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INTRODUCTION TO CONFORMAL lNVARiANCE 

C. Calian 

THE MECHANICS OF CONFORMAL INVARIANCE 

Every canonical field lhcory has associated with it an energy momentum tensor 
‘having the following properties: 

Q,“W = e,,(x), 2 0,” = D 
Y 

This object is always a local function of the underlying fields of the theory and 1 
allows one to construct additional conserved tensors: 

co 

The two conservation laws then lead to 10 conserved integrals of the. motion 

P, = 
s 

c/S e&t, x’), M,,y = 
s 

c/x- Mo,,(r, x) 

which correspond precisely to the 10 generators of the Poincari group. In general 
thcrc arc no further conserved quantities ,associated with space time transforma- 
tions. 

Let us, however, specialize to theories for which 0,” is traceless. Such theories 
are perforce massless, for, if we consider sin&e particle matrix elements of c?,,, we 
have 

(P I e/N I P) = PPP” 
or 

(/I / e 1 ];I> = 1.7” = 3222 
so that 8 = 0 implies & = 0. More importantly, the tracelessness of 8,” pIus its 
symmetry and conservation allow us to construct five new conserved currents 

s, = XVA,, 3’S, = 0 = 0 
Kp ” = (2X,Xx - x&g”h, a%-@” = x,9 ‘= 0 

Associntcd with these currents are five new constants of the motion 



Therefore, massless theories at most can have 1.5 conserved quantities associated 
with space-time transformations. This suggests that we look for a 15 gcncrator spacc- 
time symmetry group, including the 10 gcncrator Poincar6 group as a subgroup in 
the expectation th,at this larger group will apply to masslcss theories. 

It is in fact rather easy to find such a group. WC simply adjoin to the known 
translations and Lorentz transformations the following five-parameter set of trnns- 
formations 

, Dilatations: x,, - s, 

(4) 

The new transformations, are nonlinear and do not lcavc the Minkowski interval 
unchanged: 

Dilatations: (X - u)’ + X2(x - 4’) Z 

Spcxial Conformal: (X - y)? --) (s - Y)~/~(s)Q) (5) 

a(x) = I - 2 -x + c*x* 

It is apparent that the conformal transformations may change spacelike intervals 
into timelike intervals and leave only the light cone invariant. Thcrc do exist, how- 
ever, scalar invariants of these transformations, but they involve at lcast four space- 
time points. A typical invariant is the cross ratio 

(s - x*)*(x:3 - .s,)” 
x(x~x*x~x,) = &- - x,)*(x* - A-:{)* (6) 

From the transformation laws of Equation 4, plus the familiar laws for trans- 
lation and Lorcntz transformation, one can read off the infinitesimai generators of 
the 15 transformations we are considering: 

P, 4 iap MCLV --) i(X)&& - x&J 
(3 

D 4 ix-d Kp 3 i(Zx,x -3 - x$J 

Using this representation we can compute the group algebra, and, indeed from the 
fact that the algebra closes, demonstrate that we are really dealing with a group. 
The full algebra, apart from the familiar commutators of M,, and P, among them- 
selves, is 

Dirac noticed a long time ago that this algebra, known as the algebra of the 
conformal group, is isomorphic to S0(4,2). The identification which rcalizcs this 
corrospondcnco is 



LN, JCD] = ib&D - LbhD + gnDhi - gAD&N) 

Jc(Y = M,", Al, = D Co 

J+ = j:i (P,, - Kp), Jcp = >s( P, + KM) 

One can directly see how this isomorphy arises by considering six vectors rlA whose 
metric tensor is the gA/{ given above. Under SO(4,2) transformations on v..,, 72 = 
~,tg”“~11 is of COLIIW prcscrvcti. In particular, light-cone rrr~:r arc transformed into 
one another. Now light-cone rays arc specified by four coordinates and we can 
choose the unique standard form 

Tr = K(x,, Jk(l + x2), !$(l - X2)) (10) 
to establish a correspondcncc bctwcun six-dimensional light-cone rays and four- 
dimensional vectors. The SO(4:2) transformations take light-cow rays into other 
light-cone rays and thcrcby gcncratc Lransformations on x,. It is not difficult to show 
that these arc just the transformations WC have been discussing. 

