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ABSTRACT

Rare decay modes of the kaons such as K -~ p.;, K—=1vv, K>vy,
K-7wyy and K ~ree are of theoretical interest since here we are
observing higher order weak and electromagnetic interactions. Recent
advances in unified gauge theory of weak and electro_magnetlic interactions
allow in principle unambiguous and finite predictions for these processes.

The above processes, which are "induced" [AS[ = 4 transitions,
are a good testing ground for the cancellation mechanism first invented
by Glashow, Iliopoulos and Maiani (GIM) in order to banish [/_\81 =1
neutral currents, The experimental suppression of KL - p;, and non-

suppression of K_ —~vyy must find a natural explanation in the GIM

L
mechanism which makes use of extra quark(s).

The procedure we follow is the following: we deduce the effective
interaction Lagrangian for x+n — { +3 and \+n - v +vy in the free quark
model; then the appropriate matrix elements of these operators between
hadronic states are evaluated with the aid of the principles of conserved
vector current and partially conserved axial vector current, We focus
our attention on the Weinberg-Salam model. In this model, K - p;
is suppressed due to a fortuitous cancellation, To¢ explain the small
KL-KS masgs difference and nonsuppression of KL -+ vy, it is found
necessary to assume mp/ mp' << 1 where m, is the mass of the p-

quark and mpf the mass of the charmed quark, and mp' <5 GeV, We

present a phenomenological argument which indicates that the average
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mass of charmed pseudoscalar states lies below 10 GeV,

The effective interactions so constructed are then used to estimate
the rates of other processes. Some of the results are: KS —-vyy is
suppressed; KS—> myy proceeds at a normal rate, but KL —~ TmTyy is
suppressed; KL ~ 1 vy is very much forbidden, and K+‘—“TI'+VJ occurs

+ + -
9; K — 7 ee has the branching ratio of

with the branching ratio of ~10
~10-6 which is comparable to the presently available experimental upper
bound. The predictions of other models are briefly discussed.

Relevant renormalization procedures and computational details

are discussed in Appendices.
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I. INTRODUCTION

Recent de:velopments1 in the study of spontaneously broken gauge
invariance have led to the possibility of a unified and renormalizable
theory of weak and electromagnetic interactions. Most such theories
necessitate the introduction of weakly coupled neutral currents, and
their viability depends on their success in accounting for the observed
suppression of }ASI =1, [AQ‘ =0 ‘semi-—leptonic decays. In nearly
all models proposed thus far, this problem is dealt with by appealing to
the Glashow-Iliopoulos-Maiani (GIM) mechanism, 2 which we shall briefly
recall,

A criterion for renormalizability is that couplings be invariant

under a group of gauge transformations. The charged Cabibbo currents,

+
Jp , together with the neutral current Jp3 defined by:
36t TR -
T )6 xmy) = 51T G0, T8 6epyg) (1.1)
+ Schwinger terms ,

satisfy the algebra of SU(2). In a gauge invariant theory these currents
must couple with equal strength to gauge bosons. However, if J: are
the usual Cabibbo current operators, the neutral current defined in

Eq. (1.1) contains a strangeness changing hadronic part as well as a
leptonic part. The gauge invariant coupling then implies that a decay
such as K. —up should occur with a strength comparable to K+—> VRN

L

In the Weinberg-Salam model, 3 the remedy to this unwanted
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prediction is to modify the usual current
c

+
J = {1~ ncos 8 + Asin §) (1.2)
" pY}l Yg

by adding a coupling:

c

+ + -
= J + (1 - JAcos # -nsin 8) (1.3
" " P YM Yg )

where 6 is the Cabibbo angle; p, n and \ are the usual quarks and p’ is
a charmed quark with the charge of the proton quark, With this modifi-
cation the current defined in (1. 41} has no ]AS| =1 component. It is
generally assumed that p’ is much heavier than the other quarks to
account for the fact that charmed particles have not been observed,

In the Weinberg-Salam model the electromagnetic current is
included by extending the gauge group to SU (2} x U(41); other constructions
which satisfy low energy phenomenology have also been proposed. For
example, in the Georgi-Glashow mode14 the Cabibbo currents are
modified by the introduction of new particles in such a way that Ji is
just the electromagnetic current and no other neutral current need be
introduced. However, when higher order processes are considered,
an analogue of the GIM mechanism must be used in all models of this
type--increasing still further the number of quarks,

Rare decay modes of K mesons, such as KL —"p}:. or KL > vy
are of immense theoretical interest because here we are dealing with
the workings of higher order weak and electromagnetic interactions,

and a renormalizable theory of weak interactions provides in principle
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uvnambiguous and finite predictions for these decays. There is a general
problem associated with higher order transitions and it arises in the
following way. The coupling constant g for charged hosons is comparable
in strength to the electromagnetic coupling e. In the low energy limit

where the boson propagator reduces to mW 2, first order transitions

are effectively governed by the Fermi constant
2 2
GpN2~g /my,
For second order processes, however, massive virtual bosons can be

exchanged and the effective second order coupling strength is found to be

4 2
g /mW ~ Gpa

Empirically, the strength of second order processes involving a change

of strangeness is characterized by GFZA2 = GFa(AZ/m 2), where A is

W
typically of the order of several GeV, as for the KL—KS mass difference
and the decay KL - p.}:. A mechanism is thus required to suppress the
contribution of order GFa.

Consider for example, the decays:

KL—*YY, (1.4)

K ~pe. (1.5)

Diagrams contributing to the decay amplitudes are shown in Fig. 1.
Setting g ~ e as is the case in unified theories of weak and electromagnetic
interactions, both amplitudes are fourth order in the coupling e. Since

the Feynman integrals are convergent, and since m is the dominant
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mass occuring in the propagators, each graph will give a factor mw_z.
Then by virtue of the above discussion the two amplitudes will be of
comparable strength:
4
e
A

Experimentally the decay rates are related bys’ 6

- 2 - - -+ -
P, ~pp)= 2Xx 10 -.51“(KL"W)=4>< 107K -y (1.7

As expected, the amplitude for (1.4) is suppressed by roughly a factor «
+

with respect-to the first order process K —pv., However, (1.5)is

suppressed in amplitude by a factor of

2 2
@ = 5Mp GF

In fact a major contribution to the decay rate for (1.5) is from the higher
order electromagnetic process shown in Fig. 2. The imaginary part of
the amplitude is dominated by the graph of Fig. 2 with the two photons
on their mass shell; this contribution may be calculated in terms of the

on shell KL - yy coupling and is found to be7

- -5 N
F(KL H“)absorptive = 41,2x10 P(KL YY) (1.8)

The rate (1.8) is known as the "unitarity bound" for K. —up as it provides

L

a lower limit for the partial width:

— 3 —
I‘(KL k) I‘(KL pLP’}a.bso:r'pt:'ure

© Thus a mechanism is required which suppresses the rate for
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K. ~ppto the experimentally observed level, and which leaves the rate
for KL-> vy essentially unaffected. The role of the GIM mechanism is
illustrated in Fig. 3. As the product of coupling constants [ Eq. (1. 3)]
which enter in the virtual transition

n-p’+wW

L\..u.n'

LA ¥y

is equal in magnitude and opposite in sign with respect to the similar
process involving the p [ Eq. (4.2)], the graph of Fig. 3a will exactly
cancel the graph of Fig. 41a in the limit of equal p and p’ masses. However,
in the same limit the graph of Fig. 3b will also cancel the graph of Fig. 1b
which is clearly not a desired result.

The problem can be posed most acutely in terms of symmetry
properties, Inthe Weinberg-Salam model (as modified by GIM), the
quarks transform according to the fundamental representation of SU (4),
with components (p’/, p, n, \). In analogy with I-spin which mixes p and
n, or U-spin which mixes n and X, there is an SU (2} subgroup of SU (4)
which mixes p and p’. Let us call this group of transformations P-spin.
Then in the limit of p and p’/ degeneracy P-spin is a symmetry of the
strong interactions. The electromagnetic current is a P-spin invariant,
The lowest order hadronic operator with AQ = 0 and IAS[ £ 0 which
can be constructed from the current of Eg, (1.3) is of the form

sin 6 cos 6 i npp -Pp’) + h.c.

+ charm changing components (1.9)
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The operator (1.9) is a P-spin vector; that is, the effective [AS ] F 1,
AQ = 0 hadronic operator has [Aﬁ | =4, Since the photon and leptons
as well ag

KL~ o+ in
are P-spin scalars, the transitions (1. 4) and (1, 5) are forbidden in the
limit of P-spin invariance.

