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ABSTRACT 

An inclusive decay amplitude is defined and discussed. It can be 

understood as a continuation of an absorptive part of 2-2 scattering which 

is related in a different kinematical region to a total cross section. In 

exotic channels we employ an assumption of smooth behaviour of this 

amplitude to obtain a relation between the width of a resonance to total 

cross sections. Some examples are discussed. 
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I. THE INCLUSIVE FOUR-POINT FUNCTION 

We investigate here decay reactions of the type R - c + anything, 

which we denote by (R,c). Let us use the definitions P = pR-p,, 

P2=s and E = energy of particle c in the rest frame of R. It is then 

easy to see that 

s =M’+,L~ - 2ME (1) 

where M and p are the masses of R and c respectively. We can now 

define an inclusive decay rate by 

I-(S) = =?- 

16rr2M2 
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(2) 

where the sum is over all allowable decays that contribute to (R, cl. The 

integral over T(s) is 

/ 
ds r(s) = <nc> r (3) 

where F is the width of the resonance R and <nc> is the average number 

of particles of the type c observed in its decays. These results follow 

along the same lines of reasoning that leads to inclusive distributions in 

high energy production processes. As a matter of fact it can be viewed 

as a continuation of the high energy production processes down to a 

resonance pole in the incoming channel. It is therefore also easily 

identifiable with a discontinuity of a two-body reaction amplitude 

EtR--c+R. 
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To investigate this last point let us look at the various cuts in the 

cR forward scattering amplitude using the narrow resonance approxi- 

mation. We show some characteristic cuts in Fig. 1. As an example 

we consider here the case of a pionic 
* 

decay of K (1420). We encounter 

both s and u-channel cuts. One should note that s = (Mi p)2corresponds 

to u = (MT t-1)2. Thus it turns out that the elastic u-channel opens up 

at the end of the observable s-channel decay region. Nevertheless the 

inclusive decay rate of Eq. (2) represents only the discontinuity across 

the s-channel cuts. We will consider in the following the discontinuity 

across all the s-channel cuts only and designate it by A(s). It can be 

represented by 

/Ml2 
d3ki d3k 

n 

292r)3 
. . . 

2 on(21r) 
3 (2~)~ 6(‘4)(P-i!i ki) (4) 

where P is either pR + pc or P 
R 

- p, according to whether we consider 

scattering or decay processes. Above the elastic threshold one can use 

the optical theorem to write 

A(s) = (s - (M+P)~) (~-(M-)J)~) UT(S) s 2 (M+P)~ 

thus relating A(s) to the total cross sectionof CR scattering. In the 

decay region one can use Eq. (2) to relate the same function to the 

inclusive decayrate: 

8rr2~2 A(s) = dm r(s) m2 5 s 2 (M-F)~ 

(5) 

(6) 
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Here we used m2 to designate the lowest threshold of the decay region. 

The upper limit is determined by E=p. Thus we see that the optical 

theorem can be generalized in an obvious way in the narrow resonance 

approximation to include both the total cross section and the inclusive 

decay rate as manifestations of the same absorptive part in different 

kinematical regions. The function A(s) represents all the interesting 

physical features such as resonances in the low energy region. They 

can be observed if they fall into the decay region. Since our initial 

particle R is unstable we may expect to obtain a direct information in 

the scattering region only through model dependent evaluations of cross 

sections in nuclei. The me asureable inclusive decay rate represents 

therefore the best available information about the function A(s). 

Several comments are in order: (i) All the discussion is based 

on the narrow resonance approximation. This means that while looking 

for the location of cuts one considers R to have zero width. Eventually 

one calculates of course the width P and the hope is that as long as it is 

small with respect to M the narrow width approximation is justified. 

In reality the fact that P can be of order k ruins the careful distinction 

between the boundaries of the different physical regions in Fig. 1. 

