fro) x-c&i0 +pp)- GFa2 

or via the exchange of a heavy neutral boson (Z) which couples only to 

A S = 0 currents: 

AK,+ pp) -g(K” - 8’) xs(nO - p p)- GF2mK2 

Loosely speaking then, one could argue that P-spin is an asymptotic 

symmetry; its validity sets in at energies where hadronic masses are 

negligible and it serves to kill the unwanted high mass W-exchange. At 

low energies, where weak interactions are truly weak, P-spin is so 

badly broken that it can be disregarded. 

A more rigorous argument emerges upon closer examination of 

the Feynman diagrams for the processes (1.4) and (1.5). The effect of 

the GIM mechanism is to provide a subtraction for the p-quark propagator 

7 s’m, - - ; di-iqnp ( - gl;) (1.10) 

Since the Feynman integral was convergent before the subtraction, the 

modified integral remains convergent if we approximate one W- 

propagator by its zero-energy value: 

b w -9 ) 
2 2 -I_ m -2 

W (1.11) 

With this approximation the Feynman integral will be correct to order 
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(mh/mw)2 << 1 

where mh is a hadronic mass. If a process is truly fourth order semi- 

weak in the sense that two heavy bosons are exchanged, the integral will 

contain at least one more boson propagator giving an additional factor 

-2 
mW ’ 

so that the resultant amplitude will be of order 

g4 
4 

mf!, - Gk rni (1.12) 

mW 

However, if the process is second order weak and second order electro- 

magnetic, ther.e will in general be a graph (c. f., Figs. Iband 3b)in which 

only one heavy boson is exchanged. Once the approximation (1.11) is 

made, the remaining integral is independent of the boson mass; then the 

amplitude must be proportional to: 

g21 mw2 
2 

e -cuG 
F’ (1.13) 

(In the ‘t Hooft -Feynman gauge, 9 ,, the contributions of unphysical Higgs 

scalars are negligible compared to those of the vector bosons. ) 

As will be seen more explicitly in the following sections, the require- 

ment that the amplitudesfor(1.4) and (1. 5) be of the correct order are, 

respectively, 

and 

/2 2 

mp -mp -4 or m ,” >>m 2 
/2 

mP 
P P 
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In other words, P-spin symmetry breaking must be small on the boson 

mass scale but very large on a hadronic mass scale. 

The main body of this paper will be devoted to quantitative calcula- 

tions within the Weinberg-Salam model of the processes K-p;, K-n vi, 

K-yy, K- nyy and K- rree. For this purpose we first estimate the 

matrix elements for the elementary processes A -n+ P +d and X-n+y+ y. 

and construct phenomenological interactions for free quarks. The matrix 

elements of such interactions between physical hadronic states can then 

be estimated, since the hadronic operators which appear are the familiar 

V-A currents. The neglect of strong interaction effects may perhaps be 

justified in models in which quarks are confined in a finite region of 

space by any of the mechanisms that have recently been suggested (e. g., 

infrared catastrophe due to nonabelian gauge fields which prevents the 

disassociation of color-neutral states into colored states, 
10 

or the “bag” 

11 
mechanism ), and within this confinement, quarks are “almost free”. 

Furthermore, in those theories in which the gauge group of strong 

interactions commutes with the gauge group of weak and electromagnetic 

interactions, the Xn-gluon coupling gets transformed away by the wave 

function renormalization of quark fields. 
12 

(Off shell corrections are 

expected to be of order GFmzh x (mp,‘- rni l/m,’ and are not important. ) 

Thus effective two-body operators (h + q - n+, + a P or y y), which could 

contribute to K - ‘TI + .4 P or yy. cannot be induced by gluon exchange in 

such theories. The contribution of two body operators which are present 
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in the free quark model (via W* exchange) will be discussed in the 

appropriate sections. A related, but differently motivated, estimate of 

higher order weak interactions has been discussed by Appelquist, Bjorken 

and Chanowitz. 13 

In Sec. II, we evaluate the amplitude for KL * p.; to lowest 

order in GF. In the Weinberg-Salam model, this amplitude is found 

to vanish by what appears to be a fortuitous cancellation between two 

kinds of diagrams. The general matrix element for the elementary 

process X + n * I + a is proportional to the quark mass difference 

Am2 =m ‘2-m 2 
P P * 

This quantity is estimated by comparing the matrix element of the 

K. - K. transition in this approximation with the KL - KS mass 

difference, as the former is proportional to (Am2/mw2). The matrix 

element so deduced for X + n -+ 1 +a is then applied to estimate the 

decay rates for K -f 1~ + v + ?. A current algebra argument is presented 

here which connects the amplitudes for K * mm and K-t TT 1a. Present 

experimental limits are at a level of 10 -4, io-5 . with respect to K-VP v 

decay rates. 

In Sec. III we present the analogous calculation for KL * yy. A 

phenomenological discussion of this amplitude is also given in terms of 

pole contributions (Fig. 4a). The role of P-spin is explicitly displayed 

and it is shown that a reasonable estimate is obtained in the limit of very 

high p’ mass. The matrix elements for the elementary process 
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A+n - y+yandX+n * y are used to estimate the rates for K - nyy 

andK*rree. We comment on the amplitude ;or KS-y y which has the 

interesting property that the leading contribution of order G 
F 

a vanishes 

identically. If our approach based on the free quark model is correct. we 

have the (hard to verify) prediction that the rate for this decay shouid 

be suppressed in the same way as is KL * pi. The amplitudes for 

K+ -v+ee andK 
0 - s-n e e are found to be comparatively large, being 

truly of order CFcu. The presently available limit on K+ + - -7r ee 1s 

rather stringent; an improvement of the experimental precision by an order 

of magnitude will severely test our approach. 

Section IV contains a summary of our results and comparison with 

experiment. We also discuss the predictions of other models on the rare 

decay modes of K mesons. 

Finally, the renormalization procedure and details of computations 

are outlined in Appendices. 

fn this paper, we shall assume that the mass of the physical Higgs 

scalar particle is sufficiently large so that its contribution to induced 

AS = 1 transitions is negligible. 

Note: in this paper we ignore completely the effects of CP violation. 

In theories of super-weakCP violation, none of the estimates of this paper 

are affected thereby; in a recent paper, E. Ma 14 discusses some of the 

material contained in the present paper. 
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II. SEMILEPTONIC DECAYS 

2.1 K-p; andK as Mass Difference 

As a prelude to considering the decays K - pi, we shall first dis- 

cuss the elementary Process X+ n - p + L, in the free quark model. 

There are two classes of diagrams contributing to this process One is 

the diagram in which a pair of Wf and W- is exchanged between the 

quark and lepton lines. The second class of diagrams is generated by 

the “induced” An Z coupling (Fig. 5). The evaluation of these diagrams, 

-2 to lowest order in mW , is outlined in Appendices B and C. 

When the GIM mechanism is incorporated into the Weinberg-Salam 

model, the W+W contribution to the process A + n -1 +P is, inthe 

‘t Hooft -Feynman gauge, 

G F cy 
-i 7-r ; cos Bc sin 8c E ny - ~(,~)h[~~Yu(~~~-2~yi~)~l, 

(2.1) 

E = (Am’/mW ‘sin’ 0 w)11n(mW2/m;2)- 11, 

and similarly for the electronic leptons, where m 2.2 
W sin 0 w = (38 GeV)‘. 