Trr
W

aQ
2]
=
fe)
=
—+
o
V]
=~
"Itj
m
T
P
=
i
[41]
[on
[ W)
£

Mhan ~11ogdi A 24 i Al oae
LT YUTOLLIUVLL LW

the basic symmetry, we must add a fourth pseudo-scalar meson:

O, - * - - - f
X" ~ p’p’ While in the SU (4) limit the contribution of the x° necessarily

cancels the others, in the physical world it can be considered negligible:

2 2L 2o 2yt
0- K

(m 0
X X,mn

K

Then we obtain a contribution to K, -y vy which is of the correct order:

0 0
,MKVL—“ YY)"“M(KL"“W )% o (m ~yy)~ GFa
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The analogous contribution to KL-* By is shown in Fig. 4b, where the

rro - up transition can occur via two-photon exchange
0 0 0 2
K > pp)~ K 7 ) x - >pp)~ Gpa

or via the exchange of a heavy neutral boson (Z) which couples only to
A'S =0 currents:

7 0 0 0 2 2
S, > pp) ~ 7 (K = 1) 3 F(m > pu)~ G my

Loosely speaking then, one could argue that P-spin is an asymptotic
symmetry; its validity sets in at energies where hadronic masses are
negligible and it serves to kill the unwanted high mass W-exchange. At
low energies, where weak interactions are truly weak, P-spin is so
badly broken that it can be disregarded.

A more rigorous argument emerges upon closer examination of
the Feynman diagrams for the processes (4.4) and (1.5). The effect of
the GIM mechanism is to provide a subtraction for the p-quark propagator

I _1'_ - H~/ } - ‘_1 l) (1.10)
i'?imp i-\"-i my B

Since the Feynman integral was convergent before the subtraction, the

modified integral remains convergent if we approximate one W-
propagator by its zero-energy value:

o)t m 2 (1.11)

{m W

With this approximation the Feynman integral will be correct to order
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A
<L
(mh/ m 1

W
where my is a hadronic mass, If a process is truly fourth order semi-

weak in the sense that two heavy bosons are exchanged, the integral will

contain at least one more boson propagator giving an additional factor

me, , 80 that the resultant amplitude will be of order
84 2. 2 2
W

However, if the process is second order weak and second order electro-
magnetic, there will in general be a graph (c.f., Figs. 4band 3b)in which
only one heavy boson is exchanged. Once the approximation (1. 11) is
made, the remaining integral is independent of the boson mass; then the
amplitude must be proportional to:

Z 2

p
g /mW e~ aGp . (1.13)

(In the 't Hooft-Feynman gauge, 9 - the contributions of unphysical Higgs
scalars are negligible compared to those of the vector bosons. )
As will be seen more explicitly in the following sections, the require-

ment that the amplitudes for (4.4) and (1. 5) be of the correct order are,

respectively,
/2 2
m -m
PP
- 5 << 1
and w
/2 2
mp -m
PP
72 ~1 or m,; >>m
m
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In other words, P-spin symmetry breaking must be small on the boson
mass scale but very large on a hadronic mass scale.

The main body of this paper will be devoted to quantitative calcula-
tions within the Weinberg-Salam model of the processes K—+p }—.l,, K—-mvv,
K—-»vyy, K»7ryyand K— we e. For this purpose we first estimate the
matrix elements for the elementary processes A—~n+ £ +f and A=n+y+ vy,
and construct phenomenological interactions for free quarks, The matrix
elements of such interactions between physical hadronic states can then
be estimated, since the hadronic operators which appear are the familiar
V-A currents., The neglect of strong interaction effects may perhaps be
justified in models in which quarks are confined in a finite region of
space by any of the mechanisms that have recently been suggested (e. g.,
infrared catastrophe due to nonabelian gauge fields which prevents the
disassociation of color_—neutral states into colored states, 10 or the "bag"
mechanism“), and within this confinement, quarks are "almost free'.

Furthermore, in those theories in which the gauge group of strong
interactions commutes with the gauge group of weak and electromagnetic
interactions, the an-gluon coupling gets transformed away by the wave
function renormalization of quark fields. 12 {Off shell corrections are
expected to be of order Gszh X (mp;z— m; )/mw2 and are not important, )
Thus effective two-body operators (7\+c1 - n+a + 2 £ or yvy), which could
contribute to K~ + £ £ or yy, cannot be induced by gluon exchange in

such theories. The contribution of two body operators which are present
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in the free quark model (via W:h exchange) will be discussed in the
appropriate sections, A related, but differently motivated, estimate of
higher order weak interactions has been discussed by Appelquist, Bjorken
and Chanowitz. 13

In Sec.Il, we evaluate the amplitude for K, — pu to lowest

L
order in GF. In the Weinberg-Salam model, this amplitude is found
to vanish by what appears to be a fortuitous cancellation between two

kinds of diagrams. The general matrix element for the elementary

process \+ n—2 +4is proportional to the quark mass difference
AmT = m

This quantity is estimated by comparing the matrix element of the
KO - I::0 transition in this approximation with the KL - KS mass
2

W )}, The matrix

difference, as the former is proportional to (Amz/m
element so deduced for A +n - £ +1 is then applied to estimate the
decay rates for K~ w + v +v, A current algebra argument is presented
here which connects the amplitudes for K ~ 27 and K- w4f, Present
experimental limits are at a level of 10_4~ 10_5 with respect to K=nf v
decay rates.

In Sec. III we present the analogous calculation for KL - yy. A
phenomenological discussion of this amplitude is also given in terms of
pole contributions (Fig. 4a). The role of P~spin is explicitly displayed

and it is shown that a reasonable estimate is obtained in the limit of very

high p' mass. The matrix elements for the elementary process
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A+n - vy +vy and A+n - vy are used to estimate the rates for K -~ nyy
and K -~ tee . We comment on the amplitude 1or KS»Y\: which has the
interesting property that the leading contribution of order G_« vanishes

F

identically. if our approach based on the free quark model is correct. we
have the (hard to verify) prediction that the rate for this decay shouid

be suppressed in the same way as is KL - |..L}'._L. The amplitudes for

K+ - Tf+eé and KS-* -rroee_a are found to be comparatively large, being

truly of order GFo:. The presently available limit on K+ - w+e e is

rather stringent; animprovement of the experimental precision by an order
of magnitude will severely test our approach,

Section 1V contains a summary of our results and comparison with
experiment. We also discuss the predictions of other models on the rare
decay modes of K mesons.

Finally, the renormalization procedure and details of computations
are outlined in Appendices,

In this paper, we shall assume that the mass of the physical Higgs
scalar particle is sufficiently large so that its contribution to induced
AS = 1 transitions is negligible.

Note: in this paper we ignore completely the effects of CP violation.
In theories of super-weak CP violation, none of the estimates of this paper
are affected thereby; in a recent paper, E, Mai4 discusses some of the

material contained in the present paper.
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II. SEMILEPTONIC DECAYS

2.1 K —= p; and K. - KS Mass Difference
L

As a prelude to considering the decays K —~ Hll, we shall first dis-
cuss the elementary process A+ n - gt ;; , in the free quark model.
There are two classes of diagrams contributing to this process One is
the diagram in which a pair of W+ and W is exchanged between the
quark and lepton lines. The second class of diagrams is generated by
the "induced’ an Z coupling (Fig. 5). The evaluation of these diagrams,

to lowest order in m _2, is outlined in Appendices B and C.

W

When the GIM mechanism is incorporated into the Weinberg-Salam
o - - .
model, the W W contribution to the process x+n - ¢ +£ is, in the

/t Hooft-Feynman gauge,

-i °F g 05 6 _sinb_en “(Si)x i3 (i-y) PR - YE’)-l
N2 7 C08 U Rnb ey A3 2 MY AT /TN T Y,
(2.1}
N 2 2 . 2 2, 2._
€ = (Am /mw sin GW)[En(mW /mp y- 11
and similarly for the electronic leptons, where mw2 s'mz 8W ~ (38 GeV)Z’.

ec is the Cabibbo angle, and AmZE mp,z - mp2 is the difference of

masses squared of the p- and p/-quarks. In the presence of the GIM
mechanism, there is no An Z coupling, but such a coupling is induced

in higher orders. The effective \n Z coupling, to lowest order in o,

and in mw—z, is given in (A1); the contribution of the Z exchange to the

process is
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- °F 2 <086 sin 6 en Q(i:ié)h
! QZ T (o] c Y 2
(2.2}
Bon [ 4G om0y w5 v, (52)
kY, 5 in TS v Y, T3 v
The total amplitude for n+n —~ £ + E is given therefore b
P g Y
G
! ] F o
iT(A+n~—~2 +2)= e —ecose sme
2 w (2.3)
1-y 1- Y ]
n (——Fi)x}[p sin®e._ + 2% ( 5)
Ya\ T2 JFYe ® wh2"
where ' 5
2 m
€ =~ Am > m Vg (2.4)
(38 GeV) mp’