The SO(4,2) corrcspondcncc simplifies many calculations. For cxamplc, the 
SO(4,2) scalar invariant is just v1 .qz by virtue of Equation 9: 

r/-I.rj* SE -j&Y,&(x* - x2)* 

sb that although (x, - x2)* is not invariant 

is. 
In order to study how field thcorics bchavc under conformal transformations, 

it is necessary to classify the possible transformation laws of fields. We make use of 
the remark that if WC exclude the translations from consideration, the point x = 0 
is carried into itself and we expect the fields at x = 0 to be carried into linear com- 
binations of themselves. Conscqucntly, under the infinitesimal generators of dilata- 
tions and conforma! transformations, respectively, we have 

6@(O) = &(O) 

h,P(O) = &40) 

when 5 and zP are numerical matrices. The group algebra mqtrices are as follows: 

[6, ii,] = R, [&, R,] = 0 i 

ia, C,Yl = 0 EP”, &I = &%Y - &XI\; 
where cPV is the anlog of R, and o^ for the special Lorentz generators MPY. 

The commutator of B and z, implies that 

&uj+Za = p& (11) 
for any U. Since BP is a finite dimensional matrix, it satisfies a polynomial charac- 
teristic equation P(&) = 0. But then Equation 11 implies that P(eGz,,) = 0 as 
well, for any a. This is possible only if the characteristic polynomial is actually a 
moiiomial, i7,li = 0. Thcreforc R, is nilpotent. A particularly convenient choice of 
nilpotent matrix is R, = 0. This, it turns out, is forced on you if the fields cp belong 



to a single irreducible representation of the Lorentz group. In that case, which is 
appropriate to the study of a canonical field, it turns out that E is just a numerical 
multiple of the identity, u^ = &. The number d, known as the dimension of the 
fieid, is otherwise undetermined. 

In order to reconstruct the infinitesimal transformation law of the field for ar- 
bitrary x from its transformation law at x = 0 we need only USC the group algebra 
of Equation 8 to show that 

e-iPoDeiP.z = D + x.p 

e-ip.z&,eip.~ = K, + 2x,D $ x”M,, + 2x,x. P - x?P,, 

This allows us to show that the gcncral infinitesimal transformation law is 

&p(x) = (d + x&c(x) 

k&4x) = (2x,x*3 - x%3, + 2.x-J + 2x"~,,,)q((x) 
(12) 

WC rccmphnsizc cat WC arc taking g(s) to lx a field of dcfinitc spin so that WC m’ay 
ake K, = 0 and LI = dI. Thcrcforc, the only new paramctcr nucdcci to charactcrizc 

:hc behavior of the field under conformal transformations is d, the dimension. 

CANONICAL TREATMENT 

Now that WC know how fields transform under canonical transformations, WC 
must ask how to construct a Lagrangian such that the resulting field theory is in- 
variant under the conformal group. Under a general variation 6~ of the fields, the 
change in the Lagrangian is 

if we use the Euler-Lagrange equations of motion. On the other hand, if, as an 
identily, 

66: = d’A, 

then the current 

Jb = II,& - A, (13) 

‘is conserved. The canonical commutation relations of the fields also guarantee that 
Jp is the generating current of the transformation q ---f QC + 6~. Similarly, if a sym- 
metry-breaking term is added to the Lagrangian so that the best one can say is 

then the same current J, still generates the transformation p - p + &Q, but the 
current is of course not conserved, but satisfies 

. 
apJ, = A 

Let us apply these remarks to scale transformations, recalling that the: funda- 
mental field transforms as 



