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ABSTRACT

The spontaneouslv broken gauae theory is formulated in the generalized
renormalizable gauae (RE—gauge). A parameter ; can be adjusted to include
existing gauges, U-gauge, R-gauge, and 't Hooft-Feynman gauge as special
cases. Three applications of the Rg—gauge fermutation are aiven. First
we compute the weak correction to the muon magnetic moment unambiquously
in the existing models for leptons. Secondly, we discuss the large momentum
transfer limit of the Pauli-magnstic form factor of the muon. Finé11y,

ve discuss the static charge of the neutrino, and show that an approoriate

reqularization makes it vanish.



I. INTRODUCTION

The possibility of constructing a unified theory of weak and eTE&tro-
magnetic interactions in terms of a spontaneously broken gauge symmetry has
attracted a great deal of attention lately, following the works of weinber_q1
and 't Hooft.2 In this paper we shall present a formulatiofr of spantaneously
broken gauge theories (SBGT) which is particularly suited for practical
calculations. In this formulation the gauge condition one adopts is a
generalization of the one used by 't Hooft and depends on a parameter ¢
which can vary continuously from G to . In this gauge, which we shall
call generically as the Rg -gauge, the massive vector hoson propagator is
precisely the one invented by tee and Yang in their discussion3 of the

g-limiting process

A (P 8) =

|
|
&~
| ammi— ]
-r
<
|
P
W 1
S
g
e
i
.
1

11
1
*
T
&
=
)
_;‘U
':U'
S
— T
- v
l

?"‘-M‘ - F""’M (1.1)

The difference between the RE-gauge formulation of SBGT and the
g-1imiting process applied to the electrodynamics of massive vector bosons
is this: in the former, the negative metric scalar boson pole of the vector
boson propagator at p2 = M2/¢ is cancelled by the pole of the unphysical

scalar boson propagator

O (1.2)



in the S-matrix, and the S-matrix of the former is independent of the parameter
£ and is unitary, whereas in the latter, one recovers the unitarity of the
S-matrix only in the 1imit £ - 0. The £-independence of the S-matrix" in
the former is a direct consequence of the nonabelian gauge invariance of
the relevant Lagrangian.

It is worthwhile to note the connection between the Rg -gauge and

other gauges discussed in the literature.

(1) The R -Gauge: In the proof of renormalizability of SBGT by Lee and

Zinn-Justin , and also in the discussion of Salam and Strathdees, a
generalization of the Landau gauge in quantum electrodynamics, the so-calied

- gauge for ¢ = =,

R-gauge, was used. The R-gauge is obtained from the RE

(2) The 't Hooft-Feynmann Gauge: This gauge, which was discussed by

't Hooft, is obtained when we set ¢ = 1. In this gauge the vector boson

oropagator is proportional to gr,, and the unphysical scalar boson propagator

of Eq. (1.2) has a pole at p? = M2,

(3) The U-Gauge: In this formulation, the unphysical scalar bosons are absent

and the vector boson propagator is the canonical one.
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In this gauge, the unitarity of the S-matrix is manifest since there are no
spurious singularities at p? = M?/g. However, Green's functions are
unrenormalizable in this qauge: it is only the S-matrix that can be defined
in this gauge. The U-gauge is formally equivalent to the R‘E -gauge in the
limit ¢ - Q. The equivalence here is "formal", in the sense that Feynman.
amplitudes in the two formulations are equal if the 1imit £ - 0 is taken

before the Feynman integral is performed.

The U-gauge formulation of SBGT deserves some more discussion.
Because the quantization of SBGT in this gauge is most straightforward,
most of the existing calculations were performed in this formulation, despite
the divergence difficulties unigue to this gauge. The cancellation of divergences
in the S-matrix (but not in Green's functions) has been demonstrated by
various authors in a number of cased. However, the isolation of the finite
part of an S-matrix element in this gauge may prove ambiguous. In fact,
Jackiw and Weinberg and Bars and Yoshimura8 have commented on an ambiguity
that exists in the calculation of the weak-interaction contribution to the
anomalous magnetic moment of the muon. We claim that, based on our own
experiences, the computation of Feynman amplitudes is enormously simplified
in the RE -gauge. It is also easier to check the t-independence of the S-

matrix (thereby verifying the unitarity of the S-matrix) in the R_ -gauge,

£
than to establish the cancellation of higher order divergences. UWhen there
are ambiguities in fixing the finite part of an S-matrix element in the U-
gauge, the RE -gauge formulation provides a gauge invariant (with respect
to the nonabelian gauge group) way of circumventing such difficulties. In

fact, we shall resolve the ambiguity in the comoutation of the anomalous



magnetic moment of the muon by evaluating it in the R_-cauge. Our study

£
explains also why the £-1imiting process used by Jackiv and Weinberg,

and Bars and Yoshimura yields the correct resu1t.9

This paper is oraanized as follows: In Section II we formulate
the generalized renormalizable gauge (Ra-gauge). In Section III, we
apply the Rg-gauge to the calculation of weak correction to the magnetic
moment of the muon. We will present unambiguous answers for three
existing models of weinberg,1 of Georgi and G]ashow10 and of B. Lee, ~

and Prentki and Zumino.]l

In Section IV, we show that the naive calcu-
Jation of the neutrino static charge gives a non-vanishing result and

we discuss how to remedy this situation. In Appendix A, we give

details of Section III. In Appendix B we point out the reasons for
ambiguities present in the U-gauge calculations of the weak correction

to the muon magnetic moment. Finally, in Appendix C, we give the
Lagrangians and necessary Feynman rules for our calculations.
After the completion of this paper, we received a paper by Y. P. Yao

in which a formulation similar to ours is discussed in the context of an

abelian gauge theory.



IT. FORMULATION OF THE RE—GAUGE.

In this Section we shall discuss the formulation of SBGT in a general
class of covariant linear gauge conditions. W4e shall consider, for definite-
ness, the Georgi-Glashow model based on the 0{3) gauge symmetry without
fermions. In Appendix, we will extend our considerations of this Section
to all three models mentioned in the Introduction, with fermions.

In the absence of fermions, the Georgi-Glashow model consists of
triplet ofgauge bosons and a triplet of scalar mesons. The Lagrangian 1is
of the form

L= -7 (3% -aE - 3 E KB )

w5384 ] - v

where VY(q} is an isospin invariant quartic polynomial of the scalar fields‘?.

2

(2.1)

- -~
The potential is assumed to have an absolute minimum at % =Ut 0. Me
-
can always choose the isospin z-axis to coincide with the direction of v .

