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THE MEccHANICS oOF CONFORMAL INVARIANCE

Every canonical field theory has associated with it an energy momentum tensor
having the following properties:

2
O“y(x) = B“v(X), —_ 0pv = D (1)
ax

»

This object is always a local function of the underlying fields of the theory and 1
allows onc to construct additional conserved tensors:

J .
5;‘ M;W(x) = 0, Ma,,, = X0 — Xl (2)
A

The two conservation laws then lead to 10 conserved integrals of the motion
P, = f A% 00,1, F), M, = f % Mont, %)

which correspond preciscly to the 10 generators of the Poincaré group. In general
there are no further conserved quantities associated with space time transforma-
tions.

Let us, however, specialize to theories for which 8,, is traceless. Such theories
are perforce massless, for, if we consider single particle matrix elements of 8,,, we
have :

(p I eﬂ-v t P = Puly
or
(plOlpy =pt = mt

so that § = O implies m* = 0. More importantly, the tracclessness of 8,, plus its
symmetry and conscrvation allow us to construct five new conserved currents

Sy = XM, #S, =60 =20
KI‘“’ = (z'xﬂx)\ - A‘egﬂ)\)gvxy OPK“V = Xp,g = 0
Associated with these currents are five new constants of the motion

D = /‘(/.T‘ .\')\0)\(;(1, I)

Ay , drx - g 0Ma, 1)
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Therefore, massless theories at most can have 15 conserved quantities associated
with space-time transformations. This suggests that we look for a 15 gencrator space-
“time symmetry group, including the 10 gencrator Poincar¢ group as a subgroup in
the expectatxon that this larger group will apply to massless theories.

It is in fact rather casy to find such a group. We simply adjoin to the known
translations and Lorentz transformations the following five-parameter sct of trans-
formations

Difatations: x, — X,
Xy — € 4

Special Conformal: x, — T 20k 4 et

The new fransformations are nonlinear and do not leave the Minkowski interval
unchanged:
Dilatations: (x — »)* — A {(x — y)*
Special Conformal: (x — »)* — (x — y)*/a(x)o()) (5)
o(x) =1 — 2¢c-x + ¢*x?

It is apparent that the conformal transformations may change spacelike intervals
into timelike intervals and leave only the light cone invariant. There do exist, how-
ever, scalar invariants of these transformations, but they involve at lcast four space-
time points. A typical invariant is the cross ratio

(X| it Xz)z(,\':; - .\'4)2
(X; - X4)2(xz - ~\':x)2
From the transformation laws of Equation 4, plus the familiar laws for trans-

lation and Lorentz transformation, one can read ofl the infinitesimal generators of
the 15 transformations we are considering:

R{xix2x3x,) =

(6)

P, —i3, M, —i(xd, — x.,3,) )
7
~ D-—ix-a K, —i(2x,x-9 — x%,)
Using this representation we can compute the group algebra, and, indeed from the
fact that the algebra closes, demonstrate that we are really dealing with a group.
The full algebra, apart from the familiar commutators of M,, and P, among them-
selves, is

[Py, D] = iP, M, D] =0

K, D] = —iK, [K,K]=0 ®
My, Ka) = i(gnKu — 8aK))

[Kus ] = =2i(gwD + M)

Dirac noticed a long time ago that this algebra, known as the aigebra of the
conformal group, is isomorphic to SO(4,2). The identification which realizes this
correspondence is
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[JAB; Jen] = i(gnedsp ~ Gaclyp + 8spdca — ganJecn)
Juv = Mpv, Jo = D ) (9)
wa = }.§<Py - Ku)r JG# = lé(P + Ku)

One can directly sce how this isomorphy arises by considering six vectors 74 Whose
metric tensor is the g4, given above. Under SO(4,2) transformations on N4, N° =
14840 is of course preserved. In particular, light-cone rays are transformed into
onc another. Now light-cone rays are specified by four coordinates and we can
choose the unique standard form

= K(xy, 13(1 + x%), 15(1 — x?)) (10)

to establish a corrLspondanc between six-dimensional Iu,ht cone rays and four-
dimensional vectors. The S0O(4,2) transformations take light-cone rays into other
light-conc rays and thereby gencrate transformations on x,. It is not difficult to show
that these are just the transformations we have been discussing.