Evictcntly J,+ wil1 transform with dinlcnsion f/ + 1, and monon~ials in p and its 
dcrivativcs will transform wit.h a dimension equal to the sum of the dimensions of 
its factors. Thus 

6M = (d.,, + x 4)M 

= (4 + x 4) M -I- (cl.,, - 4)M 

= P(XpM) + (& - 4)M 

If the total Lagrangian is a sum of monomials g;, then the current J, of Equation 
12, with the identification Ai, = x&, satisfies 

i)‘J,, = c (d; - 4)& 
i 

so that scale transformations are a symmetry of the theory if c/i = 4 for all the 
monomials in X. If we make the standard assignment of d = 1 for Bose fields and 
(I = ;!.i for Fermi fields, this means that scale invariance isa symmetry provided that 
all coupling constants are dimensionless. 

In most intcrcsting casts wc can make trivial additions to the scale transforma- 
tion generating current (hcreaftcr called S,) such that S, = OPvxy, where 8,” is a 
satisfactory cncrgy-momentum tensor for the theory having the property that 
8 = 0,’ involves only those terms in ~2 with dimensional coupling constants. 

For conformal transformations, the story is similar but the algebra is more 
elaborate. One is ultimately able to rearrange the generating current (K,J of con- 
formal transformations so that it takes the form 

Kpy = (2X,Xx - g,xx2)6Av 

with O,,. being the same cncrgy-momentum tensor as before. 
We are of course intcrestcd in finding the constraints on the Green’s functions 

of the theory tihich are implied by the existence of these generating currents. A 
convenient method of doing this is to consider the identity 

If scale invariance were an exact symmetry, the term involving 8 would vanish, of 
course, but we want to consider what happens in theories where the particle masses 
are not zero. The left-hand side of this equation may be eliminated by integrating 
&x. The equal time commutators are evaluated by observing that S, is the gen- 
crating current for scale transformations so that 

6(X” - Y”) [S”(X), dh4 1 = w - Y)W -i- x *Mx) 
This then yieids an equation relating an amplitude for n fields to an amplitude for 
n fields plus an insertion of the operator 8. 

This relation is most casiIy appreciated in momentum space, where it reads 



when I’(“) is the one-particle-irreducible Green’s function for II particles and f,,of) 
is the one-particle-irtcducible Green’s function for /r particles plus an insertion of 0 
(carrying zero four momentum) and d is still the dimension of the field 9. 

Carrying out a similar trcatmcnt of the conformal gcncrating current yields the 
more formidable equation 

To simplify the equation, WC have taken scalar fields so that the spin matrix cPiZ 
appearing in Equation 11 may be dropped. 

If 8 is zero, Equations 13 and 14 are differential equations for I’(“) which ccn 
be solved to yield the general form of I’(“! which is consistent with exact scale and. 
conformal invariance. We shall shortly discuss what this gcncral form looks like 
and what its phenomcnological consequences might bc. The first problem to sur- 
mount is that in interesting theories, the particle masses arc not zero and 8 is thcrc- 
fore not identically zero. On the other hand, e-is usually a “soft” operator-that is 

’ io say, of dimension less than four-and Weinberg’s theorem guarantees that in 
the deep Euclidian region (all memcnta large and spacelikc) I’b(“) vanishes more 
rapidly than PR). Therefore, in appropriate asymptotic regions one would expect to 
recover the predictions of a theory in which 8 does vanish. This is the basis of all 
practical apphcations of scale and conformal invariance. 

CONSTRUCTION OF CONFORMAL INVARIANT GREEN’S FUNCTIONS 

Having argued that in appropriate high cncrgy limits, scale and;or conformal 
invariance is reestablished as an exact symmetry, it is appropriate to ask what 
restrictions this places o,n Green’s functions. It would be possible to solve the rcle- 
vant Ward identities directly, but it is more transparent to use the S0(4,2) formal- 
ism established in the first section. 