LY

is the suppression factor arising from the GIM mechanism,

In order to estithate the dec.ay rate K ~ Mp we take the matrix

L,S

element of (2, 3) between the KL S state and the vacuum, and use the

partially conserved axial vector current (PCAC) principle, In this way

we obtain
- GF @
T(KL ~up) = -N2 NE) 2— € COSs chsmeC [1 fK(pK) :l
pe sinZB m = 0 (2.5)
W HYQ, B .

where fK sin Gc = 33 MeV, The T(KL - H;L) amplitude vanishes because

(pK)Q ;LYG.‘ u = 0, The vanishing of this amplitude is due to the fortuitous
- + -

cancellation of the axial vector part KY, Yo 1 between the W W and Z

contributions, (2.1)and (2.2). Even when the effects of strong
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interactions are takeninto account, it is probable that these two contri-
butions cancel to a large extent (especially if strong interactions are
described by an asymptotically free field theory). We suggest that the

dominant mechanism for K —+ pp is inde€d the-conventional one of

L, S

KL g -yy p.}_l. : the relevant amplitude satisfies an unsubtracted
dispersion relation and the absorptive part is dominanted by the yvy

intermediate state. If this is the case, then we have
- - 2 -4
I‘(KS - up)/r(KL - pp) = 0(e™ ) 40, (2.6)

since, as we shall see in the next section, K, & yvy is suppressed with

S

respect to K. - yvy by this amount,

L
To estimate the size of € we consider the KLKS difference, In

Appendix F, we evaluate the effective Lagrangian for \ + n ~x+n in

our approximation and obtain

1-v ]2
___F o ) . ( 5
.geff e ———4Tr EO 80s Gc sin EJC [k Y, > )n + htiz 7

where €, is defined in Appendix F, (F.4-5)., In order to estimate

=0
the magnitude of the KOK transition amplitude, we insert the vacuum
state between two currents in all possible ways and use PCAC, [It is
admittedly a dubious procedure, but it will not mislead us as to the order

of magnitude, ]

G
-0 0 o) o z 2
< -g > o~ —_— :
KO |- | K> =gy G o 0087 0o 51 0
2
1\% -0,- -
><4(-2-) <K [nya\rs A 0> <0[nyay5k K% >
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G ‘
N R L s% 0 sin® 9
N2 fK K 4m 0 ac ¢ 1 c
(This estimate is for a triplet-quark scheme; for the 3 color-quarks,

the above should be multiplied by 2/3.)

The KL - KS mass difference is given by

1
-2 =0 0 2
<K ’_%fflK >)

- = +
m m m(‘l rnK

L S K

_ 2 _ =0y 0. 3
mK(i m, "~ <K b ;{;ffh{ > )

1

— -<E<Q-[+té2f” k%>
My eff

Thus,

mL_msﬂGE‘fZ o
m - N2 K 4w

2
€ sin2 f cos 6
0 c c

-12
eox 5% 10

1]

Experimentally the left hand side is about 0.7 x 10-14, so we have
€ =1,.4 X 10_3

Equation (2. 8) is compatible [see Egs. (F.4-5)] either with
m ‘= m_andlarge, andm _ s-m_= 1 GeV, orm_<<m_ ‘and
p P p P P &
mp/ ~ 2 GeV. We argue in the next section, in connection with the

nonsuppression of the K. == yy rate, that the latter is the logically

L

tenable alternative, In this case

. 2 -2
€ = €0 lﬂn(eo sin Gw)lz 10 (2.9)
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What is the meaning of the suppression factor €? The expression
(2. 4) couched as it is in the language of the free quark model, is hard to
interpret in the context of a realistic model. Nevertheless, it indicates
the degree to which the GIM cancellation mechanism must be effective,
and suggests that charmed meson states cannot be too massive, We
suggest that in a more realistic model (which we shall discuss elsewhere)
the suppression factor will take the form

m 2 m 2

C s W
€ 3 n .

2sin 8 m
mW W C

in the limit of chiral SU(3) x SU(3) symmetry, where m_ is the average
mass of the charmed pseudoscalar mesons., If this is correct, we
expect mc to be less than, say, 10 GeV. The experimental implications
of the existence of charmed mesons have already been discussed by GIM,
Snow and others, 15,16
Finally, with the suppression factor ¢ of the order of (2.9), the
weak contribution to KL -y would be well within the bounds implied

by the experimental data even if the cancellation of the axial vector

part were not complete.

Z.ZK—’TT'V;

The effective interaction derived in (A.7) for the elementary process

- - -+ -
"+n — ¢ + £ allows us to estimate the rates for K - «+v+v. Noting that
4= +
< [nyp(i-yS))\ lK'> - [(p_,_)pf_]_ +(P_)pf_ ]

T <n’B v Ay W K> - NZ < [Ry (v m K>
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where f+ and f are the KE 3 form factors, and b, “Pg *p_, we find that

G
. + + -, F «a .
iT (K -:rvv)—1q?-2"ecosecsm90
1-vy
- n 5
% [(13%_)}JL B, el t 103 vwyii——)vl
SIT(K) ~ v, (2. 10)
and
. o -
1T(K2—>Tr rv) =0 , {(z.11)
Thus, if we neglect the electron mass
0
+ + - - v
(K -7 vy) F(KS vy 2(30! 0 )2
T = ~ =2(5—¢ cos ,
2T (K+—- -rroe v) ]."(KL TE V) 4w e
where (2 12)

T(K, +mev) = [(K, =7 ev)+T(K -~ ey,

and the factor 2 on the right hand side of (2, 12) comes from summing

over two kinds of neutrinos. Together with the limit on € given in (2.6),

we obtain
2(-3&6 cose) ~ A0 9
™
and
+ + -
—- ‘10
K +1T vv) ~ 10 (2.13)
T(K —all)
T(KS—* 'rro{;v) -12
e o 1 (2.14)
S
T(K, —1°vw)
-4
L = 10 {2.15)

I(Kg L



-21- NAL-Pub-74/21-THY

The last follows from the fact that, as implied in (2. 11), the amplitude
for KL—> TrO vy is at most of order GFa EZ.

The results of (2.10) and (2. 11) based on the simple quark model,
obtained by neglecting all but the one-body operator deduced by looking
at the process A + n—-4+2 , may appear more suspect than those of
Sec. 2.1. However, in this theory, there is a soft pion theorem relating
the K — w£ £ and KO Ny amplitudes, and our results are consistent with
it.

In the case mn, mn << mpf, the chiral SU(2) x SU{(2)is a gooa
symmetry, and the entire Lagrangian commutes with the generators
Qi + Qi!___) of the right-handed chiral SU(2) group approximately (non-

commuting pieces being or order mp/m ), except for the couplings of

W

the Z-meson and the photon to quarks. Thus, except for the Z-meson

reducible diagrams, we have the soft pion theorm

im T (Kg (@)= (@) i) vip-q-r)]
q—0 ’
1 i )

=i N[—é-.-f:frl‘“" (K}, o)~ vie)vpr)l, (2.16)
lim T (KT (p) > (q) v () 5(p - q - )]
q—=0

R R o o 0 - '

~1f—T [K'(p)=vir)vip - r}f (2.17)

T

where v and v arenot in general on mass shell and T denotes the
single narticle irreducible amplitude. Equation (2. 16) follows from the

1
standard current algebra manipulation, 7
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Let us now consider the Z-meson reducible diagrams. The

effective tKZ-vertex is of the form
. D . 4
<m(q) | T{JFL (0) eXp(+1}J,d y_gw(y)} lK(p}>

includes the couplings

where ZW is the weak interaction Lagrangian ( YW

of gauge bosons and Higgs scalars to fermions, and the interactions of
weak boson fields; since we are interested in the matrix element to
lowest nouvanisning ovrder, we may ignore the couplings of the Z-meson
and the photon to fermions, as well as any complications that might
arise from the presence of the Feynman-de Witt - Popov-Faddeev ghost

Z
fields). The part of jp which does not commute with the right-handed

&+ +
chiral charge Q + Q5 is - sinz E)Wj: where j: is the electromagnetic
current, Because j;"l is conserved, the effective Kuy vertex must have
the form

<n’lq) FT{J':(O) exp ifd4y gwm} K (p)>

Y- _ v
= (k gw k“kv)(p'l'Q) G(t) (2.18)

where >

k=p -q, t =k .
The proof follows from the usual Ward identity, and is essentially iden-
tical to the one we present in Appendix D for the effective any vertex.
On dimensional grounds, we have

e) (2.19)
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On the other hand, the matrix element of the purely left handed

