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ABSTRACT 

In order to test the idea that hadrons are made out of some fundamen- 

tal constituents, it is most important to state precisely, in a general way, 

what we mean by the hadronic constituents. We call the constituents par- 

tons and state a set of basic assumptions. They are weaker than any of 

the assumptions previously used in connection with the model. With these 

assumptions, we show that if R E c(e+e- - hadrons)/o(e+e- - p+/L-) in- 

creases faster than or equal to log Q/M at large Q, ‘then the multiplicity of 

hadrons in e+e- - hadrons must increase at least as fast as . $‘og$ 

Q is the center of mass energy of the colliding beam. The increase in R 

with Q, itself, does not violate the basic concept of the parton model. If 

above relations between the increase in the cross section and the multi- 

plicity is contradicted by experiments at large Q, however, the parton 

model requires a major overhaul. 
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The parton model has generated great interest in connection wfth the deep 

inelastic lepton nucleon scattering and e+e- annihilation process. There are 

various different versions of the parton model, some of them, due to their 

simplified nature, predict various dr&natic effects. It is important to obtain 

a set of most reasonable assumptions of the model and understand their oonse- 

quences. We will state the assumptions required to prove Bjorken scaling for 

the structure functions of the deep inelastic ep scattering as well as those of 

e+e- annihilation into one hadron plus anything. Using the scaling property, we 

obtain a relationship between the multiplicity of hadrons in e+e- annihilation 

and the energy dependence of R. These have severe experimental consequences. 

The assumptions we use are weaker than any of the assumptions previously 

used. And they are of such a general character that if their consequences 

contradict experiments, it will force us to modify the basic ideas of the parton 

model. We stress however that the increaee of R with Q2 is not directly In 

contradiction with these assumptions. 

The parton model assumptions are: (a) There is some underlying field 

theory which governs the hadronic physics. The bare particles of the field 

theory are called partons. (b) The wave functions for a hadron state to be in 

a certain state of partons and for a parton state to be in a certain etate of 

hadrons are well defined. ’ 

(b. 1) Define 

d3kj I<pl;.‘,pplkI,..‘,kn, kn+I;..,ks>12 

(1) 
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This is ;L probability for a in or out (+, -) hadron state with momenta cl, * * * ,Ff 

t$, be found in a parton state which contains partons with momenta ‘;1, * *. ,cn. 

Lf the hadronic state is properly normalized, we must have2 

J 
I*<P~, . * *, pflkl’ *.-,kn>‘12d3ki( 1 for 15 ic n (2) 

(b. 2) Define 

oT1 

I <kI, .**,knIp1,***,pe>;12 = 

=I 

fi d3pjl<kl,...,knIP1,...,pf, pp+l.**-,ps> I2 

s=P j=1+1 

(3) 

This is the probability that a parton state Ikl, “‘,kd isfoundinainorout 

hadron state which contains hadrons with momenta pl, * * *, pn. Again, if (3) is 

well defined we must have 

J 
I<kI,“~,knlP1, .+*,pn>~12d3pi ( 1 for l>i_<n (4) 

(c) Since the integrands for (2) and (3) are positive definite, only a 

finite regions out of the entire phase space of d3ki and d3pi respectively are 

important. If we expect the parton model to be useful, we must be able to say 

something about the parton configurations by observing the hadronic configurations. 

So, we assume that; (i) The character of the strong interaction is such that the 

contribution of d3ki integration in (2) comes from the part of phase space about 

the direction pl, * * *, pm. In a particular frame Fi = (i;iL, yip), Fj = (EjL, zjP), 

(2) and this assumption yields 

I*<p1,...,p~lkl,...,kn>‘12 5 0 
[Mjd,,-; piJ2+‘; i= l.*-*p~ 

i 

(5) 
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2. 
ask. .-m, c > 0. k. - 