A
It is convenient to define a unit vector 7 along the z-axis:

— -
= U

¢} and ¢ by
-
¢ -

"

He also define

¢, + (v+$),
- (2.2)
¢, -

A
T=0

The gauge condition we shall adopt is (see also Appendix B)

oli E} - 1% 3.v';%x ;? =0
(2.3)

where g is a non-negative real parameter.



12 that the gauge condition (2.3) may be taken care

of by defining the effective action 13,

SIE,, § ] . )
= [ [Jw-LarE -3 g0t )3 (w2 (E8) ]

[t was shown Dy 't Hooft

| (2.4)
-;,i 7:1 «PTL [ |+ },éa Y ]
Wherejgis defined by
[(-a:+l£-) (gu.b - _é— (jv)z(gub— ?o Tb)] (L, X I/g ‘C}' 4:])
(2.5)

4
= c(:q_cg (X"’&)
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and (/15 defined by

<a, %] Y'h,'&‘?
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and Tr denotes the trace operation over the space-time variables x, vy,
as well as over the isospin indices a, b. In Eq. (2.4L $ and & are in general
arbitrary non-negative real numbers.

The effective action S of Eq. (2.4) is to be used in defining the

generating functional of connected Green's functions. Thus, if we define
E%riffjr)”
- Xu—gﬁ]ﬂ[cj:{] uriiﬁ[ r,‘” (2.7)

d poig - {
oo el R e = oo Bl



= ey
functional derivatives of Z at J}f= K =0 give connected Green's functions

of the theory. The generating functional Z depends on two parameters of
-
and § . Note that the choice d'==§:=ao leads to the R-gauge discussed

in references 5 and 6.

— Y . 2

L - g(g‘“sr- @%ﬂﬁ-(&-%)(a"aﬁ)
- ..!.. _:’ ‘-‘—i oncd A 2__(2";)2 -2 2
Pl Bx(faeD] - ¢

- 5(30.B.-3 B, + 9 Bux B,J +\&!
4% vy ¥ r H I : 2 r (2.8)
Faty2 3
EEAGE IR
The terms proportional to E},- Q"¢ have disappeared from Eq. {2.8).

The propagators for various fields are obtained by inverting the matrix of

the quadratic form L0 of the above expression:

Z= 5 laf) - L4y

I —3 ra Mz — A 3 R
';‘(ﬁrB,'JyBr)*%(;er; v = (BS) - o (a"Br)
where
2 - o~ . (2.9)
M= gv, pp = 29V07) /563
14

and they are



10

Ar‘583 . -L(jv"lk(au))‘—‘::‘?.
We see that our gauge interpolates between the R-gauge {z -~ =) and the
U-gauge (¢ -~ 0). For £ = 1, we recover the 't Hooft-Fevnman gauge, in
which the vector boson nropagators are proportional to gmJ

In the Weinberg model (and also in the model 6f B, Lee, and

Prentki and Zumino) we have another cauge boson Zu' We fix the gauge

for this boson by adding the following term to the Lagrangian

©_ SEL -
L= - 732" &= x) Gy

(2.11)

where n is a parameter that can vary over the ranae

o s ’7 (2.12)
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and G and;(, are the coupling constant of Zf‘ and the corresponding unphysical
neutral scalar boson, respectively. We must also modify the last term
Tk [+ jAU7) in Eq. (2.4) accordingly. The

propagator for Zr and X are given by

" M; +ic (2.13)

(2.14)

where MZ?-_ Gv.

in an S-matrix element, the pole at k"2 = -'lg M2 of the vector Etoson
propagator is cancelled by the simiiar pole at mz/g of the &~ -propagator.
Neither scalar particles implied by these poles are physical. (In the R-
gauge formulation the s* are the would-be Goldstone fields). In fact the
couplings of s* to other particles can be determined based on the above
considerations. As an example, let us determine the coupling of s~ to the
ey pair. We write the coupling of V\r- L "—"ff[ B;‘fi Bff )J
to the e V pair as

Lo, = § €0-Y) 0 W
Now consider the | -matrix element for the process
elpr+ v(]) — ¥+ e(ph,

To lowest order, the W-exchange gives

U})ZH) RTINS u (][a, ) yAp- Vo) U Cp? ]

C ) rk’ i
) S -

M3 - m* ME kS -i; M* ]
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where k = p'-q=p-q', and we have used the vector boson propagator of Eq.

(2.10). The pole term at k2=-é-M p

-
= .

(i) [ag) () w80 ()} s

must be cancelled by the s~ exchange contribution. This requires the

sey coupling to be

ofs-e, = 1’;"— E—U_Xg) VsT

(The sign ambiguity is superficial, since the sign of ¥"is indeterminate .
Once a definite sign convention is made here, all other couplings are uniquely
determined).

We note that the above cancellation is one of the conseguences of

the foliowing two fundamental relations:

(i) The S-matrix is gauge independent, namely

S

3% =0
(ii) The propagator 9“” for w and the propagator D for s* satisfy

]

the identity

2 _ keky 3 pnu
ag‘Df"(k]' —r;—iL 5 DUk)
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[TI. MAGNETIC FORM FACTOR OF THE MUON

a. Weak Correction to the Magnetic Moment of the Muon.

In a unified theory of weak and electromagnetic interactions, one-
toop contributions to the anomalous magnetic moment a of the muon are formally
of order o, whether they derive from photon exchange or weak vector boson
exchanges. It can be written to this order as

¢ % £} (myo |

Q. = X_ {1 e jﬂ ( )} (__x;* ) 3.1

P () 1L (3.1
where y=muon mass, M = W boson mass, f is a function of the mass ratios
( u/M) and (mYo/u), and my0 is the mass of a neutral heavy leoton Y° that
might exist in such a theory. The second term in Eq. (3.1) is in magnitude

of order (oi/ﬂfl) f‘l ~ éiF-/*l and we shall call it the

weak correction to au and denote it by

= = ) () o
27 UM O ANy™

In addition, there are contributions of massive Higgs scalar bosons in such

a theory to a . However, they are of order (,/“/?Hf‘) : compared to

Eq. (3.2), where Mg is a typical Higgs scalar mass, and since the masses

of these scalars are presumably very large, we shall ignore them in the following

discussion.