W jHY ), which is not cunserved, is of the form

current jZ = (= dinz 6
v
<mig)! T ; [3 7(0)+ sin® 03 Y (0)] exp ifd‘*y %w}lK(pP

=(p+q) F (t)+(p-q) F_(t) (2.20)
b =
where

_ 2
F+(0), F () = O(GFemC) (2.21)

Thus, Egs. (2.16) and (2. 17) should hold also for the full amplitudes, to

2
/m
c

2

lowest order in (t/mcz)~ (m }, [i.e., neglecting contributions of

order (mZ/m 2) compared to (mczfmwz)] where m, is the typical

W

uncharmed hadron mass.
The chiral charge Q3 + Qg does commute with the electromagnetic
current, so that the soft pion theorem (2.16) holds actually for the full

amplitude, Let us parameterize the KL T amplitude by

» S

TK(p) » 7 4@) v(r) ¥ (p - g = )]
- (A + Bp-g)* + crt +iDeMP Upvqprgl (2.22)
X 1;\(H(i - YS) v

where A, B,C and D are in general invariant functions of the momenta

p,q and r. In the soft pion limit we have

+ —
AL BL 0
f
K F 3o .
AS + BS -(—-fw )N_‘_Z‘ i € COS BC sin Bc s {2.23)
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where we have used the amplitudes ror K - vv (off shell) deduced

N
from (2.3} The amplitude (2. 10) is consistent with (2. 22-23), when the
Callan-Treiman r-ela.’cion18 is taken into account, Note further that if we

neglect the momentum dependence cf the form factors, CP invariance

alone implies

D,=0 (2.24)

These constraints follow from CP invariance and the assumptions that the

neutrino is left-handed and massless. In most models the form factor

D is identically zero and KL - vy is strongly suppressed,

III. ELECTROMAGNETIC DECAYS

3,14 K —~vy: Quark Model

We shall first discuss the free quark model calculations in analogy
to our discussion of the leptonic decays. However, as the estimates we
obtain appear a postiori less reliable, we shall show in the case of
KL - vy vy that a similar estimate can be obtained from low energy
phenomenology. In both cases the numbers we use should be taken as
order of magnitude estimates.

The first step in the calculation is to obtain an effective Lagrangian

for the process A+ n - v+ vy. There are two classes of diagrams here.
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The first consists of those diagrams which are one-quark reducible
{see Fig. 6). The \ny vertex is discussed in Appendix D (see also
Appendix B). For the real photon emission the transition charge form
factor vanishes; the nonvanishing effects of these diagrams come from the
A\ = n transition magnetic moment as well as the off-shell connection
due to the internal quark lines. These effects are, however, of order
2 2 2 2 .
€ ~|Am / /m tnlm...~“/m /“Jcompared to the main term we shall
. P W W p
consider, and ctall be ignored.
The second class of diagrams consists of one-particle irreducible

ones. As is shown explicitly in Appendix E, the leading contribution

comes from fthe Feynman diagrams in which only one heavy boson is
exchanged (Fig. 7). From the point of view of spin dependence, the
graphs of Fig. 7a are identical to those of Fig. 7b, which are obtained

from the former by means of a Fierz-Michel transformation
“ — M
1- 1 -
[ny (d-volel [py™(1 - yoN

= [1 - > v 1-
[nyp(i \(5)?\][13\( (1 y5)p]
where the anti-commutativity of the quark fields is taken into account.

Note that this transformation is possible only because the heavy boson

propagator is - g}w(p2 - mwz) 1 in the t Hooft -Feynman gauge (see

Appendix A)., Then the effective interaction takes the form of a current

operator

0 -
J- =ny (1-y.) (3.1)
M Yu''Ys
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multiplying a closed loop integral, where the integrand includes the W
propagator. Apart from the W propagator, the integral involved is
identical to that studied by Rosenberg19 and Adler. 20 Recall that the
latter is linearly divergent and therefore its value depends on the choice
of integration variables and on the way in which the integration is performed;
this ambiguity is removed by requiring that the result be gauge invariant
with respect to both photons,

In our case the boson propagator makes the integral convergent

and its value is unambiguous. However, if only, say, the p-quark loop

is considered the result is not gauge invariant. Other graphs must

¥ .
contribute gauge non-wuvariant terms of order m, which render the

total amplitude gauge invariant to that order, However, the gauge
non-invariant piece of the graphs in Fig. 7a is independent of the quark
mass, and cancels out whenthe p- and p"~quark diagrams are summed,
Thus for our purposes it is sufficient to consider only the one W exchange
diagrams, as anticipated in the Introduction. See Appendix E for estimates

of order of magnitude of various diagrams;the integral is evaluated in

W 2, the effective operator for the transition

Appendix A, To order m

is given by

+

0
i(J0+J y TH (3.2)
T po

where the amplitude T’;U may be read off (A, 14).
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To obtain the amplitude for KL - vy we must take the matrix

element of the current operator (3. 1) between KL and the vacuum:

0 _ ot L4
<0|JM ]KL>-<0[JH IKL>w1'\[§.fK(pK)H. (3.3)

Contracting (p,..} =(k, +k_) with TP' we obtain
g WPgt, TR TR oG

G
. . . ATy F 2a .
1T(KL vyl LFHv(ki)F (kZ)U—Z-— Trc059051nec
x(w"z"fK)A (3.4)
Y
where
2
2 m m
AYzQ FJZ—F—P--Z- (3.5)
My My

Q being the charge of the p-quark, The function F(f) is defined in (A, 12)
and plotted in Fig. 8, For B> 1, F(B) ccnverges rapidly to zero. If
we assume that both quark masgses mp and mp/ are very heavy compared
to the kaon mass, we obtain a strong suppression of KL -- y vy in contra-
diction with experiment. However, inthe range 0 = B = 1, F(B)is a

rapidly varying function with values in the range

.

- > SFB) <

(SIES

, for 0 = B =1,

N

If AY is treated as a phenomenological parameter as defined by
Eq. (3.4), then using the experimental branching ratio
r (KL YY) 4

TR Tany - (49 £ 0.4)x 10 (3.6)
L
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we obtain the empirical determination
!AYI =0,87=0.04, (3.7)

Assuming mp" > ng mp, the free quark model seems to be compatible

with the nonsuppression of the process K. - vyy. Note incidentally that

L

the expression (3. 5) is valid in the color guark scheme as well as in the

one-triplet model,
To lowest order in mw_z, there is no term which leads to the CP
even state of 2y. This is most easily seen in Fig. 7 by noting that the
V V V vertex in question vanishes by Furry's theorem. Therefore we expect
T(KS - vy) } 0(52) _ 10-4 (3.8)
TK; ~vyy) - '

3.2 KL —~v vy : Phenomenological Analysis

In this section we shall estimate the amplitude for KL - yy using
the pole diagrams of Fig, 4a, We define the following set of meson

states in terms of their quark content:

20 = (pp - AN)NT
ng = (f)p + nn - 2‘?&)/\/_6_

”o = (-]_:';)p-l-r-ln +7\.}\)/\/_3—'
/

n, “ PP

The isoscalar states can of course mix; we label the phy~i~al states by

0
7, X and XC.
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The effective nonleptonic weak interaction transforms as the first
component of a U-spin vector and the third component of a P-spin vector:
—~ (7 + EY o~ - A
L o™ BN+ W0)EP - B

Neglecting symmetry breaking corrections, the phenomonological

coupling of KL to the neutral meson system must be of the form:

1

- -n'o n8 nO
Lok “Klm T T ") KL B (3.9)

The electromagnetic coupling is a scalar in both U-spin and P-spin:

F F o X in +7
,Qi_m-,u » w[A(pp+pp)+B(nn+n)]

If we assume that the amplitude for Pi - yvy is determined by a single

quark loop we may interpret A and B as the squared charges of the

quarks.

0 n n
-~ 2 8 0
deFw{Q [J?*rrer e J”?J
2n 0
RY- o = n:l}

F F x4 P (3.10)
py opv i

1
5
11|

It is obvious from (3.9) and (3, 10) that the pole contribution to

KI - vy is forbidden in the limit of mass degeneracy, since £ Cidi = 0,

When mass splitting is present the amplitude takes the form:
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d

2 2,-1 c

LK, ~yy) =clmp - M) Jd + — (3.11)
3 mK-mTr

where MZ is the 3 ¥ 3 matrix which describes the isoscalar meson masses
and their mixing:

¥ - pM2 P (3.42)

In the Weinberg model SU4 is broken by the quark mass splitting; to
lowest order in the symmetry breaking the meson masses may be

described by an effective Lagrangian of the form:

2
4 -m (Tr )" +m. Trn> +eTr 1 AMe
mass 0 1

+ 3Tr w Tr A Mn (3.13)

where w is the 4 X 4 matrix f'epresentation of the pseudoscalar state
(15-plet plus singlet) and AM is a traceless diagonal matrix with two
independent elements: m}\— mn, mpf - mp. The matrix elements M.lz.
in (3.12) can be extracted from (3, 13).