JL 31 
1 p. 
Yi 11 

is the transverse distance between Fi and l?. 
I 

That is, the major contribution to the integral (2) comes from the cone around 

rl, * * * ,i$ See fig. 1. (ii) The contribution of d3pi integration in (4) comes 

from the part of phase space about the directions ‘;1, * * . ,i$. This assumption 

together with (4) yields 

I+’ ***,knlpI,***,p~>~12 = 0 [ Mb[(pjl -; ,,) 2+c; i-I,**-,n/] 
=i 

(d) COn8id8r <kl, k2 (~1, * * *, pm>*. For given Ipl, * * * .pp>*, let 77 

be a finite phase space region which contains PI,. * a, pn. When kI and k2 are 

very far away from 11, we assume that the amplitude is sufficiently damped so 

that 

I <kl, k2b1,“‘,pp>t d’k, (7) 

is convergent. This assumption is supported by the expectation that a parton 

state IkI, k2>, when kl and k2 are far away from ?J, is found to be in a hadron 

state with all the hadrons in the phase space 7 must be very small. gee Fig. 2. 

The assumptions (a), (b. 1) and (b. 2) must hold in order to start talking 

about partons. (c) and (d) are not of the same class as the first three but they 
I 

are implied by any set of parton model assumptions previously used. It is 

trivial tc construct a field theory model in which (c) and (d) are automatically 

satisfied once (a), (b. 1) and (b. 2) are assumed. 

In Ref. 1, we have used the assumptions (a), (b.1). (b.2) and an experi- 

mental observation that in the deep inelastic ep scattering, the cross section 

for observing a final state hadron with large transversal momentum with respect 
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to the photon direction in the laboratory frame is negligibly small compared 

to that of observing a hadron with small transversal momentum. With these 

assumptions we obtained the parton model result for ep deep inelastic scattering 

lim v WtQ2, v) = 

v, Q2-- 
c e f fit@ 

x = Q2/2Mv fixed 
i 

(8) 

where f i (x) dx is the number of psrton “i” with a fraction of momentum between 

x and x + dx. ei is the charge of parton “i”. It is easily seen that (c) replaces 

the phenomenological assumption mentioned above. Thus (8) can be obtained 

from (a), (b. l), (b. 2) and (c). We have slso observed that the parton model 

result 

lim R(Q2) -const (9) 
Q2 - m 

does not follow from the assumptions (a) - (d). Rut rather a stronger 

assumption 

I-<p1,*~~,pnIkI,k2>12 ( 0 Min {(, y2k)4+‘; i=L 2}] (10) 

i 1 

and an assumption about the multiplicity of hadrons was needed to obtain (9). 

Consider e+e- - h + anything. h is a hadron. The kinematics is shown 

in Fig. 3. The structure functions are defined by 

cd 
/ 

do&q0 + p” - pi) 5 <O tJ;(O) Ip, a>--<p,olJ,(O) IO> 
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wl and G2 are functions of Q2 and v . The cross section is given by 

da 31KY2 
dwdcos0 =7 w F 

I 
1 I- sb12ew vpy 

4 1 2 (12) 

where 8 is the center of mass angle of the detected hadron with respect to the 

incident beam direction. In the parton model, ’ 

J -- 
c~l,pl d3xe iq’x JUNO> =C/d’kefds U(k)ynv(q-k) -<o!,pli;k, q-k> 

i 

(13) 

“i” denotes the type of partons. Consider the problem in a Lorentz frame defined by 

MZ 
p=(P+ E, 0, 0, P) 

q= “$P 7 +g , “IQ, 0, EIp - g (1 - T)) (14) 

2 
7 = l- 4 1 - (1+ i2)Q2/v2 for fixed W, r = (l+ q2) & I 

2v2 

7) is a parameter which defines a boost direction in the rest frame of the detected 

hadron. Writing out the zero-zero component, 

d3kd3k’ 44, q-k ; j la,P>- 

-<a, pti; k, q-k> (15) 

Using (6) we can place upper bounds for large pil. Choosing 
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I<k q-k; iIp,el, ““pf’J <’ [ M”((.ii Fik, 

g - zq 

)“‘(-T;Q -kj ) ‘+’ /] 

=tl 

I_<P, P1”“.Pp Ij; k’, q-K>l<O M 
Yi(q Q-k;) 

2’7 

(16) 

The numerators on the right side of (16) are the transverse momentum of i”, 

relative to r, q-rand %, < -p respectively. From these bounds, we want 

to show that the sum over the final state (Y can be limited to only part of the 

phase space about ‘i;and y-x. If randi? were approximately parallel, then 

the product of two amplitudes behaves for example 

M Z-k6 

( 1 

yikl 
pil- v7 - -zq M 

away from vectors2 andi?. With this convergence, the integral da can be cut 

off at finite transverse distance away fromx. We will show that the major 

contribution to (15) comes from the region where k and k’ are approximately 

parallel and along P. 