Bc is the Cabibb o angle, and Am’= m 2 
P’ - mP 

’ is the difference of 

masses squared of the p- and p/-quarks. In the presence of the GIM 

mechanism, there is no An Z coupling, but such a coupling is induced 

in higher orders. The effective XnZ coupling, to lowest order in CL, 

and in m -2 
w ’ 

is given in (Al); the contribution of the Z exchange to the 

process is 
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G 

-i 7-T 
; cosecsin ecenY 

p@[- i(& a 

- Q(qq 

~ (7) y 1 (2*2) 
- sin 

2 @w 1 p+y 
The total amplitude for A + n - B + a is given therefore by 

- E cos 0 sin 0 

,iyJg+-,~;; ..:;;()f+; vya($) vi (2-3) 

where 

Am2 in mW 
2 

E” 
(38 GeV)’ mp’ 2 

(2.4) 

is the suppression factor arising from the GIM mechanism. 

In order to estimate the decay rate KL s + p; we take the matrix 

/element of (2. 3) between the KL s state and the vacuum, and use the 

partially conserved axial vector current (PCAC) principle. In this way 

we obtain 

WS -pF, =o, 

G 
T(KL -p;, = - hj2 -$ E e cos Bcsin e c [i fK(PK)e] 

x sin’ I3 wizYruP= 0 (2.5) 

- where f K sin 8 
C 

II 33 MeV. The T(KL - p I.L) amplitude vanishes because 

(PK)” ;v, p = 0. The vanishing of this amplitude is due to the fortuitous 

cancellation of the axial vector part cy, y5 p between the W’W- and Z 

contributions, (2. 1) and (2. 21. Even when the effects of strong 
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interactions are takeninto account, it is probable that these two contri- 

butions cancel to a large extent .(especially if strong interactions are 

described by an asymptotically free field theory). We suggest that the 

dominant mechanism for KL s -t p L is indeed the.conventional o.ne of 

K 
L s ‘YY - + pp : the relevant amplitude satisfies an unsubtracted 

dispersion relation and the absorptive part is dominanted by the yy 

intermediate state. If this is the case, then we have 

IXK 
S 

- pi)/ I-(KL 
-4 

- r;, = Ok2),,3 go’, ) 

since, as we shall see in the next section,KS * yy is suppressed with 

respect to KL + yy by this amount. 

To estimate the size of E we consider the KLKS difference. In 
- - 

Appendix F, we evaluate the effective Lagrangian for A + n -c X + n in 

our approximation and obtain 

GF .gf = - -;32 cc0 eos ec sin ec [Ayw(q)n]2 +h.c’;, 
(2.71 

where E o is defined in Appendix F, (F. 4-5). In order to estimate 

the magnitude of the K’K’transition amplitude, we insert the vacuum 

state between two currents in all possible ways and use PCAC. [It is 

admittedly a dubious procedure, but it will not mislead us as to the order 

of magnitude, 1 

GF <Lk’I- TfflKo> =me l O cos2 e 2 sin e TT C C 

x 4 (32 <k0 In yay 5 XI O> <O 1; yay5 XI K”> 
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GF = r f;;z mK2 * co 00s~ Bc sin2 Oc 

(This estimate is for a triplet-quark scheme; for the 3 color-quarks, 

the above should be multiplied by 213. ) 

The KL - KS mass difference is given by 

> 

1 

m -m L [-<,I K”> a 

-m K 1 -mK2 <J?“@. &-tff ( K”>, ’ 

e &.<$I +~&?ff 1 K”> 
In K 

Thus, 

m -m 
L s E 

z x f,“+ EO sin2 .9 
2 

cos iI 
mK C C 

rr E o x 5 x lo-l2 

Experimentally the left hand side is about 0.7 x 10 -14 
, so we have 

E -1.4 x 10 
-3 

Equation (2.8) is compatible [see Eqs. (F. 4-511 either with 

mp/= mp and large, and mp, - mp = 1 GeV, or m << m ’ and 
P P 

mP’ 
e 2 GeV. We argue in the next section, in connection with the 

nonsuppression of the K L 
- yy rate, that the latter is the logically 

tenable alternative. In this case 

E - E o ]Pn (e. sin’@ WI I = iO-’ (2.9) 
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What is the meaning of the suppression factor E? The expression 

(2.4),couched as it is in the language of the free quark model, is hard to 

interpret in the context of a realistic model. Nevertheless, it indicates 

the degree to which the GIM cancellation mechanism must be effective, 

and suggests that charmed meson states cannot be too massive. We 

suggest that in a more realistic model (which we shall discuss elsewhere) 

the suppression factor will take the form 

mc2 mW2 
EU 

mW 
Zsin2@ 

w 
In 7’ 

C 

in the limit of chiral SU(3) x SU(3) symmetry, where mc is the average 

mass of the charmed pseudoscalar mesons. If this is correct, we 

expect mc to be less than, say, 10 GeV. The experimental implications 

of the existence of charmed mesons have already been discussed by GIM, 

Snow and others. 
15,16 

Finally, with the suppression factor E of the order of (2.9 ), the 

weak contribution to K L 
-+)J p would be well within the bounds implied 

by the experimental data even if the cancellation of the axial vector 

part were not complete. 

The effective interaction derived in (A. 7) for the elementary process 

A+; + e + d allows us to estimate the rates for K+ +TT+v+v. Noting that 

<T+[ &~i-y~)~ 1 K+> = [ (p+)pf+ +(P-)Pf- 1 

=d?<a”ln yu(i-y5)h 1 KU> =-v?<,‘[ xv,(i-Y5)n 1 Ku> 
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where f+ and f are the K p 3 form factors, and p, = pK f p,, we find that 

G 
iT(K++rr 

+ - 
vv) =ig$ e cosecsinec 

175 
x [ (p*)P f+ + (p-)P f-1 c3 ;yp( y) VI 

=iT(Ky * v 
0 - 

v v), (2.10) 

and 

iT(K +IT’v;)=O . 
2 (2.11) 

Thus, if we neglect the electron mass 

l?(K 
+ + - 

-TT vv) l?(K 0 - 
S - TT vv) 

2r (K+ -+ roe v) = l?(KL’rre v) = 2(% cos ec )Z, 

where 
r(KL+Te V) = r(K L- ~-ev)+r(K~+ v”e;). 

(2.12) 

and the factor 2 on the right hand side of (2.12) comes from summing 

over two kinds of neutrinos. Together with the limit on E given in (2. 6), 

we obtain 

3cu 
2-G- 

i 

E cos e ‘2 

) 
Es IO -9 

C 

and 
•F 

rYK - TfVV) = 10 -10 

r(K’-all) 

O- 
r(KS+ TT vv) 

e4 10 
-12 

r(KS+all) 

o- 
r(KL+rr vv) 

= 10 -4 

l?(K +~i’& S 

(2.13) 

(2.14) 

(2.15! 
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The last follows from the fact that, as implied in (2. ii), the amplitude 

o- 2 
for KL+ TT VY is at most of order GFcue . 

The results of (2.10) and (2.11) based on the simple quark model, 

obtained by neglecting all but the one-body operator deduced by looking 

attheprocessX+n-+P+i, may appear more suspect than those of 

Sec. 2.1. However, in this theory, there is a soft pion theorem relating 

the K - TP e and K” * P m amplitudes, and our results are consistent with 

it. 