We want to consider fields, $(T), dcpcnding on the six-vector, r, instead of the 
usual fields, @p(x), dcpcnding on the Minkowski four-fcctor, A-. Wc have previously 
established that the correspondence between q and s is that all the points lying along 
a given light-cone ray (q2 = $2 = 0, 77 = cr]‘) correspond to the same x according 
to the relation 

7 
=K x1+x*1-x2 

( 
> 2’2 > 

(16) 

Consequently, the fields 6(q) need only be defined on the light CON, 7” = 0. Furthcr- 
more, since q and Xv correspond to the same Minkowski point, A-, the dependence of 
6 on the overal scaie of 7 should not be a true dynamicai degree of freedom. This’ 
can be achieved by requiring that 

when d is the dimension of the underlying field +(A-) and making the identification 
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with K as defined in Equation 16. With this identification it is easy to check that 
applying the linear transformations of SO(4,2) to 5;(v) induces the correct confor- 
mrii transformations on +(x). 

With this background it is easy to construct conformally invariant Green’s 
functions. Let us illustrate with the two-point function of two different scalar fields: 

By invariance under SO(4,2), WC have 

GMTlM&(T%)) = &I1 * 772) 
while the homogcncity cquaiion (Equation 16) requires that 

F(XQ * 72) = XV(~, - 72) = XV(7j1 * Q) 

This rcquircs, firstly, that d, = (/? = r/and, secondly, that 

nt71 - 72) = w?l * rl2)” 
Recalling from the first section that ql . r/z a KIKz(xr - x2)2, we find that 

(~l(~J~‘?(X’L)) = c&Y, - x2)2]d 

Conformal invariance has supplied us with the “selection rule” dl = d2 and com- 
pletely determined the functional form. Actually, scale invariance alone wouId have 
given the same functional form had we nssrr~ncrf that cl1 = d2. 

If we carry out the same analysis for ti three-point function WC find the similar 
result 
(d,l(.~l)Qs2(.\..L)9);I(~~;()) =.= c(q - .\.p-f-4- (‘3). (x., - Q)(h +r’:I-J2) . (,y,, - ~\.:l)(~~tiJ3-~~l) - 
Once ag:lin, the functionai form is tfctcrmincd LIP to a constant but this time con- 
forma1 invariance is csscntiaf to the result. Finally at the lcvcl of four-point func- 
tions arbitrary form factors depending on cross ratios come in and the functional 
form, though severely restricted, is not completely dctormincd. 

We have so far discussed the fairly trivial case of scalar fields and had to con- 
struct objects which transformed as SO(4,2) scalars. If WC deal with nonzcro fields 
we must construct SO(4,2) tensors and worry about projecting out the physical 
components of the tensors. The algebra is more complicated, but the essential 
result that two- and three-point functions are determined up to multiplicative con- 
stants remains true in most cases. 

ANOMALIES ' 

In the second section WC gave a naive canonical treatment of the Ward identities 
for scale and conformai invariance. It is by now well known that it is in general 
illegal as a result of the underlying divergences of perturbation theory to make free 
use of canonical commutators and equations of motion in deriving Ward identities. 
The true Ward identities will clil‘fcr from the canonical ones by anomalous terms 
which are calculable only by special arguments. We now turn to the question of 
,whcther the scale and conformal Ward idcntitics are.afBictcd with such anomalies. 