The weak correction to at has been computed by several authors 8
in the U-gauge previously. In this gauge, the electromagnetic vertex of the
muon is quadratically divergent, so that its separation into the electric
and anomalous (Pauli) magnetic form factors is ambiguous. As a consequence,

one finds that at computed in this gauge depends on the way the internal

momentum is routed in a diagram, even though it is finite.
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In the Rg-gauge, the electromagnetic vertex of the muon is only
logarithmically divergent, and there is no such ambiquity in evaluating
az . In order to verify the gauge invariance we have evaluated it in three
different gauges: £ = =, 1 and 0. In this section we will present the
results of these calculations. In Appendix A, we will present a general
proof that the value of ag is independent of £. In the following we shall
refer to the result obtained in the 1imit £ - 0 after the Feynman integration
as the U-gauge result. For those diagrams involving unphysical scalars
in this particular case, the Timit & » 0 and the integration commute.
This explains why the procedure used by Jackiw and Neinbergg, and Bars and
Yoshimurag, of replacing the vector propagator (1.3) by the regularized one
(1.1) yielded the correct result, even though this replacement per se is
not a gauge invariant procedure.
Our results are given for three different models. These are the
model of weinberg9 based on SU{2) x U(1), that of Georgi and G1ashow10 based on 0(3)
and that of Lee and Prentki and Zumino (LPZ) based on
0(3) x 0(2). The diagrams shown in Figs. 1 and 2 contribute to the models
given by Weinberg and LPZ, and the diagrams shown in Figs. 1 and 3 contribute
to the model of Georgi and Glashow. In these figures s~ and yx are unphysicé]

scalars and y© is a neutral lepton. For the purpose of illustration let us

evaluate the diagram shown in Fig. 2b. It gives the contribution

-
)

_— L :‘fi}:*'

My =

R}

plo/
[

AR L) O, P k)L P
R S (L 7 B

where p and p' are the incident and final muon momenta respectively and k

—

is the internal momentum of x . We separate this expression into the charge

and anomalous magnetic form factors:



15

- a'(rij[ﬁ(?)?r “+ E(zl)}_ﬁ: O}v EV‘F fwr:at] u.éldﬁuj v ‘]M(F);

9= -} . (3.4)

After the k integration F,(q°) of Eq. (3.4) is found to be

- X

2 2 i 2
(5t =-“31;f'113 ()
200 (“W)” LJXiJg prt)e- 13y Migy (=xy) S

Integrations over x and y yield the desired result in the gauge characterized

by n. For example, to obtain the R-gauge result, we take the 1imit n - = .,

Then

akw('—,r‘z = - &EL
[ 5%& 5 T2 (3.6)

To get from Eq. (3.3) to Eq. (3.6) we have used the relations

G~ 12 _oud ﬂ,rz o I_ = é]'F fored
1+ = Kﬁ' T /iz

To obtain U-gauge result , we let n - 0 and we find that the diagram

does not contribute.

w

ak(—l = O
T (Fy 2 b)tf 0 (3.7)

Finally in a t'Hooft-Feynman gauge, we let n = 1 and we see that

& (Fy 2 = O(*/i 3.8
P (71412 o8
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Details of all other diagrams can be found in Appendix pA. Tables 1, 2 and

3 give .contributions from Figs 1, 2 and 3 respectivley. For example, contribu-
tion of Fig. 2b can be found in Table 2 column b. We neglected terms of

order u/M. In Table 3, terms of order mYo/M, U/mYU were also neglected.

It is amusing to see that individual diagrams are guite gauge dependent,

but, as it must, the diagrams always add up toc give a gauge independent

result not only to the leading order in (u/M)z, (u/mY)2 but to all aorders.
(See Appendix A).

To obtain the result of Weinberg's model, we add the results of Tables

W e . , . 2
ol = Sl {2 g [omame) -] ]
2
(3.9)
Note that this result is the same as those obtained previously in the U-
gauge by the :-limiting regu1arization.8
The result for the model proposed by LPZ can be obtained from

that of Weinberg's model by merely changing the definition for the coupling

constants. We obtain

W —~ - y ;- .- a
ap = Ge K { Qo % Wt (1 safecos e)? (3.10)
’ J
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where g is related to the physical gquantities by

_ c* . 2
G - md BT i’i.z (1+ fau’6 ) (3.71)
Fa

@ AMPadde M

u and v are the vacuum expectation values of Higgs' scalars in this model.
In Eq. (3.10), a: can be about the same order of magnitude as that of

-y --‘: Pl
.(3.9) if (k'/@|}§ Taw &~ (1) . In that case both of these models

8

predict the weak correction to the muon magnetic moment to be of order IO“J

below the experimental detectability. In any case, the strong interaction
correction ai has been estimated from the colliding beam experiment to
be of order (6.5 + 0.5) x 10“8, 15 so that the latter seems to be bigger
than the former.
The Georgi-Glashow model receives contributions from Figs. 1 and 2.

The result of the calculation in the special case My 0<< M are given
in Table 3 and Table 1. Note that Fig. 3 gives contributions which are much
larger than the previous two models by the factor mY+/u.we will thus concen-

trate our attention on the contributions of order CEF}*””ﬂT: in Fig. 3.

Evaluating for arbitrary value of myo/M  we obtain

s — (“TF'(MY‘*‘))* b i “oLayf
F W{%@[Hu-gﬁ(z 43*%?’3-5*3)](3.12)

. i/
_ 2 2 . 2, _467—7“ 2
where y = m Yo/M and sin“® ="7f /AEEE-c
Note also the relation
E’T?TO Cux Ea = ’“’in -+ /"{
In Fig. 4 we have plotted the prediction of Eq. (3.12). Two sets of curves

correspond to contours of constant af andrnYO at various values of my* and M.
4
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The present status on experimental and theoretical uncertainties in a

places the Timit 15
Y S
2570 = a/, TG & e (3.13)

s . . .
where au corresponds to the hadronic correction to the muon magnetic moment.

Using the value for ai quoted above, it seems quite safé to guess that
-zast0” 7 ¢ a‘/‘w‘é o
If we further demand, for example ‘ﬂ¢¥«+ 2.5 GeV Fig. 4 readily

gives the allowed range of m_oand M. The generaous lTower limit

Y

gxio7z a  gives  Mys < 5Gev, If weuse Ia‘:’s +1,1x10""

-~ 3

Y

A charged heavy lepton of this mass range can be detected in the near future.

2
we get m+ = 2 GeV. Inthese estimates we assume m_+ m /M‘I{ <« 1,
K

A pair of Y+ and Y can be produced in reactions such as
F-(Z)— Y=Y+ (2)

or

ET4 €7 — \’+4-7’h

The detection of coincident e_u+ from the decays

Do

T 1/“ 1.~ €

Yt — l-;rl/ - f‘r
is a signature of theY 'Y pair production.
It is important to recognize that at in Eq. (3.12) does not vanish
even in the Timit myo + e. If one performs a naive U-gauge calculation the
first term in Eq. (3.12) is absent and aﬁ - 0 for meo > = (i.e. we can

make auw arbitrarily small by letting my0 be large).
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b. Asymptotic.Behavior of Fz(qz).