In the case m 
P’ 

mn << mp’, the chiral SU (2) x SU (2) is a goou 

symmetry, and the entire Lagrangian commutes with the generators 

Q1 + Qk of the right-handed chiral SU (2) group approximately (non- 

commuting pieces being or order mp/m W)’ 
except for the couplings of 

the Z-meson and the photon to quarks. Thus, except for the Z-meson 

reducible diagrams, we have the soft pion theorm 

lim Tlrr [K 
s, L(P) -rr’(q)v(r)V(p-q-r)] 

q-@ 

=i -&-Tirr [ KL, s(p)+v(r)$p-r)l , 
TT 

(2.16) 

lim T irr [ K+(p) ‘ii+ (q) Y (r) C(p - q - r)l 
q-to 

’ = i-T 
f irr [K’(p)-v(r) C(p - r)J (2.17) 
ll 

where Y and ; arenot in general on mass shell and Tm’ denotes the 

sinele narticle irreducible amplitude. Equation (2. 16) follows from the 

standard current algebra manipulation. 
17 



NAL-Pub-74/21-THY 

Let us now consider the Z-meson reducible diagrams. The 

effective irKZ-vertex is of the form 

jkz(0) exp (+i) j” 4 d Y ~W(Y) 1 [K(P)> 

where YW is the weak interaction Lagrangian ( d;“W includes the couplings 

of gauge bosons and Eggs scalars to fermions, and the interactions of 

weak boson fields: since we are interested in the matrix element to 

lowest nonr-anisnmg order, we may ignore the couplings of the Z-meson 

and the photon to fermions, as well as any complications that might 

arise from the presence of the Feynman-de Witt-Popov-Faddeev ghost 

fields ). The part of j 
z 
F 

which does not commute with the right-handed 

chiral charge Q* + Qt is - sin’ B .’ 
wJcl 

where j ’ is the electromagnetic 
cl 

current. Because j: is conserved, the effective Kny vertex must have 

the form 

<nf(q) I T[jlI0) exp iJd4y yWCyJ/ 1 K+(p)> 

= (&“y - kpkY)(p+q)VG(t) (2.18) 

where 
k=p -9. t = k2. 

The proof follows from the usual Ward identity, and is essentially iden- 

tical to the one we present in Appendix D for the effective Any vertex. 

On dimensional grounds, we have 

G(O) = O(GFe) (2.19) 
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On the other hand, the matrix element of the purely left handed 

current j Z - (.- din2 0 
WJP 

’ ), which is not cunserved, is of the form 
P 

[j ‘(0)+sin20 
P 

,j~(O)l exp py-%,)yi) lK(pP 

where 

= (p+q)PF+(t) + (P - q),/-(t) (2.20) 

F+(O), F-(O) =: O(GFemz) (2.21) 

Thus, Eqs. (2.16) and (2.17) should hold also for the full amplitudes, to 

lowest order in (t/mc2+ (m2/mc2), c i. e., neglecting contributions of 

order (m2/ mWZ) compared to (m 
C 

2/m,2)1 where rnh is the typical 

uncharmed hadron mass. 

The chiral charge Q3 + Qz does commute with the electromagnetic 

current, so that the soft pion theorem (2.16) holds actually for the full 

amplitude. Let us parameterize the KL s - TI’ v ; amplitude by 

T[K(p) -r O(q) y(r) V (p - q - r)l 

= [ A(~ + B(p-q)’ + Cr’ + iD< pyp upv~p~~l (2.22) 

x ; yp - y5) v 

where A, B, C and D are in general invariant functions of the momenta 

p. q and r. In the soft pion limit we have 

AL+B 
L 

= 0 

AS+BS = f-- 
i,) 

fK GF 3a E cos e 
d-z- 477 

sin e 
C c J (2. 23) 
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C =o 
L;S 

where we have used the amplitudes ror K 
LS 

- v ; (off shell) deduced 

from (2.3) The amplitude (2.10) is consistent with (2. 22-23). when the 

Callan-Treiman relation I8 is taken into account , Note further that if we 

neglect the momentum dependence cf the form factors, CP invariance 

alone implies 

AL = BL = CL = 0, 

DS 
=o (2. 24) 

These constraints follow from CP invariance and the assumptions that the 

neutrino is left-handed and massless. In most models the form factor 

D is identically zero and KL -+ ,;v is strongly suppressed. 

III. ELECTROMAGNETIC DECAYS 

3.1 K +yy: Quark Model 

We shall first discuss the free quark model calculations in analogy 

to our discussion of the leptonic decays. However, as the estimates we 

obtain appear a postiori less reliable, we shall show in the case of 

KL 
- y y that a similar estimate can be obtained from low energy 

phenomenology. In both cases the numbers we use should be taken as 

order of magnitude estimates. 

The first step in the calculation is to obtain an effective Lagrangian 

for the process A + n - y + y. There are two classes of diagrams here. 



-25- NAL-Pub-74/ 21-THY 

The first consists of those diagrams which are one-quark reducible 

(see Fig. 6). The any vertex is discussed in Appendix D (see also 

Appendix B). For the real photon emission the transition charge form 

factor vanishes; the nonvanishing effects of these diagrams come from the 

A + n transition magnetic moment as well as the off-shell connection 

due to the internal quark lines. These effects are, however, of order 

E - Ampi 2/ mW2 ( ) c 
Pn mW 2/ mpf2 

) 
compared to the main term we shall 

consider, and shall be ignored. 

The second class of diagrams consists of one-particle irreducible 

ones. As is shown explicitly in Appendix E, the leading contribution 

comes from the Fevnman diagrams in which only one heavy boson is 

exchanged (Fig. 7). From the point of view of spin dependence, the 

graphs of Fig. 7a are identical to those of Fig. 7b, which are obtained 

from the former by means of a Fierz-Michel transformation 

[&Jl-Yg)Pl [PY?l - v,)Al 

= [n y,Wy5) A I [P V’IWU,)P 1 

where the anti-commutativity of the quark fields is taken into account. 

Note that this transformation is possible only because the heavy boson 

propagator is - g ~” (p2 - mw2y m the ‘t Hooft-Feynman gauge (see 

Appendix A). Then the effective interaction takes the form of a current 

operator 
Jo 

k 
= n YpWY5)X (3. I) 
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multiplying a closed loop integral, where the integrand includes the w 

propagator. Apart from the W propagator, the integral involved is 

identical to that studied by Rosenberg 19 and Adler. ” Recall that the 

latter is linearly divergent and therefore its value depends on the choice 

of integration variables and on the way in which the integration is performed; 

this ambiguity is removed by requiring that the result be gauge invariant 

with respect to both photons. 

In our case the boson propagator makes the integral convergent 

and its value is unambiguous. However, if only, say, the p-quark loop 

is considered the result is not gauge invariant. Other graphs must 

contribute gauge non-invariant terms of order 
-2 

m w which render the 

total amplitude gauge invariant to that order. However, the gauge 

non-invariant piece of the graphs in Fig. 7a is independent of the quark 

mass, and cancels out when the p- and p/-quark diagrams are summed. 

Thus for our purposes it is sufficient to consider only the one W exchange 

diagrams, as anticipated in the Introduction. See Appendix E for estimates 

of order of magnitude of various diagrams;the integral is evaluated in 

-2 
Appendix A. To order mW , the effective operator for the transition 

is given by 

(3.2) 

where the amplitude T’ 
P* 

may be read off (A. 24). 