Explicit evaluation of the amplitude (3.11) in the general case is
quite involved, If we restrict ourselves to the case of fractionally charged

guarks we obtain:

N 1
K. - =h{—-+ — }
M( 1L YY) D 2A 2

h =cd/3 (3.14)

‘I'ne fast term is just the pion pole:
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2 2 2
Am —mK mTr

The first term is given by the relations

_ ol 2 2 2 2 2 2
D = Det (mK M) (rnK mn )(mK m‘O )(mK m_X )
X c
and
D Amz 2
N = - 5 F4—r—Adm " (2+8y +3y)
2Am 3 ¢

where vy = 8/ @ and

am /Aam® =im ‘- m Y(m, -m )
c o 3 kN P

The pion pole is exactly canceled by the residue at the 5 pole and we

obtain _ Z,m 5
K T h K
J&/{KL vy) = T R 2. (3.15)
K n K 0
X
with

K = 4(2 + 8y + BYZ)AmC2/<mK2 -m )2

C

While the result is finite and non-vanishing in the SU3 limit it vanishes

. e .. . 2
in the P spin limit since Ang ~ (0 does not require sz - mx :
e

D~ ./_\mz(aAm2 + bAmcz)

For the physical case of badly broken P-spin we assume

2 2 2 2
- -3 -
C X



-32- NAL-Pub-74/21-THY

In this limit the XO, Xc mixing is proportional to y; assuming small mixing

we find

2 2
m,,S; = 201 + D
- { v) mc

8]
K = "2(2+8y+3y2)/(1 +v) (3.16)

The amplitude (3. 1415) is very sensitive to the value of y which also deter-
mines the XO, n mixing parameter., The value y = - 0.6 corresponds to
small mixing as experimentally determined.

For comparison of the amplitude (3. 15) with experiment we must
evaluate the effective coupling constant h. If Aﬁ is defined as the pion
pole contribution to (3. 14):

0 ¢
A-rr :MKL- N T >4 LA yv)/(sz - mﬂ_z)

we have
h=2Am2A
T
and
, m’-m_ %) AK
. & m ™
SAKL ~yy) = 3 @ Z-m 2 m lom ) (3.47)
K K X
= A K
mw

s . 0
The transition amplitude for KL — w can be estimated using current

algebra:

J&/iKL - ) = -iﬁfﬁ&/(}{s»wono) (3.18)
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0
Then using the decay rates for = - yvy and KS - T TrO we find

1

A JA | =
A jA Ll =2.320.1 (3.19)

where AO is the experimentally determined amplitude for K -+ yvy.

bs
From Eqg. (3.16) it is clear that the parameter K is very sensi-
tive to the pseudo-scalar mixing. A value of | K, = 0,5 would reproduce
the experimental amplitude. This is achieved with y = - 0.3, which
however gives too strong a mixing for the XO, n system. We may also

argue that a perturbative treatment of SU_ breaking is meaningless and

4
simply neglect the contribution of N, = XC. Using the experimentally
determined masses and mixing angle for n and XO we obtain K = -1, 5,
If we also neglect the 77, XO mixing the amplitude (3, 15) reduces to the
XO pole with K = -2/3,

Considering the approximations and uncertainties involved, the

pole amplitudes can adequately account for the observed decay rate.

3.3 K=>myy

The effective interaction of Eqg. (A. 14) allows us to estimate the

rates for K = ryvy. Using the matrix elements of the current operator

(A, 3.1}
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NZ <n(q) !Jﬁ 1K%p) > = - NZ <’ () !Jf T £%p)>

- <o) [1) | K>
= ( £t -q) £ ()],
(prq) L,() +(p-q) £ ( )]

t = (p-q)2 (3.20)

we obtain

T[KL-> wroyy} =90

iTK —n yy) = IT(K, 1Py y)

G m 2 m /2
S U?F _2;_ cos 6 _ sin 6 Q* [F(-——tp—> - F( f )]
P, O 2 B )P
x ele  : ApmL [(p+a)™f (1) +(p-q)" 1 _(t)] (3.21)

where Apop is defined in Appendix A, The decay rate is proportional

t

mz ‘mz
K 'rr

In these decays the momentum transfer squared t varies from 0 to

2

K- mw) = 0,53 sz. Assuming that in this range f{t} = f(0), and

to the square of the divergence form factor f(t) = f+ (t} + £ ().

(m

F(mpzlt) = F = constant, we have

G
- N 4 ' 40 2 . 2
TKg ~myy) Zm mK[U:z =% Q%cos 0_sing _Ft_(0)
2 05
K
oo—D f dx (1 - x) 3. 22)
64(2m) 0

To eliminate F, we take the ratio I‘(KS -*nyy)/l“{KL -~y v):
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5 3 0.53
TR LN S S IS
DK, = vy) 2 - )
L fK 32w o
-2
=~ 10 (3.23)

The above estimate does not take into account the fact that F{to/t) vanishes

as t—=0. Depending on't

-3

o the ratio of (3.23) may be much smaller, say

=~ 10

0 0
Note that the estimates of (3, 24) for K. —x yyand K_—~ 7 yv

L S

are consistent with the soft pion theorems one can derive which connect
these amplitudes to those of KS —- vy and KL—> vy. The derivation of
these soft pion theorems is analogous to that given in Sec. 2.2, and is
based on the fact that the relevant part of the weak interaction Lagrangian

Y

% and the electromagnetic current j' commute with the right-handed

W
3 . ;
chiral charge Q3 - Q5 , in the limit of the chiral SU{(2) symmetry. There
: > N ,~+ + - Y
is no analogous relation for K — 7 v y and K - yy because ]}-l does not
. + +
cammute with Q + @ 5 Nevertheless, we see no reason why the

+ +
amplitude for K — 7 yy should be suppressed, and we expect its order

of magnitude to be given correctly by (3. 21).

3.4 K—>nee

The effective Any vertex evaluated in Appendix D allows us to
evaluate the rates for K - ree. By far the largest contribution to the
amplitude comes from the transition charge radius term in the

effective hny vertex (see Appendix D):
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- k k
nr‘(“’)(p-?p**—)} N
b renormalized
1-\()
-V 5 1 2
= A - k - < > +--- -
ny ( > »(k gvp kv H)é r o {3.24)
1 2 e GF mE'-Z
—<r°> = - — i
3 r - Q Emz NE cos Bcsmec in mz (3.25)

where m is the typical uncharmed hadron mass scale.

The computation of Eq. (3. 25) is outlined in Appendix D, Briefly,

it comes about in the following way. To lowest order in m 2, the charge
radius comes from the diagrams shown in Fig. 9a. After the Fierz-

Michel rearrangement of Sec. 3.4, one sees that the sum of the p- and

p‘-quark diagrams are convergent and gauge invariant, even after the

replacement
2 2 GF
lgpv I‘Z-m 2 1g}.LV m 2 1gpv N2 (3.26)
W i

is made. In this limit the relevant diagrams reduce to those of Fig. 9b,
precisely those of the current-current theory modified by the GIM mechanism.
Since the mass of the unknown quark appears only through a logarithm,

Eq. (3. 25) may be expected to be rather stable against uncertainties due

to strong interactions,

The amplitudes for K — Tee are

iT{K (p) >v(qreal - iT [K_(p) ~ iq)ee

G_

. F 2o . -
= +arm—— — f

1,\j2 e & cos Gcsm QC (p+q)}JL +(t)ey e
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T(KL—"W ee) =0,
)2
m
5 :an——Pz— (3.27)
m
which give
O -
+ + - - /
LK »nee) LEg—meel ) 2
T 0 (K. = e v) '(E b cos 0, (3.28)
T{K —-m& L

[ The difference of the factor 2 hetween (2.12) and (3, 28) is due to the

difference in the lepton couplings: Jy“(i-y5) v for the former, éy e

b

for the latter,] Taking & = Zin (rnp‘/m)2 5, (2), we find that

3

6 -6

+ L
LK _~7ee) | 3% 40 ° (0.5 x 10 °) (3.29)

I"(K+->all)

o -
T(KS -7 ee)
I._'(KL - all)

= 10°° (0.2 x 10 %) (3.30)

The experimental upper boundzj)

J < (0.4 % 1079

+ + -
':I“(K —1r ee)

K - all)
exp

is at the verge of contradicting the prediction (3. 29).
0 -
As for the process KL = m ee, one photon- and Z-exchange diagrams
+ -
are absent by CP invariance; the W W contribution is expected to be

0 -
strongly suppressed as far the process KL TV,
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IV, CONCLUDING REMARKS

We summarize in Table I the main results of the present study and
compare them to experiment. Due to the extreme experimental difficulties
in carrying out the necessary precision, the predictions of our treatment
of the Weinberg-Salam model are well within the presently available
experimental upper bounds in most cases, A notable exception is in
the rate of K+ - 1r+eé , where the experimental upper bound appears
tantalizingly close to the limit of a reasonable range of theoretical
uncertainties, We feel that the estimate (3,29} is of good standing;
deviation of the experimental rate by a decade, say, would worry us,
Measurement of this rate, not just setting of an upper bound, is clearly
called for,

In most gauge models proposed so far, we believe that most of the
results of this paper are also true.