In this sub-section we discuss the behavior of the Pauli magnetic
form factor F2(q2) as qu} » =, We caution the reader that Fz(qz) for q2 # 0
is not an on-shell S-matrix element (i.e., not measurable) and is not invariant
under nonabelian gauge group (i.e., depends on the gauge). Fig. 5a gives
a process in which Fz(qz) is relevant. But Fig. 5b is of the same order.
We obtain the gauge invariant answer only when Fig. 5a and 5.b and all other
diagrams of the same order are added. Fz(q2=0) = ag is available for ex-
perimental measurements only because of the pole due to the photon prona-
gator. Still, the knowledge of the asymototic behavior of F2(q2), though
gauge dependent, is important in the question of renormalizability when
diagrams of the type Fig. 5a is inserted in more complicated diagrams.

Qur conclusion is that Fz(qz) - 0 as lqzl +~ = in all gauges except
the U-gauge i.e. for all combinations n # O, ¢ # 0. This can be easily
seen at least for off mass-shell  muons, as follows: forn #0,¢ # G,
the triangle diagram that we consider has the degree of divergence at most
zerc. Thus due to the kinematical factor SRR the inteagral for Fz(qz)

has the degree of divergence -1. Therefore, by Weinherg's theorem

2y € 0(1/ va%).

Folg

muon
We have also done the calculation for the on-mass-shell,amplitude and

A

varified that F(qz) +~ 0 as [q2| - « in all gauges except the U-gauge in

the Weinberg model. In order to obtain the result for the U-gauge, we let

¢ »~ 0 and then let 02 + - =, The result is (for the Weinberg model)

R , 2
F (9% o Eﬂiﬁi—~ AT + constant for g~ » - =.
¥ (4-25) b (-37)

& 7z T



These results indicate the gauge deoendence of the off-shell amplitude.

In particular, for the renormalizable gauge (i.e. for ¢ # N, F2(q2) shows

a manifestly renormalizable behavior. On the other hand, F(qz) in the
U-gauge exhibits a divergent behavior at q2 = - » . As remarked in
reference 17, the logarithmic arowth of Fz(qz) for larae q2 does not
necessarily imply any trouble with S-matrix elements for physical processes.
When all diagrams of the same order for a physical process are added
the bad behavior of Fz(qz) can be cancelled by those of other diagrams.

The dispersion relation for F2 in the U-gauge reauires a sub-
traction (which cannot be determined a priori) while its absorntive
part may be computed by the standord Landau-Cutkosky rule. On the other
hand, F2 in the RE -gauge has an absorptive contribution from unphysical
states, while it reauires no unknown subtraction.

[After the completion of this paper, we received a preprint
of W. A. Bardeen et al, CERN 1485, in which they evaluate au in the
Weinberg model using the n regularization method of 't Hooft and
Veltman (G. 't Hooft and M. T. Veltman, Nuclear Physics, to be published).
Their answer agrees with ours. H. R. Quinn and J. Primack have computed
ay for the Georgi-Glashow model. We appreciate Professor Ouinn's exnlaining

their result to us].

20
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IV, STATIC CHARGE OF THE NEUTRINQ.

As in the case of Pauli-magnetic form factor discussed in Section I1I,
the notion of the electric form factor of a {muon - ) neutrino is an un-
physical one in the present theory: the electric form factor, for nonzero
momentum transfer, is not an element of the S-matrix and, in the present
theory, is not gauge invariant nor unitary for arbitrary . However, the
electric charge, i.e., the value of the electric form factor F] at zero momentum
transfer, is an element of the S-matrix and measurable. It must be zero
if due care is exercised in evaluating Feynman integrals.

In the Georgi-Glashow model, there are altogether 10 diaarams
contributing to the electric charge of the neutrino. In Fig. 5, we show
5 of them which involve internal muon 1ines. The other five are similar
and involve internal Y+ lines. We shall evaluate the Feynman integrals in
the R-gauge (¢ = =) for convenience. (We have also checked the ¢ independence
of our results). The contribution of each of the five diagrams in Fig. s is:

(@) < “k |
. E I
. (o ( ) J (zr‘)“ (k5-M* )~

1
ﬁe
M us

cspgy R : '
Ttz (‘;{r’ j @)’ o pt (k‘-ML)Z
" ‘ (4.1}
} 2 J k- E]
. _ o3 ({4 A K ’
1) : { {0) = 31 E (2) J (l.&—)“ k-’_ kg__/“z. k-z- ﬁ’{l

) st A% 0 f ;
¢ Pt = *fzf;}” S S

il
i

—td} , W& [ A% ol
d" Foo( ( (i)leur)*‘ (L2-m>) (k= p3)?
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where u and M are the masses of the muon and the W boson, and fu is the coupling
constant of the scalar meson to the muon and neutrino:
°[r = /M.
In Eq. {4.1) we have written F1(a)(0) as a sum of logarithmically divergent
and convergent integrals. A simple computation shows that the sum of the
second term of F](a), F](b) and F1(d) are zero, after the integration so

that if the sum F](C) + Fl(e) vanishes, then the muon contribution to the

electric charge of the neutrino is

, P4k
- %(%) (2w )* (iez‘ﬂM")z

and is independent of the muon mass. The Y+ contribution to the electric
charge of the neutrino is exactly opposite to the above mentioned/i -contribu-
tion, so the net charge of the neutrino is zero as it should be.

Thus, the matter hinges entirely on whether the sum F1(C) + F1(e) is

zero. A naive evaluation of these two terms gives

: 5
Cfw [ K2 _ ]
L= 4 @ | RE-p) (k) (4.2)



23

which is not zero; it is significant that the value of I is independent of
the muon mass u. Note that F1(C) + F](e) cannot be cancelled by the similar
contribution of Y+, since the latter is proporticnal to(fY+)2, fY+ being

the coupling constant of the scalar meson to the muon-neutrino pair. That

is, a naive evaluation of Feynman integrals leads to a nonzero electric charge
of the neutrino!

The above paradox has nothing to do with the nonabelian gauge invari-
ance of the theory or the massless nature of the neutrino. The offending
diagrams, Figs. 5c and 5e, are characteristic of a theory in which fermions
are coupled to a scalar meson. The sum of the two diagrams shown in Fig.