The SO(4,2) correspondence simplifies many calculations. For example, the
S$0O(4,2) scalar invariant is just 9, -n. by virtuc of Equation 9:

M-n: = —/2K1K2(x1 — Xy)?

so that although (x; — x2)?is not invariant

Gnem)(mseme) (o — xa)2 — xo)?
(Mmem)(meems) (o = x)2(x, — x)2

is.

In order to study how field theorics behave under conformal transformations,
it is necessary to classify the possible transformation laws of ficlds. We make use of
the remark that if we exclude the translations from consideration, the point x = 0
is carried into itself and we expect the fields at x = 0 to be camed into linear com-
binations of themsclves. Consequently, under the infinitesimal gencrators of dilata-
tions and conformal transformations, respectively, we have

30¢(0) = De(0)
oxup(0) = ApsO(O)
when D and K are numerical matrices. The group algebra matrrces are as follows:
0,K] =K [R,K]=0 ’
D,Z0] =0 [Zuw K = g — gakK,

where Y_,, is the anlog of K, and D for the special Lorentz generators My,.
The commutator of D and K implies that

eDuK e-De = eﬂK (11)

for any a. Since K xs a finite dimensional matrix, it satisfies a polynomral charac-
teristic equation P(K,;) 0. But then Equation 11 implies that P(e“K,,) = 0 as
well, for any a. This is possible only if the characteristic polynomial is actually a
monomial, K " = (). Therefore K is nilpotent. A particularly convenient choice of
nilpotent matrix is K“ = 0. This, it turns out, is forced on you if the fields ¢ belong
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to-a single irreducible representation of the Lorentz group. In that case, which is
appropriate to the study of a canonical field, it turns out that D is just a numerical

-~

multiple of the identity, D = dI. The number d, known as the dimension of the
field, is otherwise undetermined.
In order to reconstruct the infinitesimal transformation law of the ficld for ar-
bitrary x from its transformation law at x = 0 we nced only usc the group algebra
of Equation 8 to show that :

e"izDeiPz = D 4 x-P
e Pk et = K, 4+ 2x,D + x*M,, + 2x,x-P — x*P,
This allows us to show that the general infinitesimal transformation law is
dop(x) = (d + x-9)p(x)
drup(x) = (2xux+0 — X%, + 2x.d + 2x3 L) (x)

We reemphasize that we are taking o(x) to be a ficld of definite spin so that we may
ake K, = 0 and D = dI. Therefore, the only new parameter needed to characterize
thc behavior of the ficld under conformal transformations is ¢, the dimension.

(12)

CANONICAL TREATMENT

Now that we know how fields transform under canonical transformations, we
must ask how to construct a Lagrangian such that the resulting field theory is in-
variant under the conformal group. Under a general variation d¢ of the fields, the
change in the Lagrangian is

oL 0L
= = abe

if we use the Euler-Lagrange equations of motion. On the other hand, if, as an
identity,

0L = 9%\,
then the current
J, =bo — A, (13)

is conserved. The canonical commutation relations of the ficlds also guarantee that
J,, is the generating current of the transformation ¢ — ¢ + be. Similarly, if a sym-
metry-breaking term is added to the Lagrangian so that the best one can say 1s

38 = a*A, + A

then the same current J, still generates the transformation ¢ — ¢ + 8¢, but the
current is of course not conserved, but satisfies

.