Define cones Cl, Cg, Cis CL. Consider the final state hadron with 

momentum <with yi>> g. For some t’, M<c [‘<< Q, say 

pi E ciif IPi1 - 
Yikl 

14. Pi’ c2 if lPil - 
yi(Qq - kl’ 

g--zq 
zll I< 5’ 
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and 

YikY 
Pi t Ci if ‘Pu - ‘s~7--1<[’ PiCCb lf lpu - 

Y#IQ -k; 
-.- z’q I<‘. 

-E - z’q 
(17) 

Any hadron with momentum pi must be contained in at least one of CL, C2, Ci 

or Ch otherwise the integrand of (15) is 0 ((f@+O and this region gives 

negligible contribution. Let the detected hadron with momentum’ij be 

contained in Cl. Consider pi { C2 or Cb. If pi E CiI then Ci n Cl # 0 since if 

Ci n Cl = 0 then (16)implies that the integrand is 0 NY”“) 
and this region 

gives negligible contribution. So, either Ci fl CL # 0 or Ci is empty. Similarly, 

if a particle is contained in C2, then Ci n C2 # 0 or CL is empty. Define 

nlandn2suchthatPcnl,ifIPFII<5 andPeD2if IPI 
YiQ - ~l<(. Thereis 

M << [ << Q such that all hadrons are mcluded in either Dl and n2. rand z-r 

are also included in Dl and D2 respectively. Assumption (d) is used to exclude 

the possibility that Ci and CL are empty. Then 

(1 + ?)6)2 F FL + 9 2 
t 1 

vv2 

=id!$! 
V 

d’kd’k’ 6(q”-p”-p2 <k’, q-k’ ; j Ia,p>__<c~,pIi ; k q-b 

5 
where 

J 
d (Y d3k d3k’ = l--I ld3pi + Jd3pJ $d3k Jd3k; 

t 

lPiL I<{ I& I<5 Ikl 1~5 lk; I<[ (18) 

where p = p 
it FL - yiQ/z. The process is shown in figure 4. The terms 

neglected from (18) is 0 Me 
(( 1) T - 

Consider the state I a, p> = Ipl, . * * , pn, p; (wee)>. 

Pl’ * * * , pn are nonwee hadrons and (wee) denotes collection of wee hadrons with 
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The hadrons with yi >> ,g can be clearly separated in to two groups Q 
according to (18). The hadrons with yi 5 0 f can also be separated by hand 0 

so that the Iwo groups pl,***,p, and p,+l,“‘,pn satisfy 

ii q=k+“($‘) a i=&‘l=~-‘-O($‘) . 
p 1 

Then 

g Yi+-w+o (g). iz$lYi= -(%) 

&;=Ewee+$P -g+ & q$ +& 
i= 1 

The energy conserving 6 function in (18) becomes 

6 -F+E wee+ &+ g1 +q 

(19) 

(20) 

Consider a hadron with y I 0 M2 
( 1 62 

and make a transformation to the . 

laboratory frame. It can be seen that such a hadron must have momentum of 

O(Q) and must be moving precisely opposite to the direction of the boost into 

the infinite momentum frame. Therefore, in the limit of large Q, the contribu- 

tion to the inclusive cross section from such region can be made negligibly 

M small. By similar argument, states which contain wee hadrons with y = 0 F 
( 1 

can be eliminated. States which contain hadrons with y = 0 5 
0 

requires more 

careful examination. These are very slow hadrons in the center of mass frame 

of the colliding beams. If the multiplicity of hadron does not grow as fast as 

Q, then even if some of the yi’s are 0 , the last term of (20) can be 
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neglected and we have 

(1 + q2)2 9 w, + 9 2 VT2 ( 1 

s d3kd3k’ z d (z &) <k’ , q-k’ ; i I b’(p) b(p) I i; k, k-q> 
Ikll, Ik;l<( =~ 

(21) 

where b+(p) is a creation operator for the observed hadron. 

a In case the multiplicity of hadrons is of 0 M ( 1 
, then we can not neglect the 

term C “LG!i&. From the 6 function and the kinematics shown in fig. 4, 
i= 1 

Y- it is clear that 2Mv <z < b?-!i!t h 
rl 

2Mv T e upper bound follows from the fact 

that the matrix element vanishes if % < nz. Assimilar bounds are also 

satisfied for z’. 