7 may be written as

ﬁm_ijiﬁy[i

ai!‘ LZTF)“ 5 [ﬁ«i—){-—wr)(k"- zm,frj

i } ?i

e [y ]
(4.3)

and if we can shift the contour of integration k— k+g in the second term of
the integrand, the integral vanishes identically. The integral is, however,
linearly divergent, so that the change of the variable of integration is legiti-
mate only after the integral is suitably regularized in a gauge invariant
manner. A simple regularization scheme is to replace the pion propagators

in (4 .3) by

f /

T T . 4.4
£ P = k- AL 4

(k-9) -} (i-9)*~ #x k- AS .
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In this case, the naive evaluation of the charge of the neutron gives a result
independent of the mass m2 internal pion lines so that the reqularization
implied by Eq. (4.4) yields to a zero neutron charge. The result here is
counter to the folklore which says that convergent Feynman integrals need not
be regulated: if we perform the differentiation with respect to q prior

to integration in Eq. (4.3), as one would to recover the original Fevnman
integral, then the integral becomes convergent and the conventional wisdem
woutd say that it is not necessary to regulate the integral. What we have

Tearned is that to keep the charge of a neutral fermion zero, it is necessary

to regularize Feynman integrals in a gauge invariant way, even if the inte-

grals are convergent.

Let us return now to our problem. MWe can regularize the scalar
meson line in a gauge invariant manner as in the #-model: we insert in the

Lagrangian the regulator term:
— -#JI 2 /li.—)lz}
- "911 - I — . — P
—i—[(bm—/\;w]"'i‘f[‘ar*ﬁﬁr)"‘” i

and replace the untranslated scalar fields<f by the sum ¢ + qﬁ in all inter-

action ter'ms.w”]9

This modification of the Lagrangian is clearly gauge
invariant (with respect to the nonabelian gauge group), and the integral
I in Eg. {4.2) is now regulated to read
[ 4% e )
I)nea:" '(;zr)"[(kz-p‘)z k k- As
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which is zero for all values of,ﬂ:'. Thus, a gauge invariant regularization
of the Feynman integral does give the physically correct result F1(C) +
F}(e) = 0. We remind the reader that FI(C) + F1(e) is nonabelian gauge
invariant by itself. Thus the regularization procedure stated above is

sufficient to remove the neutrino static charge for arbitrary gauge.
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V. CONCLUSION

We have given a formulation of the convenient gauge for actual
applications of SBGT (RE -gauge). Based on this formulation, cwe have
verified the gauge independence of several simple S-matrix elements. This
indicates that the ghost killing mechanism is indeed working in examples
we have considered. It is important to show that the gauge independence
properties of the S-matrix are preserved at every stage of the renormaliza-
tion program.

In our formulation, the finite part of the S-matrix is uniguely
determined. Results of our calculation of weak correction to the muon mag-
netic moment agree with U-gauge calculations with tpe ¢ -1imiting regularization
procedure. An experimental implication of our results is that the charged
heavy lepton in the Georgi-Glashow model is required to be small (of the
order of .55 GeV.,) It is therefore worthwhile searching for this Tepton
in the existing accelerators.

A naive caiculation of the neutrino static charge in SBGT gives
@ non-vanishing result. This difficulty, however, also exists in the abelian
gauge theory. A prescription to remove the static charge in a manifestly
gauge invariant (non-apelian) manner was given. To check the self-consistencey
of SBGT, it is desirable to evaluate other lower order diagrams and to confirm

the absence of any other unexpected "anomalous" behaviors.
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APPENDIX A: Formulas for the Muon Magnetic Form Factor and the Proof of

the Gauge Independence of the gu-Factor.

In this appendix we give the general formulae for the weak corrections
to the anomalous magnetic moment of the muon based on our Rg-gauqe
in Section II. We calculate the neutral vector meson contribution in
the Weinberg model and the massive neutral lepton contribution in the Georgi-
Glashow model. The Feynman rules are given in Appendix C. From these two

results one can easily derive the magnetic moment for other schemes of

Tepton interactions.

A-1, Neutral Vector Meson in the Weinberg Model.

We have two diagrams shown in Figs. 2a and 2b for the neutral vector and scalar
meson contribution in the Weinberg model. Fig. 2b has been discussed in
Section III. (See Eq. (3.5)).

For Fig. 2a we have

- inp')[ fﬁ [" l’"—?% b ('%‘)] (1"-74) 1{“ (K +) X‘[‘l('g‘)* b (i%(;)]Ju(PJ

o (A1)
. P tw)

R* - M3
where
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dﬁ_ xn bwkﬁ(l-
p = 3. 22t
Mz - 7.h

(a-3)
The result is given by
P £ () oy e
i
G2*+ M3 (i-x-4)
@ -4)

~ 4L ab j dx dy (x+4-1)
g &+ M} L-x-Y)

AP o(a-5)" i ,
ST LAl {JJ’JU L3972 A {_Gj + A (1-x-9) ]
@+ M3 (1-4-4)

- ijé'g (qu+j) - Zisz][ ' i J }

QMFOX9) QT+ A(-x~)
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where Ql-:/-llfwij)z- ST , N\ o= M':/‘bc .

Note the relation

(.Q" b)l - __._
My 4

49
MZ
(A-5)

with M the mass of the W-boson.
Based on Eqs. {3.5), {A-4) and {ap-5) we prove the gauge independence
. ) . P o
condition for the physical S-matrix element, SE'F;‘G’ = O

or equivalently

= F(o)=zo
o3 (A-6)
Eq. (p-6) demands the following relation
‘ l - ¢ 2, 3
f dtt [ 4z 2(31’-1)__(_'1}__.-—-— o R
o Pt A (1-4) - ?"tz"“/\(j-f) 2
iyl /‘ L/; ] . -7)

+ 2t~ t) -
(/u2 ¢t A('"t)_]z =

where we changed the Feynman variables to

b= (x+y)

2= (x-4)/ ¢ 8.-8)
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Eq. (A-7} is indeed satisfied if one notices the relation

3 t |- ¢ ]___ e 2t-t"
c;t }"Zf1+ Ali=-+]) {f‘z-tz*/‘('*t) ll . (A-9)

Therefore the sum of the neutral vector and scalar meson cantpibutions s
gauge independent, )
and consequently it is free of ghost contributions. Eq. (A-6) allows us
to use any gauge we want to calculate the matrix element. In particular
if one takes the 1imit n - 0 in Eq. (A-4) one recovers the results based
on the g-Timiting procedure (scalar meson contribution vanishes in this
limit).