T, = A

Let us apply these remarks to scale transformations, recalling that the funda-
mental field transforms as
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= (d + x-9)¢

Lvidently du¢ will transform with dimension ¢ + 1, and monomials in ¢ and its
derivatives will transform with a dimension equal to the sum-of the dimensions of
its factors. Thus

oM = (dy + x-0)M
=4 4+ x-OM 4+ (dy — M
= ¥ M) + (dyy — OM

If the total Lagrangian is a sum of monomials £, then the current J, of Equation
12, with the identification A, = x,L, satisfics

Sy = Z ((1,' - 4L,
so that scale transformations are a symmetry of the theory if ¢; = 4 for all the
monomials in £. If we muke the standard assignment of ¢ = 1 for Bose fields and
o = 3, for Fermi ficlds, this means that scale invariance isa symmetry provided that
all coupling constants are dimensionless.

In most interesting cases we can make trivial additions to the scale transforma-
tion generating current (hereafter called S,) such that S, = 6,,x*, where 6,, is a
satisfactory encrgy-momentum tensor for the theory having the property that
§ = 6.* involves only those terms in £ with dimensional coupling constants.

For conformal transformations, the story is similar but the algebra is more
eclaborate. One is ultimately able to rearrange the generating current (K,,) of con-
- formal transformations so that it takes the form

Kuv = (2x,xn — guax?)v

with 0,, being the same energy-momentum tensor as before.

We are of course interested in finding the constraints on the Green’s functions
of the theory which are implied by the existence of these generating currents. A
convenient method of doing this is to consider the identity

J(z- (T(S.(x)() -+ - ¢y D) = (TOW)SG) -+ - (1IN

+ 0(x0 — y(T(Su(x), dO)ld(ys) - - - (1)) + permutations

If scale invariance were an exact symmetry, the term involving 6 would vanish, of
course, but we want to consider what happens in theories where the particle masses
are not zero. The left-hand side of this equation may be eliminated by integrating
dx. The equal time commutators are evaluated by observing that S, is the gen-
crating current for scale transformations so that

6(xy — yo)[Su(x), (1] = 8(x — »)(d + x-9)9(x)

This then yields an equation relating an amplitude for # fields to an amplitude for
n fields plus an insertion of the operator 6.
This relation is most casily appreciated in momentum space, where it reads

{:4 — nd — L p- 71’} T p - pu) = —ile™ (0501 -+ - pa) (14)
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when '™ is the one-particle-irreducible Green’s function for n particles and [T,
is the one-particle-irreducible Green's function for # particles plus an inscrtion of ¢
(carrying zero four momentum) and d is still the dimension of the ficld ¢.

Carrying out a similar treatment of the conformal gencrating current yields the
more formidable equation

0 ('] (" 02
“2d —— = 2y = piy = Ty
Z [ (')[)i“ Pi ap; opi# + Piu 61)1'2] (I’ r )

(]5)
<)
= —2f —— I’o("‘)(/\'i[h fe /711) {k':-”

ak*

To simplify the equation, we have taken scalar ficlds so that the spin matrix Y.
appearing in Equation 11 may be dropped.

If § is zero, Equations 13 and 14 are differential cquations for I which can
be solved to yield the general form of '™ which is consistent with exact scale and |
conformal invariance. We shall shortly discuss what this general form looks like
and what its phenomenological consequences might be. The first problem to sur-
mount is that in interesting theories, the particle masses arc not zero and 6 is there-
~ fore not identically zero. On the other hand, 6 is usually a “soft” opcrator—that is
" 10 say, of dimension less than four—and Weinberg's thcorem guarantees that in
the deep Euclidian region (all mementa large and spacelike) Uy vanishes more
rapidly than '™, Therefore, in appropriate asymptotic regions one would expect 1o
recover the predictions of a theory in which 8 does vanish. This is the basis of all
practical applications of scale and conformal invariance.

ConsTRUCTION OF CONFORMAL INVARIANT GREEN’S FUNCTIONS

Having argucd that in appropriate high c¢ncrgy limits, scale and.or conformal
invariance is reestablished as an exact symmetry, it is appropriate to ask what
restrictions this places on Green’s functions. It would be possible to solve the rele-
vant Ward identities directly, but it is more transparent to use the SO(4,2) formal-
ism established in the first section.