The simplest way to discuss this problem is to USC the normal product method 
of Zimmcrmann. The csscncc of this method is that it allows you to use the cqua- 
tions of motion and equal-time commutators as long as you keep proper track of 
the subtractions nccdcd to define products of operators at a point. 
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WC will try to give the idea of Zimmermann’s method as succintly as possible: 
Consider an operator such as #J#, where Q, is a scalar field. It has dimension four, 
and one can easily verify by power-counting that its two- and four-point matrix 
clcmcnts require subtraction. On the other hand, WC might use equations of motion 
IO rcplacc 34 by $$J, in which case WC would have $a~$ = ,u24’. The operator @, 
howcvcr, has dimension two and only its two-particle matrix clcmcnt needs subtrac- 
tion, ar7ci using the equality 4~14 = p%jS2 is bound to lead to trouble. We could, 
howcvcr, perform UIII~~,~Y/CY/ subtractions on &‘, treating it IIS l/:/’ it had dimension 
four ( a notation four this is [@],i where d is the dimcnsionality assigncd to @ for 
purposes of determining how many subtractions it rcccivcs). Zimmcrmann’s point 
is that the equality [~$tiCp]~i = ~~[r#,~],~ is consistent bccausc although WC have used 
the equations of motion, we have not incorrectly changed the subtraction proccdurc. 
I-inally one can show that an object such as ~c#J’].~ can bc rcuxprcsscd in terms of 
operators with standard subtractions as follows: 

14’14 = f#q:! + /I[$‘“]., + c/a& rY@]q (1% . 

The sum is over all operators (of the right spin, of course) of dimension less than or 
equal to four) and a, 6, c are functions of the renormalized coupling constants of 
the theory. 

In the Ward Identities of Equations 13 and 14, 0 is formally of dimension less 
than four, but is cast up by using the equations of motion within operators of 
dimension four (8,“) itself). The Zimmermann algorithm would then be that the 
Ward identities are correct so long as we understand by 0 the object [e],. But, as we 
see from Equation 18, [f3], contains operators which are truly of dimension four and 
it is not possible to argue that the 0 terms in the Ward idcntitics vanish in some 
asymptotic limit. 

Let us consider in a little more d&ail the scale invariance Ward identity, Equa- 
tion 13, in a scalar field theory. In this czx 0 = p%,P, ~111 operator of dimension two, 
and WC must deal with 

whcrc X is the coupling constant of the theory. WC encounter zero momentum 
matrix elements of [f?], on the right-hand side of the Ward identity, and we wouId 
like to show that the dimension four constituents of IO]4 can be rc-cxprcsscd in a 
useful manner. For example, the zero four momentum insertion of [c$,‘]~ simply 
counts the number of +4 interactions there are in a given graph. If h is the 44 coup- 
ling constant, then we may say 

The zero four momentum insertion of [~,c#G~~]~ can be seen, by virtue of a topolog- 
ical identity, just to count the number of external legs or 

rf;J#,Jab]4 (0; * PI * - - P,) = nryP1 - - - PJ 

These two relations allow one to rewrite the Ward identity as 
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whcrc the functions CY, p, y arc unknown functions of the /3 term arising from [+‘]4 
and the y term arising from [nP@o+t$].l. Since the operator IS,] is of dimension less 
than four, we cc117 argue that it is asymptotically negligible and that I’(“) does 
asymptotically satisfy a homogeneous Ward identity. The anomaly tcrnx fi and y 
seriously modify the conclusions one may draw from this fact. Only if /I = 0 bc- 
cause of a special choice of coupling constant can one directly get a simple result: 
!n that cast one rccovcrs the naive scaling Ward identity but with an anomalous 
dimension d = I + y, assigned to the underlying field. 

One can also discuss in a similar fashion the Ward identities for conformal 
invariance. Once again, the Zimmcrmann algorithm suggests that the naive Ward . 
identity is correct so long as we replace 0 by [0],. Then the problem is to reexpress 
the dimension four parts of [O[,, in a useful form. This: is now more complicated 
because one is not simply taking the zero momentum matrix element of 8. Never- 
thctcss there is still a topological identity which simplies [d,$&#~]~: 

This identity just replaces the canonical dimension of the underlying field by the 
anomalous dimension, 1 + y. No similar reduction appears possible for [$“I+ 
Thcrcforc the final form for the conformal Ward identity is 

xL ( 
- 

i 
2 1 + y) A&- pi . L 2.. + ppi g 

i ilPi aPi' 1 1= 
I”“‘(pl . . . ) 

Clearly the right-hand side of this equation becomes asymptotically negligible only 
if @ = 0. Only in this special case is the efrective 8 insertion of dimension less than 
four and only then can one recover asymptotically the homogeneous conformal 
Ward identity. In that special case, just as for the scale invariance Ward identity, 
the only effect of anomafics appears in the occurrence of anomalous dimensions 
d = 1 + y, for the underlying ficld. 