-27- NAL-Pub-74/21-THY 

‘To obtain the amplitude for KL - yy we must take the matrix 

element of the current operator (3.1) between KL and the vacuum: 

<O/JpojKL> = <O]JVo+j KL> = i &fK (P,) cI. (3.3) 

Contracting (p,) ~ = (ki + k2)C, with T’ we obtain 
PO 

iT(KL +yy) = iF 
GF 2a 

c”v 
(ki)5’“(k2) E _ncos ecsinsc 

x (iq’?fK)A (3.4) 
Y 

where 

~~ =Q2 [F($,- F($)] 
(3.5) 

Q being the charge of the p-quark. The function F(P) is defined in (A. 12) 

and plotted m Fig. 8. For p > 1, F(p) converges rapidly to zero. If 

we assume that both quark masses m and m ’ are very heavy compared 
P P 

to the kaon mass, we obtain a strong suppression of KL d yy in contra- 

diction with experiment. However, in the range 0 5 p 5 1, F(P) is a 

rapidly varying function with values in the range 

- + <, F(P) 5, $> for 0 5 p 5 1, 

If Ay is treated as a phenomenological parameter as defined by 

Eq. (3.4), then using the experimental branching ratio 

r WL - yy~ 

I- (KL - all) 
= (4.9 * 0.4)x 1o-4 (3.6) 
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we obtain the empirical determination 

!Ayl =0.87+0.04. (3.7) 

Assuming m ’ >> mK,> m , 
P P 

the free quark model seems to be compatible 

with the nonsuppression of the process K L - YY. Note incidentally that 

the expression (3. 5) is valid in the color quark scheme as well as in the 

one-triplet model. 

-2 To lowest order in mW , there is no term which leads to the CP 

even state of 2~. This is most easily seen in Fig. 7 by noting that the 

V V V vertex in question vanishes by Furry’s theorem. Therefore we expect 

I-(KS - YY) 
s O(E2) 2 ‘f-l 

-4 

lx\ ‘YY) (3.8) 

3. 2 ~~ +y y : Phenomenological Analysis 

In this section we shall estimate the amplitude for KL + yy using 

the pole diagrams of Fig. 4a. We define the following set of meson 

states interms of their quark content: 

0 
TT = (pp - nn)lfl 

q8 = (pp + nn - 2Xx)/G 

no = (Pp+nn +Xx)lfl 

QC 
= p’p’ 

The isoscalar states can of course mix; we label the uhy-i-al states by 

r), X0 andXc. 
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The effective nonleptonk: weaK interaction transforms as the first 

component of a G-spin vector and the third component of a P-spm vector: 

9 weak-- (6X + xn,(p^P - F’P’) 

Neglecting symmetry breaking corrections, the phenomonological 

coupling of KL to the neutral meson system must be of the form: 

pweak = cKL $ t -$ + ‘)O - n, 

i 
47 

3 KLTci Pi (3.9) 1 

The electromagnetic coupling is a scalar in both V-spin and P-spin: 

LA(pp +Gy) t B(Iin +lh) 1 

If we assume that the amplitude for P. 1 
- yy is determined by a single 

quark loop we may interpret A and B as the squared charges of the 

quarks. 

27 e.m. 

z? F 2 di Pi 
P” P” i 

(3.10) 

It is obvious from (3.9) and (3.10) that the pole contribution to 

KI, 
+ yy is forbidden in the limit of mass degeneracy, since 2 cidi = 0. 

When mass splitting is present the amplitude takes the form: 
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Si?iKL ‘yy) = yrn; - M’);; dj + 
cirdrr 
2 2 

mK-m~ 

(3. ii) 

where M 2. 1s the 3 x 3 matrix which describes the isoscalar meson masses 

and their mixing: 

dp mass = PiM; Pj (3.12) 

In the Weinberg model SU4 is broken by the quark mass splitting; to 

lowest order in the symmetry breaking the meson masses may be 

described by an effective Lagrangian of the form: 

ymass 
2 2 

= mo(Tr TT) + mlTr ‘IT +IYTI. vAMT~ 

+ (3Trrr Tr AMrr (3.13) 

where in is the 4 x 4 matrix representation of the pseudoscalar state 
< 

(15-plet plus singlet) and A,M is a traceless diagonal matrix with two 

independent elements: m A - m DI mp’ - mp. The matrix elements M!, 
‘J 

in (3. 12) can be extracted from (3. 13). 

Explicit evaluation of the amplitude 13. 11) in the general case is 

quite involved. If we restrict ourselves to the case of fractionally charged 

quarks we obtain: 

cSr?$ +yy) = h { 
$+ 1 

ZG2 i 

h = cd/3 (3.14) 

‘l’ne fast term is just the pion pole: 
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Am2 
2 2 

=m -m 
K TI 

The first term is given by the relations 

D = Det (m ’ - ?+I’) : 
K 

2 
r) xo2 )i mIi2 - mxc2 ! 

and 

N=- D t4 Am2Am 2 2 

2Am2 
-, 

3 c (2+8y+3y ) 

where y = p/ (Y and 

Am */Am* = (m ‘- m 
c P 

)/(m 
P h 

- mp) 

The pion pole is exactly canceled by the residue at the r) pole and we 

obtain 2 2 

d(KL -+YY) = 
mK - mu hK 

2 
0 )i 

mK2-m 
2 

(3.15) 

x0 

with 

While the result is finite and non-vanishing in the SU3 limit it vanishes 

in the P spin limit since Am 
2 - 0 does not require m 

2 2 
c K -mx : 

c 

II - Am’iaAm 2+bAm ” 
c ’ 

For the physical case of badly broken P-spin we assume 

2 2 >> m 2 2 
mu, - mK 

x0 
-m. k 
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In this limit the X0, Xc mixing is proportional to y; assur.i.np small mixing 

we find 

“4r2’ 2(1 + y)Amc2 
c 

Kz -2(2 +8y +3y2)/(i +y) (3.16) 

The amplitude (3. 15) is very sensitive to the value of y which also deter- 

0 mines the X , r~ mixing parameter. The value y = - 0. 6 corresponds to 

small mixing as experimentally determined. 

For comparison of the amplitude (3.15) with experiment we must 

evaluate the effective coupling constant h. If AZ is defined as the pion 

pole contribution to (3. 14): 

we have 

An =J&KL - rr”)J&~’ - y y)/ (mK2 - m,‘) 

h = 2Am2A TI 

2 (m -m 

dKL -yy)= $ 
K r 2, A,,K 

(m 
2 

K - mn2) (mK2-mX”-) 

= AxK 

(3.17) 

The transition amplitude for KL - rr” can be estimated using current 

algebra: 
17 

MKL -a) = -i+J?‘f,-flKS+ .rr’~~‘) (3.18) 
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0 0 
Then using the decay rates for TT + yy and KS - in in we find 

1 A,,/Aobs ( = 2.3 i 0.1 (3.19) 

where A obs is the experimentally determined amplitude for K - yy. 

From Eq. (3.16) it is clear that the parameter K is very sensi- 

tive to the pseudo-scalar mixing. 4 value of I K( = 0. 5 would reproduce 

the experimental amplitude. This is achieved with y = - 0. 3, which 

however gives too strong a mixing for the X0, q system. We may also 

argue that a perturbative treatment of SU4 breaking is meaningless and 

simply neglect the contribution of n c = xc. Using the experimentally 

determined masses and mixing angle for q and X0 we obtain K = - 1.5. 

If we also neglect the q, X0 mixing the amplitude (3. 15) reduces to the 

X0 pole with K = - 2/ 3. 

Considering the approximations and uncertainties involved, the 

pole amplitudes can adequately account for the observed decay rate. 