We want to consider fields, ¢(n), depending on the six-vector, 7, instead of the
usual fields, ¢(x), depending on the Minkowski four-fector, x. We have previously
established that the correspondence between n and x 1s that all the points lying along
a given light-cone ray (9 = %' = 0,7 = c¢n’) correspond to the same x according
to the relation

(16)

] 4+ x21 — x?
n—K(X, > T )

Consequently, the ficlds ¢(n) need only be defined on the light cone, n* = 0. Further-
more, since 7 and Ag correspond to the same Minkowski point, x, the dependence of
& on the overall scale of 5 should not be a true dynamical degree of freedom. This’
can be achieved by requiring that

é(A\n) = N(n) (17

when d is the dimension of the underlying field ¢(x) and making the identification
1 .

() = 56 (18)

I\’tl
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with X as defined in Equation 16. With this identification it is easy to check that
applying the linear transformations of SO(4,2) to é(x) induces the correct confor-
mal transformations on ¢(x).

With this background it is easy to construct conformally invariant Green’s
functions. Let us illustrate with the two-point function of two different scalar fields:

‘ 1 . .
(p1{x) o)) = KK (Di(m)p2(n2))
1y

By invariance under SO(4,2), WL; have
(Ba(m)ba(na))y = Flpy - ma)
while the homogeneity cquation (Equation 16) requirces that
Fp-m2) = NOF(n-m2) = N2F(n, - n0)
This requires, firstly, that d; = o, = d zﬁ-ld, sccondly, that
F(ni-m2) = Cln - mp)¢

Recalling from the first section that n; - 7. « K\Ky(x; — x2)?, we find that

.v (@1(xD)a(x2)) = Cl(x; — x2)?)¢

Conformal invariance has supplied us with the “selection rule” d, = d, and com-
pletely determined the functional form. Actually, scale invariance alone would have
given the same functional form had we assumed that d; = d..

If we carry out the same analysis for a three-point function we find the similar
result

<q’)1(.\’])@52(.\'2)(1):;(.\':;) = C(.\'l - .\‘z)(dl-*—dz-. 3. (Xl — -‘-':;)Ml ta—da) (X:: - .\':{)((12+'l'1—'ll)

Once again, the functional form is determined up to a constant but this time con-
formal invariance is essential to the result. Finally at the level of four-point func-
tions arbitrary form factors depending on cross ratios come in and the functional
form, though severely restricted, is not completely determined.

We have so far discussed the fairly trivial case of scalar fields and had to con-
struct objects which transformed as SO(4,2) scalars. If we deal with nonzero fields
we must construct SO(4,2) tensors and worry about projecting out the physical
components of the tensors. The algebra is more complicated, but the essential
result that two- and three-point functions are determined up to multiplicative con-
stants remains truc in most cases. .

ANOMALIES !

In the second section we gave a naive canonical treatment of the Ward identitics
for scale and conformal invariance. It is by now well known that it is in general
illegal as a result of the underlying divergences of perturbation theory to make free
use of canonical commutators and equations of motion in deriving Ward identities.
The truc Ward identities will differ from the canonical ones by anomalous terms
which are calculable only by special arguments. We now turn to the question of
.whether the scale and conformal Ward identities are afflicted with such anomalies.