In passing we note that the Higgs neutral scalar meson (which is

independent of the gauge) in the Weinberg model (see Fig. 7) gives the

magnetic form factor

_L(j_tf) JJHH lxrg) (x49-2)

§T N\ P22 = 2O - Mg (-9 )
This gives a small contribution to Fyto) for U‘?./M?:\# ) «L

A-11.Neutral Massive Lepton in the Georgi-Glashow Model.

The neutral massive lepton in the Georgi-Glashow scheme contains

four diagrams. See Figs. 3a - d. Fig. 3d gives
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L+£)
- v (pecao-m)} Lep) K istp) { 2
-ZM n Ula) (f g-m ] F Lkz_}nz) (lz‘f\)(f”:—,’\)
mcoe 9 Corl~ m (P e } u-r-{;)r
M (F )(ﬁ )LL P

(REm2 Y LZANL> A)
{A-11)

and the result s

F§) = ——_’t‘_—@# mceag)( pecap - m)_] jJrJ (izx-4)

f(A,A)
(a-12)
N [(/‘* "”'604-9) + (pens- ) J Edug (X+y ) (1-2-4)
IMIM; (A, A)
where we defined
A

A= “"/g

A13)

M = mass of the neutral massive lepton ¥° (

Fb = Q%+ w (am ) v g (hopr) + (1-x-9) m>

Oy 154y
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Note that F(qz) in Eq. {a-12) vanishes in the U-gauge limit, £ - 0
(or A + « ).

Figs. 3b and 3c give rise to

A ¥y B.()
- £ [+ (aig) =2W (b an(') a Wlp) 1 ; —
2 (ﬁ( ( ] r f (=) ZA)Y (£5A)

L I -
+ .&L"LV"]}/FX i p) - R(E) '
(k=m2 ) (L*AN L)

P.%(%) B
em®) (€% A) (- A)

4 f-_; m[m(H(m."Q)-Z/-{(we] { E(f;)xf“(f’)

B v
- ~U:(p’)‘|/s wlp) -ﬂ' ) - g
’ (kw2 )42 AY (1) (R-14)
where
o o« « i
Pt = 5.7 + kak (%)
J / L5 A
The result is given by
gLy - ezz oy z Y
F[l:) L M,_[/‘-L(l-f-aa..e) ZMSN-QJ {21\4 Jﬂh’é‘j oY)
(a-15)

Tt e b, ()

— 4Ky (eey-i) [Qz-/‘*l"?‘*:l)][g‘(:\,w) ) ?57\)]}



For the first groun in Eq. (A-14). The second group in Eq. (A-14) gives

R = o TR [mureato) = 2pced 4

J JXJJ (l+‘j'”2[f[[mmz) - W\IJ

(5 -16)

Note that F(qz) in Eqs. (A-15) and (a-16) both vanishes in the U-gauge
limit A + «.

Finally Figs. 3a gives the expression

-2l O u(r)’Y{ LL[rJ) 2 ()“ \/T/crr ?
(k™ m* J( M) (£ ‘) (a-17)

(;fme B KL, ) f?u)\/yﬂ-_ (1)
(B2 m® ) (L'20?) (2 m?)

where

\(rrra 1—7. (1+’£)r - /ZT;@-» "ja- 3/"‘_2_

(A -18)
-+ J,-/, 3:-( - g"/‘Zr

and
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The result is rather lengthy. The first group in Eq. (A-17) gives rise to

Fgy= - "L‘Z ‘2'1%""'“*:8 { am? | dedy XFY
b o M= j L § (M 12)
" : (A, M)
+ 3 Vdedy (x-u) tu ‘_}__'___ :
5 R ft ) (a-19)

+ J‘inj [Cl-x+j) [Q’L__zfﬁ(xx'«j\ + rlﬂ—k 245‘35 (X-IJJ["‘-'-"}(’M:M,) ﬂf(‘A.lel

$0A, M) (M, A) )
SmE M) F AN

X ctz ) _
- b I dxdy -2 L (
J% j dxdy (x+y-0) [Q;-- 2pElx +y) +(41] X

+

i _ | — L s ._'____
?‘[ Foaime) Hsny  FAM) SCAN) }

and the second geeup in Eq. (A17) gives
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FIg?) = ‘L {1+ (&6‘)5 e JJ”J eyl ZCMHHJ

K Fmz, )
dxdy | 4exeyqy™= Glx+4) +2+6Y ﬂ“(:}(;l M)}
j ‘jL !j ] flm,m?)

2 JJxAj{ﬁx =1 {29+ 0oy -y } - Ty [13+(f-x—'~n(2~x-j)j} X

X [fl(mim - j;;)i,Mz)]

+ 4 ijJﬁ{ 15 (ry-y) [eruﬁ,nf%) - ﬁjm‘:)]

FA,04%) F (M2 A) )
S0 ) A, A)

~ MZL)JJXJJ (xey-1) [f"*‘j-l) Q+ flz(;\{fg)] X
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(x-20)
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We would 1ike to discuss the gauge independence condition —3—- F(O) z 0

> -
or F(o} = © -21
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From Egs. (A-12), (a-15), (R-16), (£-19) and (A-20) we readily recognize
that F(q2) consists of two groups; one of which is proportional

%9). These two groups

tom CEO and the other proportional to (1+(&
separately satisfy Equation . (A-21). The proof of Eq. (A-21) can be made
as in Egs. (A-7) - {a-9) by the repeated use of partial integration.

We note that the contributions with f( A, M™ ) factor and the contribu-
tion with fj‘“\, f\) factor in Eqs. (A-12)-(A-20) separately satisfy
Equation (A-12). UWe do not write down this lengthy but straightforward
nroof,

Eq. (A-21) ensures the absence of the ghost contribution to the
anormalous magnetic moment. Eq. {A-21) also allows us to use the most
convenient gauge when we. calculate numerical values. We also note that
in the 1imit £ -~ 0 we recover the result based on the g-1imiting process.

The neutrino contribution is obtained from the above result by

setting m=0, The coupling constant should be adjusted according to the

specific model one uses.

A-III. Large g° Behavior of F(g%)

From the above general results for F(qz) it is easy to see
that all the contributions to F(qz) from scalar mesons vanish
in the U-gauge Timit, £ = 0 and n = 0. They also vanish at q2 = - = (i.e.,

Targe space-Tike momentum transfer). It is also not difficult to see that

2

Z, ~contribution in Eq. (A-4) also vanishes at g° = - = independently

of the value of ~n.
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In the following we discuss the large qz-behavior of the W-contribution
in Eos. (A-19)} and (A-20)}. Those equations show that all the contributions
to F(qz) vanishes at q2 = -« for £ =1 (i.e., 't-Hooft-Feynman gauge).
However the gauge independence of the off-shell amplitude cannot be proved.
We expect that F(qz) at q2 = - «» may depend on the gauge one chooses.
We show this explicitly in the case of the neutrino contribution in the

Weinberg model. We thus put m=0 in Egs. (A-12) and (A-20).