3.3 K--J 

The effective interaction of Eq. (A. 14) allows us to estimate the 

rates for K + ~yyy. Using the matrix elements of the current operator 

(A. 3.i): 
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fi <no(q) j Jo 
P 

[K’(p) > = - dh”(q) id;+ $‘(p)> 

= <&I) 1 J”, I K+(P)> 

= [ (P+dpf+W + (P-q)p)l , 

t = (p-d2 (3.20) 

we obtain 

T[KL-rr’yyl ~3 

iT(K+ -“‘yy) = iT(KS -IT’YY) 

G 
F 2cu 

-i m 7 cos Oc sin Bc 

(3.21) 

where A 
PDII 

is defined in Appendix A. The decay rate is proportional 

to the square of the divergence form factor f(t) = f+(t) + t 
f (t). 2 2 - 

m -m K pi 

In these decays the momentum transfer squared t varies from 0 to 

(mK - mv) 
2 

= 0.53 mK2. Assuming that in this range f(t) = f(O), and 

F(mp’/t) = F = constant, we have 

WS ‘vy) = & m 2 

I 

2 

K 
cos ecsinec Ff+(O) 

2 0.53 

mK 
X 

64(2rj3 o s 
dx (1 -x) (3.22) 

To eliminate F, we take the ratio lY(K, -rr y y)/r(K L+YY): 
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0. 53 
I-‘(KS ‘“YY) mK2fzio) 1 

ML - YY) = - f2 2 i 
dx(l-x) 

K 32rr 0 

i 1o-2 (3. 23) 

The above estimate does not take into account the fact that F(tO/t) vanishes 

as t-0. Depending on to, the ratio of (3. 23) may be much smaller, say 

-3 

Note that the estimates of (3. 21) for KL -TOY y and KS - rrOy y 

are consistent with the soft pion theorems one can derive which connect 

these amplitudes to those of KS - yy and K 
L 

- yy. The derivation of 

these soft pion theorems is analogous to that given in Sec. 2. 2, and is 

based on the fact that the relevant part of the weak interaction Lagrangian 

yW and the electromagnetic current jy 
v 

commute with the right -handed 

chiral charge Q3 7'2; > in the limit of the chiral SU(2) symmetry. There 

is no analogous relation for K 
+ 

- vTy y and Ii - yy because jy does not 
P 

commute with Q* r Q* 
5’ 

Nevertheless, we see no reason why the 

amplitude for K+ -+YY should be suppressed, and we expect its order 

of magnitude to be given correctly by (3. 21). 

3.4 K-Tee 

The effective Any vertex evaluated in Appendix D allows us to 

evaluate the rates for K - rre e . By far the largest contribution to the 

amplitude comes from the transition charge radius term in the 

effective Xny vertex (see Appendix D): 



-36- NAL-Pub-741 Zl-THY 

x 
renormalized 

=liy 
1, 

x (k2g 
VP 

-kvkp) $ <r2> 
nX 

+... (3.24) 

GF 
.2 

L<r2> z-Q?- 
6 nX 

br2 ” 
7 cos Bc sin Q 

c In 
(3.25) 

m 

where m is the typical uncharmed hadron mass scale. 

The computation of Eq. (3. 25) is outlined in Appendix D. Briefly, 

it comes about in the following way. -2 To lowest order in rnMT , the charge 

radius comes from the diagrams shown in Fig. 9a. After the Fierz- 

Michel rearrangement of Sec. 3.1, one sees that the sum of the p- and 

pi-quark diagrams are convergent and gauge invariant, even after the 

replacement 

ig 
PV 

(3.26) 

is made. In this limit the relevant diagrams reduce to those of Fig. 9b, 

precisely those of the current-current theory modified by the GIM mechanism. 

Since the mass of the unknown quark appears only through a logarithm, 

Eq. (3. 25) may be expected to be rather stable against uncertainties due 

to strong interactions. 

The amplitudes for K - slee are 

iT [ K+(p) -Tr+(q)eel = iT[Ks(p) - rr’(q)eel 

Go 
=i$ FT 6 cos Bc sin Bc W-q) IJ- f+(t) e y’e 
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T(K 
0 - 

L - TT ee) = 0, 

m I2 
6 =Q!nk 

m2 

which give 

(3. 27) 

f 
lY(K +pl+ee) 21-(KS -Toe G ) 

/2ru 2 

l-(K 
+ 

-rr’e v) = f’(KL = - Te v) ! 
G 6 cos Bc (3. 28) 

[The difference of the factor 2 between (2. 12) and (3. 28) is due to the 

difference in the lepton couplings: ;~‘(l-~5) v for the former, iy ‘e 

for the latter. 1 Taking 6 = $ Pn (mp/m)2 = 5, (2), we find that 

I-(K+ - 7r+e 6) 

l?(K+-all) 
= 3x10 -6 (0.5 x 10-6) 

I-(KS -roe;) 

T(KL - all ) 
= 10 -* (0.2 x 10-8) 

(3. 29) 

(3.30) 

The experimental upper bound 21) 

- n+e ii) 

I 
,5 (0.4 x 10 -6 ) 

- all) 
exp 

is at the verge of contradicting the prediction (3. 29). 

As for the process KL - Toe e, one photon- and Z-exchange diagrams 

are absent by CP invariance; the W+W- contribution is expected to be 

strongly suppressed as for the process K 0 - 
L 

-Tr “V. 
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IV. CONCLUDING REMARKS 

We summarize in Table I the main results of the present study and 

compare them to experiment. Due to the extreme experimental difficulties 

in carrying out the necessary precision, the predictions of our treatment 

of the Weinberg-Salam model are well within the presently available 

experimental upper bounds in most cases. A notable exception is in 

the rate of Kf - n’e e , where the experimental upper bound appears 

tantalizingly close to the limit of a reasonable range of theoretical 

uncertainties. We feel that the estimate (3. 29) is of good standing; 

deviation of the experimental rate by a decade, say, would worry us. 

Measurement of this rate, not just setting of an upper bound, is clearly 

called for. 

In most gauge models proposed so far, we believe that most of the 

results of this paper are also true. 

(1) In the eight- quark version of the Georgi-Glashow model, most 

of the results on semileptonic decays also hold, as shown by Lee, Primack 

and Treiman, 
22 and Lee and Treiman. 

23 
For electromagnetic decays, 

the situation is murky. This is due to two factors. One is that in this 

model there might be an important contribution of the physical Higgs 

scalar to strangeness-changing transitions which we have not considered 

in this paper. The second is that in this model the An transition magnetic 

moment is large, being of the order of 
24 
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GF 
[<nl GG = OI- e (mn+ mX)mp’sin Bc 1 . 

[This is anologous to the anomalous magnetic moment of the muon in this 

model. It is of the order of (G,/fi) e mFm (Y’). 1 We do not know of a 

way of assessing the effects of the transition moment in the K - r 

transitions reliably. 

(2) In the Bars-Halpern-Yoshimura model, 
25 

almost all of the 

present results should hold also. The reason is this. Since this model 

incorporates the field algebra, most integrals one encounters are super- 

convergent, so much so that they remain so even when the replacement 

(3. 26) is made. The remaining integral is scaled by the typical hadronic 

-2 mass m. Thus the integral has the dependence on mW as a naive 

counting of the number of heavy boson propagators indicates: we expect 

the amplitude for KL - p; to be of order GF u(m/mW)2; the amplitudes 

for KL - y y of order GFu, etc. 