(1) In the eight~-quark version of the Georgi-Glashow model, most
of the results on semileptonic decays also hold, as shown by Lee, Primack
and Treiman, 22 and Lee and Treiman, 23 For electromagnetic decays,
the situation is murky. This is due to two factors. One is that in this
model there might be an important contribution of the physical Higgs
scalar to strangeness-changing transitions which we have not considered
in this paper, The second is that in this model the An transition magnetic

4
moment is large, being of the order ofz
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P
—_ + Ygd
O[N_Z_e(mr1 m}\)mp SmQC]

LA ]

\n GG
[ This is anologous to the anomalous magnetic moment of the muon in this
model. It is of the order of (GF/rsf?) e mum (Y+)., ] We do not know of a
way of assessing the effects of the transition moment in the K - =
transitions reliably,

{2) Inthe Bars-Halpern-Yoshimura model, 25 almost all of the
present results should hold also. The reason is this. Since this model
incorporates the field algebra, most integrals one encounters are super-
convergent, so much so that they remain so even when the replacement

{3,26)is made. The remaining integral is scaled by the typical hadronic

mass m. Thus the integral has the dependence on m 2 as a naive

counting of the number of heavy boson propagators indicates: we expect

the amplitude for K. — pu to be of order Gg a(m/m )2; the amplitudes

L W

for hL — vy of order GF

{3) The situation in the LPZ model% should be almost id entical

e, etc,

to that inthe Weinberg-Salam model,
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APPENDIX A

Free Quark Matrix Elements

In this Appendix, we collect the relevant matrix elements used

in the text, These are the expressions correct to lowest order in mW_2

The derivations arerelegated to other Appendices. In the following all

calculations are done in the Feynman- ‘t Hooft gaLuge.9

1. The effective n\ Z-vertex:

(2)

- 1=y
iR (q.p) =nlgly ( 3 ) \p)
b B /

‘i!\}g2+ g'z cos f _ sin 6 —_—

;2
Xl s eo[ﬂn (mW/mp) -1]} (A, 1)

. 2 2 2 2 __ 2 2
where €9 " Am /mW sin GW' Am mp b’

2. The Z-meson propagator:

pv o 2 ZZ pv (g2+g,2')v

3. The Ze—meson couplings to leptons:

- dgPeg 2 2 Q(i_YB)v
w2 a

2

-y
o 1 5) . 2
+ 1y [ 2( 7 sin BWJ;.Lf (AL, 3)

and similariy for the electronic leptons,

Zes

4, The effective y An-vertex:

) __ ( )
E p) = —2
i ) (q,p) n(qh.f}l {p)
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2 ‘
w18 S ocos o k% -k k) FKELmE m P (A.4)
TTZ N2 C Vi v p B

VS
where m and m ‘ are the masses of the p- and p’-type quarks of charge

Q, respectively and

1
2z
Fk% a,b) = | dz z(1-z) tn 2= kzzu z) (A.5)
a -k z(1-2)
1 2 ’
G = 5= g 5 is the Fermi coupling constant,
2V SmW
5. The irreducible ffxn-vertex:
- - {-
.z a(1 YS)x 4 (i Y5)v+_ ( Ys)
i =n Yy 2 VY\I 2 “YQ’ 2 p‘
2 m
G o . Am W \
-1 —om— - -1 .
X(MZ)MZ Trcc:»secmnBc[ 2'29 (ﬂn v J
My SW T o my (A, 6)

The sum of the box diagram and the Z exchange diagram for n—>44"

2
G e Amz mW'
=~ {-—= — cos f _sin¥8 in
N i m 2sin f m ‘°
W W P
_ (MY 3 a(i_YS .
x Ay, \—5— /M HEy psin by VY 3 v (A7)
6. Two photon modes"®
G 2
F . - u e 2
=i—= 1- A8
1TpU 155 cos Bc sin EJC ny' { \,;5))\(211‘)4 RpO“p. @ ( )
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1
where Rpo " is the quantity defined by Rosenberg ¢ and Adler, 20 except

that we associate p with the photon with momentum ki and o with kv .

) a, B _ @, B
Rpcp (ki’kz) ) [kic ea'ﬁppk:lkZ kZpeaﬁopkikZ

@
+ -
(ki’kz) Ea’pcrp(ki k2) ]A3

ApopAB (A.9)

where

1-v«
2 2
A = - tbr dxf dy Xy 5 - (m —m %
. [2xyk, k,-m 1 P P

L

(A.10)
The expressions (A.9)-(A.10) are valid for real photons,
The form factor A3(s), s = Zki'kz’ may be simplified:
2. /2
5 4 F(m mp
A(s) = -16n° = —L)~F £ (A.11)
3 5 - 8
where 1
1 f dx x(41-x)
- =+ —_— - —
F(B) = >+ — {n [1 5 (A.12)
0
and has the asymptotic behavior
F(B) > -——, B >> 1
24p°
1 (A.13)
- TZ- . ﬁ << 1
The part of (A, 8) relevant to KL — yvy may be written as
G
X . F a .2 . =
lTpO‘ = -i NE Q cos@csm Gcny (1 y5))\
2 72
1 m /m
X 4 = F(—-L) - F\—-L-—-
s s S
S o ,
X7 €apop (k,-k,) (A.14)



~43- NAL-Pub-74/24-THY

APPENDIX B

The Effective nx Z Vertex

In lowest order the effective AnZ vertex is generated by the diagrams

shownin Fig., 10a-c¢., The off diagonal mass matrix element Z(p) and the

)

irreducible \nZ vertex F{Z (q,p) are depicted in Fig, 104 and Fig, 10e

K
respectively, The crosses in Fig. 10 represent the contributions of
counterterms.

The renormalization counterterms arise in the following way. We

renormalize the left-chiral fermion fields according to

p p
u 1
_ 2
n’ - ZL n’
U, L
’ ra
P A )
= 7 2
\/ LW
L L

and the right handed fermion fields similarly, and coupling constants and

gauge bosons according to

Zi
guﬁg'_'“l‘E
ZLZ3
Z/
;o 1
Y 1
ZLZ3
1
BV S X
u p L 3
l‘..—
B =B Zp?
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and choose the renormalization constants by suitably chosen conventions.

We define the Weinberg angle in terms of renormalized constants:

)

cos GW =g/ (g2+g )

The relevant counterterms in Figs, 10d and e then take the form

E(i—z\{s ){iy- a- N‘gz +gf2 [—%— - (@-1) sin2 GW:I v Z})\ cos ecsin GC(ZL—ZL)
(B.1)
to lowest order; the term ZL—Z’L is convergent, and its finite part may
be so adjustedl as to cancel the \—n transition on mass shell.
Straightforward evaluation of diagrams, Figs. 10,a-c, is not diffi-
cult and has been performed, V;Vhen Ap) and n(g) are on the mass shell,

the use of the Ward-Takahashi identity connecting I‘IJL and Z simplifies the

calculation considerably:

(q—p)“FLZ}(q,p)-[Z(q)T—T*Z(p)]
ri-Det g er, @) = 0 (B.2)

where FZ is the irreducible ni @2 vertex (see Fig. 11). This follows from
the Ward-Takahashi identities for proper Ver"r:ices29 in the one-loop approxi-
mation where the effects of the Feynman-de Witt -Faddeev-Popov ghost

fields may be neglected. Alternatively it may be derived by the current

algebra technique applied to the source current of the Z-meson. In (B. 2)

the matrix T is
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_ 1 _ .2 A 2 L2 02
T = {{ > (Q-1)sin QW}L (Q-1)cos BWR}Mg +g

A )

2 2
‘ T ey Ty (B.3)
0 0 )
4 . 2 2 .
To order g, g~ e, and to lowest order in(m h/mW ), the vertices
I“(PZ) and ¥ have the kinematical structure
(z)
T''"'(g,p) =y Lx
n qp \.’*l
Z(p) =y-pLat+bL +cR (B.4)

when one assumes mp ~ rnn ~ m)\ & mp’ . The effective n i Z vertex isg

then
. = (z) - . (z) .
lun(q)Ep u)\(p} = un(q)%lrp TlYH ls“mn iz (@)
+iz(q)¢l_rlnk i\(HT}u}\(p)
=i _{q)y Lu (p) ‘&"["‘i“ (Q-i)sinze }a} (B, 5)
n VYL ENPYT U 2 wl™ '