The simplest way to discuss this problem is to use the normal product method
of Zimmermann. The essence of this method is that it allows you to use the cqua-
tions of motion and equal-time commutators as long as you keep proper track of
the subtractions necded to define products of operators at a point.
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We will try to give the idea of Zimmermann’s method as succintly as possible:
Consider an operator such as ¢0¢, where ¢ is a scalar field. It has dimension four,
and one can easily verify by power-counting that its two- and four-point matrix
clements require subtraction. On the other hand, we might use equations of motion
to replace D¢ by w?¢, in which case we would have g = p2¢*. The operator ¢F,
however, has dimension two and only its two-particle matrix clement needs subtrac-
tion, and using the cquality ¢0¢ = u*¢? is bound to lead to trouble. We could,
however, perform unneeded subtractions on ¢* treating it as if it had dimension
four ( a notation four this is [¢*]« where d is the dimensionality assigned to ¢* for
purposes of determining how many subtractions it receives). Zimmermann's point
is that the cqualily [¢O¢ls = u?[p?]s is consistent becausce although we have used
the equations of motion, we have not incorrectly changed the subtraction procedure.
FFinally onc can show that an objcct such as [¢*]s can be reexpressed in terms of
opcrators with standard subtractions as follows:

[¢°14 = al@®). + blo']s + claud o]y (19)

The sum is over all operators (of the right spin, of course) of dimension less than or
cqual tc four) and a, b, ¢ are functions of the renormalized coupling constants of
the theory.

In the Ward 1dentities of Equatlons 13 and 14, @ is formally of dimension lcss
than four, but is cast up by using the equations of motion within opcrators of
dimension four (6,,) itself). The Zimmermann algorithm would then be that the
Ward identities are correct so long as we understand by 8 the object [8];. But, as we
sce from Equation 18, [6]4 contains operators which are truly of dimension four and
it is not possible to argue that the 8 terms in the Ward identitics vanish in some
asymptotic limit.

Let us consider in a little more detail the scale invariance Ward identity, Equa-
tion 13, in a scalar ficld theory. In this casc 0 = u¢* an opcerator of dimension two,
and we must deal with

[0]s = a(M[8]> + b(N)[p*]a 4 (M) [9upir*d]4

where A is the coupling constant of the theory. We encounter zero momentum
matrix elements of {6}, on the right-hand side of the Ward identity, and we would
like to show that the dimension four constituents of [f]; can be re-expressed in a
useful manner. For example, the zero four momentum inscrtion of [¢*]s simply
counts the number of ¢* interactions there are in a given graph. If A is the ¢+ coup-
ling constant, then we may say

i) d
Tisi1, (0;- Pre-+ Py) = A= T™(P ... P,)

oA
The zero four momentum insertion of [9.¢3%¢]s can be seen, by virtue of a topolog-
ical identity, just to count the number of external legs or

Plama%l.. (0;- Py -+ Pn) = nT(Py -+ Py)
These two relations allow one to rewrite the Ward identity as
I:4 —n(1 +vQA) = 2P - —- + B(\) = ] reo(py.-. P

o 1 (20)

(n)

= —ia(A) T'iey, (O;- P+ Po)
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where the functions «, 8, v arc unknown functions of the 8 term arising from [¢4],
and the v term arising from [2,0d%¢ ;. Since the operator [6,] is of dimension less
than four, we can arguc that it is asymptotically negligible and that T does
asymptotically satisfy a homogencous Ward identity. The anomaly termis 8 and
scriously modify the conclusions onc may draw from this fact. Only if 8 = 0 be-
causc of a special choice of coupling constant can one directly get a simple result:
In that case onc recovers the naive scaling Ward identity but with an anomalous
dimension d = 1 + +, assigned to the underlying field.

Onc can also discuss in a similar fashion the Ward identities for conformal
invariance. Once again, the Zimmermann algorithm suggests that the naive Ward
identity is correct so long as we replace 8 by [6]s. Then the problem is to reexpress
the dimension four parts of [6]; in a uscful form. This is now more complicated
because one is not simply taking the zero momentum matrix element of . Never-
theless there is still a topological identity which simplies [3,¢d%¢]s:

d
aP#
This identity just replaces the canonical dimension of the underlying field by the

anomalous dimension, 1 4+ <. No similar reduction appears possible for [¢*],.
Therefore the final form for the conformal Ward identity is

(7 s (n 4
i Piioanots (ki Proo P)ico = 3 TOXPy -+ Py) (21)

ok#

> 2(1 + %) " _gp, .09 + PP o TP ...)
=1 e P aP aPx T TH aP2 !