(3) The situation in the LPZ model 26 should be almost identical 

to that inthe Weinberg-Salam model. 
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Free Quark Matrix Elements 

In this Appendix, we collect the relevant matrix elements used 

in the text. These are the expressions correct to lowest order in mW 
-2 , 

The derivations arerelegated to other Appendices. In the following all 

calculations are done in the Feynman- ‘t Hooft gauge. 
9 

1. The effective nXZ-vertex: 

i Epi2’ 
f-Yg 

(q.p) = n(q)YK 2 UP) t J 

x [i-cm Gc sinBe -f-q co [ Pn (rn1qjm;)2 - 11) (A.1) 

where E 0 
= Am2!mw 2 sin’ 0 w, Am2 

2 2 :m/ -m 
P P . 

2. The Z-meson propagator: 

-ig 
1 

2 ig 
4 

p” k2smZ2 

3. The Z”-meson couplings to leptons : 

L?e = Jg-Bi2YI”faj>)v I 
+pyu[- i(2) - sin2 CJw]p/’ 

and similarly for the electronic leptons. 

4. The effective y Xn-vertex: 

(A. 2) 

(A.3) 

i E(z) (q,p) =:mII UP) 
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x i~v~cos Oc (k2gvF -k k v ~ lF(k’,m~.m (A.41 
Tr 

where mP and m ’ are the masses of the p- and p/-type quarks of charge 
P 

Q, respectively and 

1 

F(k’, a, b) = 

I 

dz z(l-z)Pn b - k2Z’1-z) . 
a - k2z(1-z) 

(A. 5) 

,. 0 
‘ 

.=L,L2’ 

2v2 

1s the Fermi coupling constant. 
8mW 

5. The irreducible IPAn-vertex : 

x (-i/Z) -& % c0S Or sin 0 
Am2 

c 
mW 

‘sin2 0 

The sum of the box diagram and the Z exchange diagram for Ln-!a: 

2 

-2iG L? cos 0 
*w 

sin 0 
*m2 

Y2 ii c c 2sin2 0 
h y-F- 

mW W m 
P 

02 
(A. 71 

6. Two photon modes’ 

G 
F e2 

iT = iv cos Oc sin 0 c nyPwy5)X -R 
po v2 

(2nJ4 
Q2 L4.8) 

P’TII 
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where R is the quantity defined by Rosenberg 
19 

POP 
and Adler, 2o except 

that we associate p with the photon with momentum ki and 0 withkV . 

-k E kakP 
2p cupup 1 2 

+ (kl, 2 k )E 

(A.9) 

where 

d y 
xy 

[ 2xykt * k2-m 

The expressions (A. 9)-(A. 10) are valid for real photons. 

The form factor A3(s), s = 2kl. k2, may be simplified: 

A3(s) = -16~~ ;{d$) - ,!$)I (A. 11) 

where 

F(P) = $+ P (A. 12) 

0 

and has the asymptotic behavior 

F(P) + -1 
24p ’ 

p >> 1 

1 
---> 

2 
p i-c 1 

The part of (A. 8 ) relevant to KL - y y may be written as 

G 
Fu 2 iT z-i-- 

nrr 
Q cos 0 

PO c 
sin Oc fiv’(i-~3) A 

m2 
x4++ -F(g 

h ! ‘il 

x; E c2poF(kl-k2)a 

(A. 13) 

(A. 14~) 
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APPENDIX B 

The Effective nX Z Vertex 

In lowest order the effective XnZ vertex is generated by the diagrams 

shownin Fig. iOa-c. The off diagonal mass matrix element X(p) and the 

irreducible x~Z vertex F(t)(q,p) are depicted in Fig. 10d and Fig. 10e 

respectively. The crosses in Fig. 10 represent the contributions of 

counterterms. 

The renormalization counterterms arise in the following way. We 

renormalize the left-chiral fermion fields according to 

Q = ZQ 
‘:jl =z$J 

L 

and the right handed fermion fields similarly, and coupling constants and 

gauge bosoms according to 
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and choose the renormalization constants by suitably chosen conventions. 

We define the Weinberg angle in terms of renormalized constants: 

cos b 
w = pi (g2 Q2) 

The relevant counterterms in Figs. 10d and e then take the form 

- (Q-i) sin’ A cos bcsin bc(ZL-Z L) 

(B. 1) 

to lowest order; the term ZL-Z;i is convergent, and its finite part may 

be so adjusted as to cancel the h+n transition on mass shell. 

Siraightforward evaluation of diagrams, Figs. 10, a-c, is not diffi- 

cult and has been performed. When X(p) and n(q) are on the mass shell, 

the use of the Ward-Takahashi identity connecting TcI and X simplifies the 

calculation considerably: 

1 Jr-7 
+i(- $ g +g C2C9.P) = 0 (B. 2) 

where r2 is the irreducible nX $, vertex (see Fig. 11). This follows from 

the Ward-Takahashi identities for proper vertices 29 in the one-loop approxi- 

mation where the effects of the Feynman-de Witt-Faddeev-Popov ghost 

fields may be neglected. Alternatively it may be derived by the current 

algebra technique applied to the source current of the Z-meson. In (B. 2) 

the matrix T is 
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T- 1 - (Q-1)sin2 bw 
1~ 

L- (Q-l)cos2 bWR 
‘2 : 

:L 
T =Y~T+Y~ (B. 3) 

To order g4, g- e, and to lowest order in (mzh/m,‘), the vertices 

r(z) and X have the kinematical structure 
P 

$2) 
~ (9>P) =YV-“Lx 

x(p) =y.p La + bL + cR 

when one assumes m = m I tnh K m ’ . The effective n h Z vertex is 
P n P 

then 

iGn (4) E (2) u,(p) = ~Jq) ir’(‘)+iy TLii(d) 
I-I k h-m, 

*iz(ql&iypT U,(P) 
1 

=iU (q)y ~ux(p) x-[-i- (Q-i)sin2bw]a[ (B.5) 
n P t 

On the other hand, we learn from the Ward identity (B. 2) that T2 is of the 

form 

$+(Q-i)sin2bWa 1 \ j (B.6) 

so that to evaluate the effective vertex iE (z) 
I-I 

one needs only to extract the 

terms in r2 proportional to (q-p)* y (I-y5)/ 2. In one loop approximation, 
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r2 receives contributions from diagrams in Fig. 11 and 

x aq-p)* y(- YY5) J3ar2 :m2 f r2 _ Lx2 

- (mP 
-m I) 

P 
.i 

The above expression is valid asq-p - 0. 

we have 

. . . (B. 7) 

Thusif(q-p)2<<m2 or m t2 
P P ’ 

$1 = LfT---z 
P 2 yg+g cos bcsin Oc%yd%) X 

(B.8) 

where m h is the larger of m and m 1. 
P P 

Note further that the counterterms exhibited in (B. 1) do not contri- 

bute to the effective vertex on mass shell in (B. 5 ). This is as it should 

be, since the counterterms in (B. 1) can be completely eliminated from the 

Lagrangian if the strong interactions preserve the weak interaction sym- 

metry. Equation (B. 8) refers to on-shell n and A. The off-shell corrections 

are of the order p2/mW2 where p is the off-shell momentum. 



-47- NAL-Pub-74/21-THY 

APPENDIX C 

Box Diagrams for the Process ?.+ n + e + B 

In the Weinberg-Salam model there are two diagrams each (see 

Fig. 12)forh+n-~+;and~+n-v+v. The second diagrams are 

generated from the first by replacing the p-quark line by the p’. The 

computation involved is very similar to that of Lee, Primack and Treiman 22 

for the Georgi-Glashow model. The contributions of the diagrams in 

which one or both of the \V-line are replaced by the unphysical Riggs 

scalars may be safety neglected. since such diagrams are down by at least 

one power of (m 
I! IV 2. m .) 