The results of the iast section suggest that the asymptotic behavior of Green’s 
functions is scale and conformal invariant in the usual sense only if the coupiing 
constant is adjusted such that ,6(X) = 0. This would mean that for randomly chosen 
values of the coupling, one should never see any vestiges of these symmetries. It 
turns out that a closer inspection of the Ward identities reveals that thjs conclusion 
is too pessimistic. 

Consider the “corrected” scaling Ward identity of Equation 19 in an asymptotic 
region where rig/, may be neglected relative to TtrL) itself. Then we have the homo- 
geneous equation 

[ ’ 

4 - It - C Pi . $ + /3 2 + fZy l?‘“‘(P~* *.) = 0 
i 1 

The operator 4 - 11 - c Pi. (n/oPJ is nothing more than the operation of uni- 
formly scaling all the momenta in I’(“) and an equivalent way of writing the Ward 
identity in 



This equation is triviaf to solve since it is just a first order partial difl’crontial <qua- 
tion. The result is 

A 

with 

( 77 ; + /3(X) ;c x = 0 1 
This equation for x can be recast in the more helpful form 

if x = -p(X) 

i = In 7, X(0) = X 

from which one sees directly that as r) - + =, x approaches a zero of fl, say X0. 
Then from Equation 21, one sees that the behavior of I’(JJ1(vP; X) is identical to 
that of F(“)(P; X0) in the limit 7 + m . But since ,6(X,) = 0, I’OL) (P; X0) will, accord- 
ing to the scale and conformal invariance Ward identities, satisfy the naive rcquire- 
ments of scale and conformal invariance with anomalous dimensions for the fields. 
In other words, even though anomalies appear to destroy asymptotic scale and con- 
formal invariance, except for those special values of coupling constant where /3 = 0, 
one can use the scaIing Ward identity to establish that the asymptotic behavior of 
the theory for au?y coupling constant is ultimately the same as for those coupling 
constants when @ = 0, thus reinstating scale and conformal invariance as asymp- 
totic symmetries. An interesting challenge is to construct a theory where one asymp- 
totically rcinstatcs not just conformal invariance, but the wider class of symmctrics 
implicit in the parton model, thus uncovering a field theoretic justification for the 
parton model. 

DISCUSSION 

Dr. ALEX HARVEY (Queens College, Ciry University of New Yark) : In the ap- 
plication of the 1%parameter conformal group to classical field theory, such as the 
Maxwell field, there are two well-known problems. One is that the conformal group 
has transformations that convert timelike intervals into spacelike intervals so that 
there is trouble with causaIity. The other is that nonzero mass is excluded because 
mass is not a conformal invariant quantity. Do these two problems of the classical 
theory have relevance to the work being discussed here? 

DR. CALLAN: Yes. Physical mass leads to just plain explicit breaking of con- 
formal and scale invariance. You must look for some appropriate limit of a realistic 
field theory in which conformal invariance is rccovcred. Causality is carried o\‘cr 
from the rea1isti.c theory in the limit. 



The prob.lem is compounded by the fact that in an interesting quantum tieId 
theory there are infinite masses secretly buried in the bottom of the formulas that 
arc associated with the renormalization of the theory. Both physical masses and 
regulator masses can break conformal invariance and each type of mass leads to its 
own funny problems. The latter kind lcad to the anomalies that WC had ‘to talk 
around so much. 