(ii) In our discussion we ignored the effects of spin. The results should 

therefore be regarded as averaged over the spin states of R and summed over 

those of c. One can of course formulate the same problem for each 
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individual helicity component. In particular the spin components of R 

may be of interest in future applications. (iii) One may also extend 

this discussion to non-forward four point functions (t # 0). Over a finite 

t-range one finds contributions from inclusive decays. They form then 

a continuation of the absorptive part of the corresponding elastic scattering 

amplitude. 
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II. RELATION BETWEEN WIDTH AND CROSS SECTION 

Let us discuss now the case in which the cR quantum numbers are 

exotic. It is of particular interest because in this case one may safely 

assume that the absorptive part A(s) is a smooth function in the entire 

s range. From our experience with exotic meson-baryon channels 

we know that this is the case and we try to generalize this property to 

the present problem. 

As an example let us investigate the consequences of a structure 

like A(s ) = cs in the case p, m < < M. The inclusive decay rate becomes 

then 

T(S) = 
Ecs = cs(M’-s) 

8n2M2 ibir2M3 
0 < s -< M2 (7) 

whereas the asymptotic total cross section is o 
T 

= c. Using Eq. (3) 

we find then 

CM 
3 

<n >F=- 
C 

9bn2 
(8) 

which gives an interesting relation between the width of (R, c) and the 

asymptotic cross section of ER. 

The assumption that A(s) = cs is, of course, arbitrary. Nevertheless 

if we assume that no significant structure exists at low s values we can 

view it as an upper limit on the order of magnitude of F. In other words 

we allow the real A to be smaller than cs but not much larger than that. 
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Alternatively, if <n> is given, we can use the resulting c of Eq. (8) as 

a lower bound on the order of magnitude of CJ 
T 

: 

M3 
<n >r_< - 

C 
9brr2 

OT (9) 

Let us investigate the consequences of this relation for several 

interesting cases. As a first example we will look at the decay properties 

;:: 
of the K (1420). The kinematics of this problem lead to the structure of 

cuts shown in Fig. 1. Using the data1 we find that for (K 
::i+ _ 

, n ) one 

obtains <n -> = 0.2 and therefore <n 
lr 

n->F z 20 MeV. Inserting this 

value into Eq. (9) we obtain %(n+K*+) > 2.6 mb. 

Alternatively one can work back from cross sections to widths. 

Nuclear measurements’show that oT(A1p) = 23 f 3 mb and oTtQp) = 

21 f 7 mb in the ranges of 10 - 15 GeV. Let us assume that the corres- 

ponding meson-meson reactions are reduced by at least a factor of $ 

and set crT(A1~) < 15 mb and crT(Q~) < 14 mb. If the main decay mode 

of A1 is A 
1 

+ pr we find for (Ai , + a-) that <n,-> = 0. 5 and Eq. (9) 

leads to PA 
1 

< 110 MeV (assuming MA = 1.1 BeV). Similarly if the 

:g 1 
Q decays are dominated by Q - K ?r one can conclude for (Qf, a-1 that 

<n -> = $and Eq. (9) leads to P _< 150 MeV and F -< 190 MeV for the 
ll 

choices M Q = 1.2 BeV and M Q = 1.3 BeV respectively. Note however 

that for M = 1.2 BeV one finds m2=. 4 BeV2, (M-P)~ = 1.12 BeV2 and 

M2 = 1.44 BeV2. Hence the approximations needed for the derivation of 
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Eq. (8) do not really hold and the integration range in s in reduced by a 

factor of 2. The prediction for P should be reduced accordingly by at 

least a factor of 2. These results indicate that in the Q range there are 

presumably several resonances present. 

The continuation from the decay to the scattering region is clearly 

a speculative step. Nevertheless the results show that it seems quite 

reasonable to assume that a smooth function describes both in the case of 

exotic channels. We would like to suggest that experimental data in these 

channels be presented by the function A(s) of Eq. (6). Its comparison with 

whatever information is available from nuclear experiments can lead to 

further insight into the question of the structure of resonances and their 

interactions. 
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FIGURE CAPTION 

Fig. 1 The location of several s- and u-channel cuts of the inclusive 

* 
W , 

::i 
a) problem for K (i420). 
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