On the other hand, we learn from the Ward identity (B. 2) that 1‘2 is of the

form
—

i 2. 2 1 2 !
— \)g +g v T = (q—p)'YL{X‘F _"‘(Q_i)Sln 8 2
> 2 [2 W]j(B.sl

so that to evaluate the effective vertex iELz)one needs only to extract the

terms in I‘Z proportional to (gq-p}) v {i-yS)/ 2. In one loop approximation,
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1“2 receives contributions from diagrams in Fig. 11 and

l’z(q,p) B 5

1-vy 4 . % .
5 dr i i

2 (m
g--{——E—cos 6 sin 6
v Cc C

A

W
-m_~—~m Y .., (B.7)
|& p
o . . 2 2 ,2
The above expression is valid asq-p —~ 0, Thus if (g-p)~ << mp or mp \
we have
2 1-v
(z) g~ /2 /2 . - 5
= +
EM > NEg T¢g cos ecsmecnyu( > )?\
2
2 m
> et A I —2 - (B.8)
16 2 2 2
T My, m,

h

Note further that the counterterms:s exhibited in (B. 1) do not contri-

where m, is the larger of mp and rnp /,

bute to the effective vertex on mass shell in (B.5), This is as it should

be, since the counterterms in (B. 1) can be completely eliminated from the
Lagrangian if the strong interactions preserve the weak interaction sym-
metry. Equation (B.8)refers to on-shell n and A, The off-shell corrections

2
are of the order pzl m where p is the off -shell momentum.
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APPENDIX C

Box Diagrams for the Processx+n — { + ¢

In the Weinberg-Salam model there are two diagrams each (see
Fig, 12)for X +n T ;and “+n— v+ v The second diagrams are
generated from the first by replacing the p-quark line by the p’. The
computation involved is very similar to that of Lee, Primack and Treiman 22
for the Georgi-Glashow model. The contributions of the diagrams in
which one or both of the W-line are replaced by the unphysizal Higgs
scalars may be safety neglected, since such diagrams are down by at least
one power of (m L/ mw)z_

In the limit of neglecting external momenta compared to the internal

one we have

4 4 1-vy _ 1-y
- - - 5 5
is()\+na“+”):g4 3_fd - [nvp( 2 )r‘-;-m Yg( 2 )}\]

1
(2m) p
1~ 2
o loy (51 S N
iy, (5 )Y_rvpu A
W
-{m_~m ’)E’ (C. 1)
p D
4 4 1~y 1-vy
L R g4 {fd r‘* [HYp( Zs)r‘ 1-m Yd( 25)’}
(2m) Y p
4
oy (22 )
Y 2 —~-r ‘o r2 m 2
W
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where we have neglected the muon mass, The Dirac algebra can be

simplified by

p a0 pa o @d p c ¢  pad
R N AR - A - LA ¥ g\@(ﬁ
pa o p _ g B
€ YOYaYp 61Y5Y

and

_ [\,a(i:;ij’ l:ya(i-;,vS )i] | (C.3)

oy [Ya(%)“ [YQ (1-2\'5 )]

The resulting expressions are

- 4 1-v r 1-vy
. ookt 1 g 4 5 5
P8Oy L D) 1(—4) 2 z{n\’ ( 2 I v, 2
./ k4T M.,
W
=1
Xf xdx (1 B )
2 !
0
where
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APPENDIX D

The Effective nhy Vertex

If we write the irreducible nX vy vertex as I“::’)(q,p) the effective
n\y vertex E(:(L)(q, p) defined similarly to E(}f )(q,p) i.e., by the sum of

three diagrams. Figures 10a-c, where the Z line is replaced by the

photon line, is

E('\{) :r(‘{) -e{@-1)y La (D.1)
" e H

where a is defined in (B.4). The usual Ward identity states

(q-p)“r(:’(q,p) - e (@-1)[2(q) -2 ()] (D. 2)

The proper vertex may be expanded in pcwers of external momenta.

The structures of (D. 2) and (B, 4) restrict it to be of the form

k k
r(:’(p - S e 5)cel@-y La

. ‘ -1 V4
+ig k (mn m\J S

1 2
- - <r > +
+v (k gpv kvkp.)é r n?\L (D.3)

where higher order terms in external momenta are neglected. Thus the
effective photon vertex E(:) of {D. 1) consists of two terms--the transition

magnetic moment term /%kn and the transition charge radius term

-é—- <r2>n \ We shall compute them in turn, The diagrams contributing

to r(:’ are shown in Fig. 13.
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The computation of the transition magnetic moment proceeds very
similarly to that of the weak contribution to the muon anomalous moment
in the Weinberg-Salam model. Figures 13a-b are nonexistent for the
muon anomalous moment, since the neutrino is electrically neutral.

Figure 132 contributes to the transition magnetic moment (in the

’t Hooft-Feynman gauge)

//(a):_eQGF o oem 2 A [, 2%
" nx N2 2 n N 2 {5 m_ -+ m
8w X n
2
Am® My :
x m cosf sinég
mZ 2 c C
W mp'

and Figure 13b does not. Figures 13e-f do not contribute to the

transition magnetic moment, and the contributions of Figures 13c¢-d

are of the order of

G 2
c,d
'//1('1)\ )=ﬁ’ e ZF (m  +m.) An; cos 6 sin 6
8n N2 mW
2
without the logarithmic factor tn (rnW/msr).
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In the’t Hooft- Feynman gauge, the leading contribution to the
transition charge radius comes from Figure 13a. This could have been
guessed at by a dispersion theoretic argument and an estimate of coupling

2
strengths. To lowest order in 1/m

W the W exchange may be replaced

by a V-A four-fermion interaction. In this limit we have

(-iG )
lie Q) Wz_F cos §_sin 0 [ﬁyv(i - v5)x]

4 i

J'dr‘ YV i y i
Tr 4 + k/2)-v-m r-ki2y-v-m
(2m) {r f2) vy . Mo Y .

- (m—-m/’)
(rg—

The integral to be done is exactly the same as for the vacuum polari-

. . .30
zation in quantum electrodynamics , so that

eGF 5
Ay (4 - -k
Q —=— cos f_sinf_ [ By (1 - yy) x] k- kg

et m % -’z - 7)
x —l—f 422 (1 - Z) log — -
0

2
2T mp—kZZ(i-Z)
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Thus
1 <r2> :-eQE}E- cos § sin 6
6 : nx N2 c c
t m %= x%z(1 - Z)
J‘ dZZ {1 - Z) #n —F >
m -k Z({1-2)
0
; 2
Form'  >> Kk =~ m, >> m ,
D k
12
m
() ni 2 N2 2
b m

NAL-Pub-74/24-THY

cos f sSin 8
C C
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APPENDIX E

Irreducible Vertex for » + n — v +vy

Different kinds of diagrams representing the irredicible vertex for

the process X + n— vy + y are shown in Fig. 14. Let us first pursue the
relative magnitude of each of these diagrams.

Take for example Figure 14a. After the usual Feynrnan para-

metrization the relevant integrals take the form

Iaﬁy(p’ki’kz):f dxidxdede4 5 (1 -xi —.\:2—}(3-){4}

4 s t
d'R a By
X 4
2

4 3
(2m) [ 2 + + + 2]
R +f(k1,k2,p) +X1mw ('x2 x3 xhl)m

where m is the mass of the internal fermion line; s, t, and u are of

the form

= + + +
s, "R _+Xk +Yk, +2Zp,

X, Y, and Z being linear homogeneous functions of the Feynman para-

meters Xyo TNy The electromagnetic gauge invariance applied to the

irreducible vertex states that only the parts of IQﬂY proportional to three

powers of external momenta carrying the Laurentz indices o, p and vy
will survive when all diagrams are summed (the argument here is very

similar to that of Rosenberg and Adler, except that the presence of an
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extra momentum p considerably complicates the details, which we do
not feel warthy of presenting here), so we need consider only integrals

of the form

= d i, - - i,
1 J‘dxidxz x3dx46(1 Xi XZ x3 x4)

* F(x,,x_,X

3 m
[Xi

in the low energy limit (i.e., p, K

= o
_l..
N
1
g
[y
3
[4%]
L
o

L k2 ~ 0). The integral I in (E.1)

may appear to be of order (m y-4  on dimensional grounds, but because

W

of the divergence in the x, integration of the form

d:»:1
2
%4

2 . .
when m is neglected, a more careful treatment is called for:

1

1
= — dx_d - -x_ - -3
H 7 ’I‘Cixicix2 3 x46(1 X, "X, X3 *(4)

Fix, ,x

L XL, X))
[x +(1-x)e]2 et

4
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1 1
= — = fdad{id\/ & (1-a-pB-y)F{0,a,B3,¥) (E.2)
[
Tw
where ¢ = (m/mw)z. Therefore [ is of the order of
Ioo0 | —— Ao
= 2 2
my  m

Similar arguments show the diagrams of the kinds (¢} and (d) are

-4 .
of order My, SO these can be neglected compared to (a)., Diagrams

such as (b) in which a W-1line is replaced by an unphysical Higgs scalar

are down by & factcr of (mh/m compared to the W-exchange due to

W)
the nature of the couplings involved. Thus, in view of the mass ratio

2 . . .
mh/mW << 1, the dominant contribution to the gauge invariant part of

the irreducible vertex comes from the diagram of Fig. 14 a.