Then 

(1 + 7)2)2 T VI + (9)” vF2] dw 

5 @$xho d3k d3k1 <k’, q-k’; jlo!,p>--<a!,pli ; k, q-b 
ij 5 

(22) 

where right hand side is obtained by integrating over all W. AW is arbitrary. 

Summing over all (Y, we obtain 

F.+(y)” vv2] dw 

LF~CJ d3k d3k’ <k’, q-k’; i lb+(p) b(p) Ii; k, k-q> 
i 

AaL 
2M” I 2 5 

The matrix element of the right side of (21) and (23) 

(23) 

J 
d2kl d’k; <k’, q-k’; i lb+(p) b(p) Ii; k, k-q> 
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is related to the probability for finding a proton with momentum 5 in a pair of 

bare parton states with well defined range of z component momenta. As 

long as z = O(l), the probability for finding a proton in a state Ii, k, q-k> should 

not change with Q. Since n and Aw is arbitrary, we have shown that, (i) if the 

multiplicity of hadrons in the final state does not mcrease as fast as E, yw2 

as well as Cl, 
2Mv is a function of only - 
Q2 

and the result is the same as that of the 

naive parton model. (ii) If the multiplicity of hadrons in the final state increases 

as fast as Q, then vF2 and ml, 2Mv are bounded by a function of only -. 
Q2 

The experimental check on scaling of vv2 and ml is a direct test of assump- 

tions (a) v(d). But the energy momentum conservation sum rule enable us to make 

a strong statement about the multiplicity of hadrons. The energy conservation sum 

rule relates the total cross section and the multiplicity to the structure functions 394 

R(Q2) = ; j-’ w2 [ml + ; W vF2] dw 

8 

a> R(Q2) = i 
1 

J [ 
w Ml + ; w vv2 

I 
dw 

# 

(23) 

We have shown that for w = 0( 1). fil and vE2 are bounded by functions of 

only w. Therefore, any energy dependence must come from the lower end of the 

integral. In particular, it is clear that if we assume that the total cross 

section increases at least as fast as log 22 then we must have <n > growing 

as fast as $log$ . 
M2 

We see that in order to obtain a result that R(Q2) approaches a constant 

value as Q2 - 00, we must assume a behavior of the structure function in the 

wee region. This requires a more specific model. 
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The recent data5 on R indicates that it is increasing at least as fast as log 

Q/M. If the trend continues, it is most important to perform a careful study of 

the multiplicity as well as a check on fll, ~7~ scaling. 

The philosophy of our formalism’ differ greatly with those of Drell, Levy 

and Yan. 6 It is important to point out, however, one operational difference 

between our formalism and those of DLY. That is DLY discuss the energy con- 

serving 6 function in terms of energies of the hadrons. Restricting ourselves to 

discussing only hadron states has an advantage that the hadron states have well 

defined Lorentz transformation properties. The Lorentz transformation prop- 

erty of a parton state is unknown without detailed knowledge of the Hamiltonian. 

It should also be pointed out that although Bjorken scaling of fll and vF2 is 

predicted by DLY, they did not make any prediction about R(Q2). That is, they 

also have not ruled out the possibility that R(Q2) increases with Q2 because of 

the unknown behavior of wees. 
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FIGURE CAPTIONS 

1. The major contribution to (2) comes from the configuration in which 

iq-*, rn are contained in cones around Fl, * * *, 5. 

2. We expect the overlap between the parton state IkI, k2 > and the hadron 

state Ipl,...,pp> where $I,*..,< t: q is sufficiently small so that (7) 

converges. 

3. e+e- - h + anything. 

4. The configuration for e+e- - hadron + anything. 
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Mv= p*q w=2Mv 
Q* 1355*3 

FIG. 3 
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FIG. 4 