= =2 5%; [T 15 +8t001 (k3 - Py )lk=o
Clearly the right-hand side of this equation becomes asymptotically negligible only
if 8 = 0. Only in this special case is the effective 6 insertion of dimension less than
four and only then can one recover asymptotically the homogeneous conformal
Ward identity. In that special case, just as for the scale invariance Ward identity,
the only effect of anomalies appears in the occurrence of anomalous dimensions
d =1 + v, for the underlying field.

Fixeb POINTS

The results of the last section suggest that the asymptotic behavior of Green’s
functions is scale and conformal invariant in the usual sense only if the coupling
constant is adjusted such that 8(\) = 0. This would mean that for randomly chosen
values of the coupling, one should never see any vestiges of these symmetries. It
turns out that a closer inspection of the Ward identities reveals that this conclusion
is too pessimistic.

Consider the “corrected” scaling Ward identity of Equation 19 in an asymptotic
region where I'{;, may be neglected relative to I'* itself. Then we have the homo-

geneous equation

a d
4 — n — p. . == < La(pP,...) =0
[ ' n Z i <')P1~+60>\+ml] (Py---)
The operator 4 — n — > P;-(2/aP;) is nothing more than the operation of uni-
formly scaling all the momenta in '™ and an equivalent way of writing the Ward
identity in
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[n ‘%7- + BN f)\ + ”’YO\)] I'emP) =0

This equation is trivial to solve since it is just a first order partial differential cqua-
tion. The result is :
A

' (P gPrA) = TP, - P,l;}\(}\, 7)) CXp (-—- n'fd}\’ 7(1\ )> (22)

B(\)
A
with
AN D) =N
aJ Jd
(775“ + B 0—>:>>\ =0
This equation for A can be recast in the more helpful form
d - -
g A=A

t =Inn AO) =\

from which one sees directly that as n — + =, A approaches a zero of 8, say .
Then from Equation 21, one sees that the behavior of I')(n P; N\) is identical to
that of T((P; \o) in the limit » — . But since S(Ag) = 0, I'™ (P; \o) will, accord-
ing to the scale and conformal invariance Ward identities, satisfy the naive require-
ments of scale and conformal invariance with anomalous dimensions for the fields.
In other words, even though anomalies appear to destroy asymptotic scale and con-
formal invariance, except for those special values of coupling constant where 8 = 0,
one can use the scaling Ward identity to establish that the asymptotic behavior of
the theory for any coupling constant is ultimately the same as for those coupling
constants when 8 = 0, thus reinstating scale and conformal invariance as asymp-
totic symmetries. An interesting challenge is to construct a theory where one asymp-
totically reinstates not just conformal invariance, but the wider class of symmetries
implicit in the parton model, thus uncovering a field theoretic justification for the
parton model.
< N —

DISCUSSION

Dr. ALex HARVEY (Queens College, City University of New York): In the ap-
plication of the 15-parameter conformal group to classical field theory, such as the
Maxwell field, there are two well-known problems. One is that the conformal group
has transformations that convert timelike intervals into spacelike intervals so that
there is trouble with causality. The other is that nonzero mass is excluded because
mass is not a conformal invariant quantity. Do these two problems of the classical
theory have relevance to the work being discussed here?

Dr. CaLLAN: Yes. Physical mass leads to just plain explicit breaking of con-
formal and scale invariance. You must look for some appropriate limit of a realistic
field theory in which conformal invariance is rccovered. Causality is carried over
from the realistic theory in the limit.
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The problem is compounded by the fact that in an interesting quantum field
theory there are infinite masses sccretly buried in the bottom of the formulas that
arc associated with the renormalization of the theory. Both physical masses and
regulator masses can break conformal invariance and each type of mass leads to its
own funny problems. The latter kind [cad to the anomalies that we had 1o talk

around so much.