We first note the following relations

2 Ea ] .
TH1RY Gt xap e g
i (A-22)
4
—_— ﬂm. (~ 61) - S Ai; zgh- (/47'1‘.' & Ml"}“)

-

and

-1 S Ixdy 00y Lo F(MA)

|
,—: "ZZE dy ple) t B T
{=- > ( -23)

i .
+ (A+~M*- .thz) j& J‘tf (£) An ['1, f)

N R

S [Pae pr [t - g MM e eant- ")(Fi“‘/\‘f‘l)}
,, s pres M

ol

L
(A Mlnz{*z)j dt %)
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where Ji, 4 = 4()”3)2- G(x«9)* 4

and

§lo)= d9t7-q9¢+ 4,

Using these two relations in Ea. (A-20) we can readily show that
F(g) — o l)“ ("> -%  and 330
F(KZ)—"E?FZZT/{ M"*) bobg) v ost (20

br e e e

(A-25)

Eqs. (A-24) and (A-25) indicate the gauge independence of the off-shejl
amplitude.

We also point out an interesting large qz-behavior obtained if
one uses {incorrect} regularization schemes other than the g-1imiting procedure
in the U-qauge. The Tast two terms in Eq. (A-20) show that the linear divergence
in q2 at large q2 could exist. For the gauge invariant calculaticn this
Tinear divergence cancels. But if one uses other peqularization schemes such
as the "proper time" (see Anpendix B) or the "Pauli-Villors" reqularization

with a massive neutrino in the U-gauge, this linear divergence indeed survives.
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APPENDIX B. Ambiguities in the U-gauge

In this appendix we briefly review the ambiquity Jackiw and Wein-

berg, and also Bars and YoshimuraSencountered in their caiculation of the

muon g-factor.

The logarithmic term in the parametric inteagral for F(0) in the U-gauge Timit (i.e
£~ 0) causes an ambiguity: Eq. (A-20) in Appendix A contains the following

logarithmic term

Flo) = - _ j:JAT \[ chlg [4(x+g)l— Qxeyy + 2+ 63]!

§UAT 4 M

¢ b —F J*"m"'%vm‘ o -1)
JECxey )+ (+9) (M‘~}ﬂ)

This is the correct answer. On the other hand if one regulates the neutrino

propagator we get

Fo) = — E-'ifurl %5_1 SA:J-; b (4 9)™ = Gexey) w2+ 69] 4
[=X-9 ' ' CVTL-H/\- -tmww W-2)
X £1 [ f‘luf‘j)z""(x*ﬂjx;’\z'rl) } + .

If one first exponentiates the Feynman amplitude (a sort of “proper time")

and performs a loop integral, the following result is obtained

F(O') 2 - '-L' "-a'u & J'Kclg [4(;{«-3)2-.‘?(;({-3)—} 2+ Gj] X

§T 4\ o -3)
(L]

{

PEOES) % (X +Y) (MEp?)

L

} + Oﬂ.ﬂ/\,'{ﬂ_—‘\-w
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ATl these expressions give rise to different answers. This kind of ambiquity
is absent in the general R-gauge calculation. MNaive l-gauge calculations

are plagued by this kind of ambiguity. Some existing oroofs of cancellations
of divergences in higher order diagrams are based on the exponential para-
metrization of nropagators that leads to (B-3). While such a method is
acceptable in establishing the absence of divergences, it will not provide

a reliable finite part.
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APPENDIX c. Lagrangians and Feynman Rules.

In this Appendix we present Lagrangians for the existing models
down
of Teptons mentioned in the Introduction. We also write necessary Feynman

rutes for our calculations in Sections III and IV. In gﬁe Ra—gauge

discussed in Section II, we have unphysical scalars in the Lagran-
gian. The Feynman rules are therefore more complicated than those in the
U-gauge 1imit. The Feynman rules for those unphysical scalars and also
the relative signs for various amplitudes can be conveniently checked

based on the gauge independence of the T-matrix eTement as we discussed

in Section II.

CI. Georgi-Glashow Model

This model is based on the group 0(3). We have a triplet of leptons
and also a singlet of neutral massive lepton. The mass is generated by
a triplet of real scalars. A part of this Lagrangian has been given in
Section II (We follow the notation of Bjorken and Drel?s).The total La-

grangian has the following form:

Ly = Yrlig-m )Y+ Yo Gg-mya) Y (1)

AT AU IRV A ezxr[?’g)rb

+e§3hﬁ-§)rﬂ - e:(”"Y"I::SQ‘”‘l‘) [I ("F-?)R-*L.o._]

- emr;/lsma i [_&vt@?jm- CMG;}_JT_S‘- '\rﬂf - S*r& — ,\P \/Rﬂl +L.OJ



where
\/ T )
T
| =
(050 Y sma )
He
with

L
B +
— - A — W 0 |
= 'S
R |
ul >
k;r o \a\/r
I o V\/’: - A r-u

1

42

] v .
* €-2)
I
Fr
c-3)
‘k{) -7 0
-5~ 8] st (C"4)
o s -V



43

where 'w = Higgs scalar
ST = unphysical scalars (c-5)
d - Te 2 SV
an GrF ..(6 sm e/ 4M )
There is a constraint < 20 oSO = Myr T M- (c-6)

Note that the covariant derivative is given by VF"«P = [3’,4- ;}(:125),,.]7‘"

with ¢ = - e,

Lp = 59 ~te[ysm- w5l c-7)

\ - . ) T . E + b +
+ \ars -+ 4.er —_1 /-lrs - {L'qu}r

The quadratic term of LII is given by

?uad.
L. = | 3,571 + £ ()" MW
(C-8)
\ L - - o F
- M LW - st "]
This LIIquad. suggests the following gauge term
25+ L (9A)
- .5._0-1 (grA )
(C-9}

- ngrN*r-t- ‘.;‘ st \1
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See &lso Section II .