In the limit of neglecting external momenta compared to the internal 

one we have 

- iS(X+n-p. + p) z qjj$ [EyP(>Jr. Gmrnp YUi;>) ;i 

x [iiv, (36 Yp 4(r2;h,2 j2 

- (m 
P 

-mpl), 
1 

(C. I) 

- iS(X+n -v+ v) = +qp$ [ ZYP(G) r.;~mpY~(+jA] 

x [bp (2j & Y, v 
Ii 1 

r2;L\; 2 

- (mp -mp’) 
1 

(C.2) 
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where we have neglected the muon mass. The Dirac algebra can be 

simplified by 

YPY@Y 0 = gpwyg+ gyp - gpuyya _ ic Pa@ 
v5yp 

<P@GP 
YJLYYp 

= -6i y5yp 

and 

-4 p(qj [&q * 

[YpY~Yo(~~[YpY~Yo(~~)] 

= 16 [y@j?)][~@ (+)I 

((2.3) 

The resulting expressions are 

i S(X + n - 

where 

v =rn p2/mu,2, and y’ = mp~2/mW2 . 



-49- NAL-Pub-74/21-THY 

APPENDIX D 

The Effectivti n A y Vertex 

If we write the irreducible n \ y vertex as F (Y) (q, p) the effective ~ 

n A y vertex E(z) (q, p) defined similarly to E’;l(q,p) i. e. , by the sum of 

three diagrams. Figures 10 a-c, where the Z line is replaced by the 

photon line, is 

CD. 1) ,(Y) I ,h) 
P P 

-e(Q-l)ypLa 

where a is defined in (G. 4). The usual Ward identity states 

(q-p)‘F(;(l(q,pl =e(Q-i)[~(q)-~(p)l CD. 2) 

The proper vertex may be expanded in pcwers of external momenta. 

The structures of (D. 2) and (B. 4) restrict it to be of the form 

$1 ~ (P- $P + :) = e(Q-l)ypLa 

+io 
P” 

k”(mn ;m,) -‘~,Cd. 

+ y”(k’g -k k 1 <r2> L+... 
KV v td6 nX CD.31 

where higher order terms in external momenta are neglected. Thus the 

effective photon vertex E (Y) of (D. 1) consists of two terms--the transition 
IJ. 

magnetic moment term Mti and the transition charge radius term 

2. <r2> 
nX’ 

We shall compute them in turn. 

tt r’:’ are shown in Fig. 13. 

The diagrams contributing 
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The computation of the transition magnetic moment proceeds very 

similarly to that of the weak contribution to the muon anomalous moment 

in the Weinberg-Salam model. Figures 13a-b are nonexistent for the 

muon anomalous moment, since the neutrino is electrically neutral. 

Figure 13a contributes to the transition magnetic moment (in the 

‘t Hooft -Feynman gauge) 

Am2 
2 

mW 
X c ) - Ln - 

2 2 cos 0 sin Q c c ’ 
mW ml P 

and Figure 13 b does not. Figures 13 e-f do not contribute to the 

transition magnetic moment, and the contributions of Figures 13c.d 

are of the order of 

L Cc, d) 
IlX 

e GF (mn+m;)‘+ 
8n2 ~7 

cos Qc sin B 
C 

mW 1 
without the logarithmic factor In (m&/m;,) 



NAL-Pub-74/21-THY 

In the? Hooft-Feynman gauge, the leading contribution to the 

transition charge radius comes from Figure 13 a. This could have been 

guessed at by a dispersion theoretic argument and an estimate of coupling 

strengths. To lowest order in 1,/m’ 
w ’ the W exchange may be replaced 

by a V-A four-fermion interaction. In this limit we have 

(-iGF) 

4 dr 
- YV 

i i 

cm4 
(r + k/2). y-m p ‘IJ (r - k/2) ‘Y-m 

P 

- (mp- mp’) 1 . 

The integral to be done is exactly the same as for the vacuum polari- 

zation in quantum electrodynamics 
30 

, so that 

eG 

QF 
Y2 

cos 0 sin 0 
c c [ 

fiY”U - Y,) A 1 (kpkv - kZgpv) 

1 .2 m ’ - k2Z(i - Z) 
P dZZ (1 - Z) log -.. 2 

mP 
-k’Z(l-Z) 
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Thus 

$ <t>n,=-eQ$$ c c 1 cos I? sin Q 
77 

1 m ‘2- k22(1 - Z) 
dZZ(1 -Z) !n -p2 

0 “p 
- k2Z (1 - Z) 

For m ,2 
>> k2= 

2 2 
m 

P k 
>> m , 

1 

a <> 
r2n,E-Q-%z lnrn; c c 

2 YZ 
cos f3 sin 0 

6rr mk 
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APPENDIX E 

Irreducible Vertex for x + ii - Y + y 

Different kinds of diagrams representing the irredicible vertex for 

the process A + fi - y + y are shown in Fig. 14. L,et us first pursue the 

relative magnitude of each of these diagrams. 

Take for example Figure 14 a. After the usual Feynman para- 

metrization the relevant integrals take the form 

I aPy (P. kt > k2) = dxt dx2 dx3 dx 4 
&(1-x -x -Y 

1 2 3-y41 

s t u 
aP Y 

R2+f(kl,k2,p) +xlm& 
4 a 

+ (x 2+x + x4)m 2 
3 1 

where m is the mass of the internal fermion line; s, t, and u are of 

the form 

S 
(Y =Ra+Xkl+Yk2+zp, 

X, Y, and Z being linear homogeneous functions of the Feynman para- 

meters x 1’ ---,x4. The electromagnetic gauge invariance applied to the 

irreducible vertex states that only the parts of I 
@PY 

proportional to three 

powers of external momenta carrying the Laurent2 indices a, p and y 

will survive when all diagrams are summed (the argument here is very 

similar to that of Rosenberg and Adler, except that the presence of an 
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extra momentum p considerably complicates the details, which we do 

not feel worthy of presenting herei, so we need consider only integrals 

of the form 

I= 
s 

dxl dx2 dx3 dx4 6 (1 - x1 - x2 - x3 - x4) 

1 
x 

2 1 
2 F(x~>x~‘Y~>~~) > 

xi m w 

(E.1) 

in the low energy limit (i. e. , p, kl, k2 - 0). The integral I in (E.1) 

may appear to be of order (mWle4, on dimensional grounds, but because 

of the divergence in the x1 integration of the form 

I 
dxl - 2 
x 1 

when m 2 is neglected , a more careful treatment is called for: 

dxi dx2 dx3 dx4 6 (2 - xl - x2 - x3 - x4) 

1 

3 
2 F(x1,x2>x3.x41 

xI + (1 - x1) E 

z&d::,2 I dcvdpdy a(1 -(Y -p - y)F(O,e>p,u) 
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1 1 =- - 
4 E 

dudpdy 6 (1 -a-P-y) F(O,LY,(~,V) (E.2) 

mW 

where F = (m/mWj2. Therefore I is of the order of 

1 1 
I=0 

i ) --T--’ 2 

mW m 

Similar arguments show the diagrams of the kinds (c) and (d) are 

of order 
-4 

m 
W’ 

so these can be neglected compared to (a). Diagrams 

such as (b) in which a W-line is replaced by an unphysical Iliggs scalar 

are down by a factor of (mh/mWJ2 compared to the W-exchange due to 

the nature of the couplings involved. Thus, in view of the mass ratio 

2 
miJmw 

< < 1, the dominant contribution to the gauge invariant part of 

the irreducible vertex comes from the diagram of Fig. 14 a. 