To lowest order in m-z, therefore, the proper vertex for

W
X+ n-—-vy+y isgiven by
. 2 . 1 -y

g hge? e i (__..__5)

(.\E) (iQe) mz COS8 Bcsmec nya 5 ’ \
W

X[Trjd4r Ya<1_\{5> i Y'l i
(217)4 2 T+ ki -m ‘p F-m o f-kz—m
‘- - -— !
+ (p, ki o, kz)] (m m')

The integral involved'is identical to the one dealt with by Rosenberg

and Adler, and the result stated in Appendix A ensues.
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APPENDIX F

Effective Lagrangian for \+n =+ n + »

We write the operator S-matrix in the form

I

S:Texpifd4x Zix) (F.1)

where the relevant part of the interaction Lagrangian is

1-y
:j—. _.-_—_.5. 1 - T fp'
Z {M{H ( > )(p sin 9C p sin BC)’\K

1-vy
- 5 . -
+n Yp ( > )(p cos QC +p sin BC)V& +h.c.} (F.2)

The fourth order term contains

2
- g . 2 4 d4 d4 4
S4 + 8 {cos Gc sin BC) d:h:1 X, x3dx

2. . 2, .
;1 DWB(X2 Xyimm ) (mp m, )}

where the factor 4. in the expansion of the exponential is cancelled by
1 . _— 4

the number of ways (-2— 4! ) the Wick contradiction of [ch] yields the

term on the right hand side of (F.3). The integral implied in (F. 3)

can best be evaluated in momentum space., The relevant integral is of

the form



_57- NAL-Pub-74/ 24-THY

{z2m)

Ju L (2t 7N -

- 8 a(‘i"’_ﬂs) (1'*’5
= 2 2 | Y 2 Yo\ 72

t

3
2
v
v
2!
v
v
3

In the local limit 54 may be written as

G
. _F oa 2 .2 4 | =
S4» N €, cos (—)Csm Bcfd x[?\(x)y“(

where

& b

0 2 . 2 2
m sin QW (38 GeV)

Consequently the effective Lagrangian is

G
& :

= - —F e cosze in’ 6 3\ (
eff NZ 4w ‘o ¢ S Vo MYl

'1....
¥s5
2

1“’5) ]2 th.c. (F.6)
n
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TABLE AND FIGURE CAPTIONS

Table 1. The result of this investigation, The parameter ¢
is the GIM suppression factor., Depending on the

relevant Feynman integrals, this parameter is either

2 .2 2 12
of order([&m [/ m " sin 9)£n(mw /mp )

order l.&.m2 I/ (mW2 sin6 ). In this Table we take
€ to be 10_2.

Fig. 1 Important diagrams for (a) K, — pp and (b)
KL ~YY.

Fig. 2 Diagram which contributes to the absorptive part
of the KL—» p.;. amplitude.

Fig. 3. Diagrams with the p’-quark line which suppress the

contributions of the diagrams in Fig, 1,

Fig., 4 Pole diagrams for (2) K; ~vyyand (b) K ~ M M

L

Fig. 5 Two classes of diagrams for \+ n - u+ ;; . The
definition and evaluation of the effective xnZ vertex

{represented by a circle in the lower diagram) are

given in Appendix B.
Fig. 6 One-quark reducible diagrams for A+ n — vy + y.

Fig., 7 Leading contributions to A+ h -~y +vy, To leading

2 . .
v the diagrams in (a) reduce to those

order in M\

of (b).
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Fig.

Fig,

Fig.

Fig,
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ReF(B) vs. B. F(B)is defined in (A, 12). The figure
is the resuit of a numerical integration of (A, 12),

Courtesy Professor Chris Quigg.

Leading contribution to the A n transition charge
radius,

Diagrams contributing to the effective \n Z vertex.
The \n ¢ vertex.

Irreducible An £ 1 vertex.

)

Diagram for the Any vertex I :L .

Some diagrams contributing to the irreducible

Anyy vertex,
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TABLE 1

The Results of This Investigation

Order of Magnitude

Order of Magnitude

Experimental

Process of the Amplitude of Branching Ratio Rate or Bound® Comments
0 - 2 -8 -8
KL - WK GFa 10 10 (5) see text
Kg i Gra® ~10710 <107 @2 a
+ + -10 -7
K —= vy GFC!&' 10 < {5.6) 10 (28)
0 0 .
KL -7 v forbidden --- see text
kY ; G 1o 2
— o ——_
S T vV F €
-4 -4 .
K, = vy G 10 (4.9+0.4)10 input
K G (1.4)107° < (0.7)10°° a,b
S _bYY Fa v ' ’
+ + -6 -7 -
K vy G o 107°- 10 <(3.5)107°
0 -7 -4
- 10 < (2.4)10 b, c
KL T VY GFae
0 0 -8, -9
- 1 - -———
KS T YY GFoz 0 10 b,d
+ + -6 -6
K -1 ee GFa 10 < (0.4) 10 (21)
0 -
KL -7 ee strongly suppressed --- see text
0 2 -8 ---
KS - T ee GFa 10

a
The 2% contribution gives T (K

S

4
- vyy)l~2x 10" sec

bNo’c clear in the Georgi-Glashow model

C 0 0 -4
T(K — ™ yW/T{Kg~ 7 yy)s 10

d

T(Kg ~ myy)/ T{K, = yy) = 10

-2 -
or 10

3

-1

e
Unless otherwise noted these numbers are taken from the Review of Particle

Properties

(6)
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Important diagrams for (a) KL—- l'.L}-.-.L and (b) KL - YYe.



Diagram which contributes to the absorptive part of the KL—-p;amplitude.



A gcos@ e
N > 3 > Y
ut ' L@ 3 :
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Diagrams with the p’
diagrams in Fig, 1,

(b)
FIG.3

-quark line which Suppress the contributions of the



Y o
= o
Y M
(a) - (b)
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Pole diagrams for (a) KL = vy and (b} KL —- p;.
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Two classes of diagrams for \+npn —
of the effective AnZ vertex (

are given in Appendix 3,

B+ ;, The definition and evaluation
represented by a circle in the lower diagram)
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FIG.6

One-~-quark reducible diagrams for \ +n -» v o+

Y.
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FIG.7

LeadinT contributions to A+ n — Yty

-2
To leading order in M: ., the
diagraz:: in {a) reduce to those of (b), )
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FIG.8

ReI"3) vs, B. F(B)iz defined in (4.12), The firure is the rosult of a

numerical integration of (A, 12),

Courtesy Professor Chris Quigg.
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FIG.9

Leading contribution to the \n transition charge radius,
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FIG.10

Diagrams contributing to the effective \nZ vertex,



A(p) n(q)
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5
f
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) f
| l
FIG.11

The A\n ¢ vertex,



FIG. 12

Irreducible Anf { vertex.
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(a) (b) (c)

Y'Y

(d) (e) (f)
FIG.13

(y)
Diagram for the Any vertex I



(c) (d)
FIG.14

Some diagrams contributing to the irreducible Anyy vertex,
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ERRATUM

The amplitude for KS - vy, as calculated from the effective
Anyy vertex in the free quark model, vanishes to leading order in

mzlm 2
we

However, there is an important contribution to the absorptive
amplitude from the 2w intermediate state, An estimate of this contribution
[c.f. B.R. Martin et al,, Phys. Rev. D2,179 (1970}] leads to an expected

rate:

1"(KS-b YY) ~ ZI‘(KL > yvyY)

However we expect our free quark estimates to be reliable for the real
parts of amplitudes where symmetry breaking threshold effects are
probably not important. (KS - yvy is forbidden by U-spin).

The analogous absorptive contribution to K_ - woyy, from the 3nw

L
intermediate state, is highly suppressed by phase space [ we estimate
I"abS(I%_‘ -~ Tyy) ~ 10-7I‘abs(KS —~vyy)]. Our bound for this decay is not
modified,
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