To lowest order in rn:, therefore. the proper vertex for 

,,+n- y + y is given bv 

2 
(iQe)’ L cos S’Sin ec ny 

1 -v5 

2 CI 2 
mW 

) \ 

+ (p, ki .+ 0, k2) 1 - (m - ml) e 

The integral involved’is identical to the one dealt with by Rosenberg 

and Adler, and the result stated in Appendix A ensues. 
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APPENDIX F 

Effective Lagrangian for x + n - -n+X 

We write the operator S-matrix in the form 

S = Texpi 
/ 

d4x g(x) CF. 1) 

where the relevant part of the interaction Lagrangian is 

The fourth order term contains 

i [ 
X(x,) y 

l-y5 
X pir 

2 
S4 = + * (cos 8 sin t? 

c C 
d4xid4x d4x3d4x 

2 4 

f-Y5 (F. 3 1 

ya (7) i SF(x2-x4)yy n(x4) 

xiD (xl -x4:m Lv2)i DUp(x2-x3;mmr2) - (m -m 
P” P P) 

where the factor 4’. in the expansion of the exponential is cancelled by 

the number of ways ($4: 1 the Wick contradiction of [ SIl 4 yields the 

term on the right hand side of (F. 3). The integral implied in (F. 3) 

can best be evaluated in momentum space. The relevant integral is of 

the form 
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212 
P w 

where use of (C. 3) has been made, and 

6 z m f2 m’W 
2 

if 
2 

>‘z m 12 >> m 
P P P ’ (F.4) 

= 2(mpl -mpj2 if mW2 >> m /2 2 =m 
P P 

In the local limit S4 may be written as 

COS2 0 
2 

sin e 
c c 

where 

b 6 
EO = ‘sin’ Q 

CF. 3) 

mw w (38 GeVJ2 

Consequently the effective Lagrangian is 
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Table 1. 

Fig. 1 

Fig. 2 

Fig. 3. 

Fig. 4 

Fig. 5 

Fig. 6 

Fig. 7 

TABLE AND FIGURE CAPTIONS 

The result of this investigation. The parameter t 

is the GIM suppression factor. Depending on the 

relevant Feynman integrals, this parameter is either 

of order( 1 am2 I/ mW 2 2 sm 0 )Pn (rnW 2!mp’2) 

order /Am2 ! / (mW2 sin2B ). In this Table we take 

-2 
ctobei0 . 

Important diagrams for (a) KL - TV i and (b) 

KL - vv. 

Diagram which contributes to the absorptive part 

of the K 
L 

+ pi amplitude. 

Diagrams with the p’-quark line which suppress the 

contributions of the diagrams in Fig., 1. 

Pole diagrams for (a) KL - yy and (b) KL- p L. 

Two classes of diagrams for X+ n - p + ;. The 

definition and evaluation of the effective x~Z vertex 

(repres.entPd by a circle in the lower diagram) are 

given in Appendix B. 

One-quark reducible diagrams for A + n - y + y. 

Leading contributions to A + fi - y + y. To leading 

order in M -2 
II’ ’ the diagrams in (a) reduce to those 

of (b). 
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Fig. 8 

Fig. 9 

Fig. 10 

Fig. li 

Fig. 12 

Fig,~ 13 

Fig, 14 

ReF(P) vs. 3. J?(p) is defined in (A. 12). The figure 

is the result of a numerical integration of (A. 12). 

Courtesy Professor Chris Quigg. 

Leading contribution to the An transition charge 

radius. 

Diagrams contributing to the effective kn Z vertex. 

The kn 6 vertex. 

Irreducible ti 12 vertex. 

Diagram for the Any vertex I- (v ) 
P’ 

Some diagrams contributing to the irreducible 

hnyy vertex. 
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TABLE I 

The Results of This Investigation 

Process 
Order of Magnitude Order of Magnitude Experimental 
of the Amplitude of Branching Ratio Rate or Bounde Comments 

0 KL - I@ 

K; -G 

G (Y 2 
F 

GC2 2 
F 

10 -8 

-10 --IO 

10 -8 
(5) see text 

< (3.1) 10 -7 (27) a 

K+ --+vV GFM 

I$ -TiOv~ forbidden 

Kg --‘YY GFQE 

IO-lo 

10 -12 

< (5.6) 1O-7 128) 

see text 

___ 

10 
-4 KL - YY GCZ 

F 
(4.9*o.4)10-4 input 

-( i.4)10 
-6 -3 

Ks - YY G a < 10 
F 

(0.7) a,b 

K+ - n+YY GCY 10 -6 - 10 -7 -5 < 
F 

(3.5) 10 

$ - TOYY 10 -7 (2.4) 10 -4 GFW < 
b, c 

0 KS -row GLY 
F 

10 -a- 10 -9 --_ bad 

K+ -rr+eg G (Y 
-6 

F 
10 

strongly suppressed -_- 

K; ‘- 
-8 

- TT ee G CI 
F 

10 __- 

a 
The 2~ contribution gives r (KS - yy) - 2 x IO4 set 

-1 
. 

b Not clear in the Georgi-Glashow model 

‘r’x - ~“y~!ir’KS - row) < 10 -4 

dr’Ks - Tyy)/r(% - yy) = 1o-2 or 10 -3 

e 
Unless otherwise noted these numbers are taken from the Review of Particle 
Properties(6). 
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FIG. 2 

Diagram which contributes to the absorptive part of the K 
L 

-p ; amplitude. 
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FIG. 3 
(b) 

Diagrams with the p’-quark 1’ 
diagrams in Fig. i. me which suppress the contributions of the 
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FIG. 4 

(b) 

Pole diagrams for (a) KL - yy and (b) K - 
4 - Pb 



x w- P 

a 

PIP’ tJ 

n w+ Et 

FIG. 5 

Two classes of diagrams for X + n^ - p + L 
The definition and evaluation of the effective AnZ vertex (represented by a circle in the lower diagram) 

are given in Appendix S. 
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Leadin? contributions to h t < - y + y. 
diagra::--: in (a) reduce to those of (b). 

To ieading order in h;:!, the 
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Jdeading contribution to the ln transition charge radius. 
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The Xn 4 vertex. 
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Some diagrams contributing to the irreducible Xnyy vertex. 
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ERRATUM 

The amplitude for KS + yy , as calculated from the effective 

Xnyy vertex in the free quark model, vanishes to leading order in 

m‘lm~. However, there is an important contribution to the absorptive 

amplitude from the 2rr intermediate state. An estimate of this contribution 

[ c.f. B.R. Martin et al., Phys. Rev. E, 179 (197011 leads to an expected 

rate: 

IX, - yy) - 2r(KL - yy) 

However we expect our free quark estimates to be reliable for the real 

parts of amplitudes where symmetry breaking threshold effects are 

probably not important. (KS + yy is forbidden by U-spin). 

The analogous absorptive contribution to KL - v’yy, from the 3~ 

intermediate state, is highly suppressed by phase space [we estimate 

r abs(% + ryy) - -7 10 r abs(KS ‘yy) 1 . Our bound for this decay is not 

modified. 

We wish to thank Dr. L. M. Sehgal for bringing this point to our 

attention. 