I

Ifﬂt = - fz-" } (r\\f:- — 9\’ N’f‘i— r ag [w‘:Avw V\J‘;AP]

{c-10)
._..L)g A "-[‘W“ _ “w“ {1
4 FAVM;% r“*ﬁ S Wy"wr v]
The mass of wui is given in Eq. (c-8).
The potential is given by
| 2 4
Vi) = & 1415+ Xl
= L ’m;"PL + A [40-\“25“3‘4» ¥*) + (28757+ q‘ﬁ)} )
¥ [/"5‘1—40%] Ls*s™+ o]
where W;:f¢+IZAUa
(c~22)

ﬂfq‘o and we have the condition /Jol‘* auA =0,

The field fa is the unshifted field, and it is expressed as

(f? = ?o = luwy (45)0 = (U‘) c-13)

¢ $°/) ©
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The gauge compensating term for Eq. (C-9) 1is given by (see also Section II)

=iTo du - & 7] (c-14)

where
[ - (3" %:~<e) o o } q
o) "32"' L€ o /ﬂ:j(x-j}(c‘w)
: M
L 8] O _(3* ‘5" 'dLE)J
and 7
| (o AL oM e Wt eM |
&ear,a,%,i¢ s
-l - H SHx-y )
' tgf W © RN (
0 r.oeM ’ ©-16)
LE‘D W"- + -—--—Sd ] P "
| 4 S ““Jr"'%\h
"E(grnﬁ)*'AFar.

The divergence in this matrix stands for an operator, e.q., ;% A
The Towest order contribution from Eq. (c-14) is a ‘P -vacuum tadpole

diagram. For ¢ = = (Landau-gauge), for example, Eq. (c-14) becomes

(-17)

T e e 3 (e T8

_31*‘1-&
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C Il WHeinbera Model

The detailed form of this Lagrangian is found in references

1, 6. We briefly summarize it in the following

I=2Z1 Ly + Ly -V

Zo= 5 ifve » plig-map
—efAp - [ Urp el -G REn
cGf F[ (D) - e ()]

{C-18)
) %%F—[(ﬁf S+ he)r mpy s flf,,uxj
where
SEand, L= wphgced scalen P = Hi‘jr scodan
o = 2 - 41 (c-19)

W . X
¢ M T e o
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For notational convenience we defined the charge € with an extra minus

51?:. | | ) | . .
Zg = [grs**ﬂpluru & 9W, 5o 4 (e Ay _j;%gizr)l

. ‘ o _ 4 M - . GZ L P o+
¥ jgrs "r;.‘LZF ers A G S
whew 502 *é("}'*‘i)():

The guadratic part of LII is given by

?J-lld
Lz =195 = £ G+ 0 ] = M 1w/

~ LU (z ]2-—AM[9 stw To s wtt] - M QXZ"(C-H)
PR r I £
The gauge term is given as
.S i 2
2
‘ . . M,
- glng /“-* A ‘jg—‘s [
(C-22)

The gauge compensating term will be discussed later.
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The masses for Hr and Z . are given in Eq. (C-21),

V= n [8787 « (soe )3 gy - £ 0

= T wg b H% My P (¢7s7e sv50) = [5%s7 gl
(C-24)

The gauge compensating term is given by

'_iTn.. ﬁr\ [H— 81‘3/_]

(€ -25)

where
i . M _
—'(.,3"'":3:" 'L(‘.) O o O
o ME
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/% ::.S(Xﬂ‘c'})
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and the matrix J is defined by

_ - [ O
55" ) G -int)
& - [ 3y - = (ot
(_\fA (.y] .n_A = [’XJ ;‘2-: | ) (C-Z?)
6§, ok §0- Ap
L - 2p°

with

Sfxa ?i} ’JF{[_Z{,. (058 + Arsmgl _Q_*} ~ %—%— (’\I—'tiX.)ﬁ.i

T Al b g*‘[ N;[__;LA-. I _Q_?Jj + eMeosg [zﬂA— %_coszeﬂzj

2%
(S&AE 1Gsme o [Wr- A N‘:ﬂ.‘}
=iyl -wrn]
GMzr _4nt. e a5 e (c-28)
' "2—;2-'[ Pt + st fﬂ]

Another way to take care of this compensating term is to introduce four

12

auxiliary complex scalar fields 'tfa , Ux=(+,—, A, E) . Me add

the following extra piece to the effective Lagrangian

ol 2 j’:'[/d"* XJ“, §, (C-29)

The ordinary perturbative treatment of Z with an extra (-) sign for each

closed l1oop of the ficticious scalar particles %gives rise to Ea. (£-25}
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¢ IIT The Lepton Model by tee, Prentki and Zumino

The group structure of this model is close to that of the Meinberg
model. We need two sets of scalar triplets to accomodate "quarks” in this
model. However only one triplet of complex scalars are sufficient for the

Tepton model. We present here this simplified lepton model.

L-Zi Ty ZLn
Lo= i (i gmpy) M e By » fGF-m) p
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The quadratic part of LII

(c-32)

\ is given by
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where we defined
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The gauge term is the same as Eq. (C-22) in the Weinberg Model.

The Yang-
Mills Lagrangian is also given by Eq. {C-23).

Finally we discuss the potential.

V= fe (50 ﬁ_ (“ga—x“{)z « A ()"

«M@ﬂﬁ«-éfm;f}S“jt+zﬁﬂu1P[W?+sfffS“S"J
2
*l[SL\S-O_} 345‘1_sz S-—-J _

ﬁ; fﬂsz “;¢,(Sa§o Y STreT )

S
st (s STSTT) * 2usT (Test o sTst )

PRty g _- 2 . - . _— A
+(35 ST +2 (g sta5 gt Y(svs— ™5 )j (C-35)

where E is the unshifted complex scalar field

[ sv ’
a o
Fe s (=
u~+ sv i «
(C-36)
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There is/\ followino constraint:

A= %o () = g Lo s e ]

(C-37)

We can make #ly and # .. arbitrarily large. The gqauge compensating term

is also similar to that of the Weinberg model. We do not discuss it here.

C IV Feynman Rules

We summarize several Feynman rules we use in Sections III and IV,
Propagators for vector bosons and also for scalars are found in Section II.

The Fermion propagator has the standard form

[

oo

(C-38)

In the following we give Feynman rules for the lepton models due to Georgi
and Glashow (GG), Weinberg (W), and Lee, Prentki and Zumino (LPZ). Ye write
the feynman rules for the Rg-gauge of Section II.
A1l of these models give the identical Feynman rules for Figs. 8a ~
8d.
They are
(82) (~<¢) F Jaf"
{C-39)
(8b) (—<2) (if+£)/..
(C-40)
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-+ ( (_L(r 6'5 b :}grtba)i Lv[u—u\ % ’E"_'Q (C-4])

(mee) M
(0-42)
Note that we normalized the sign of the charge by Fig. 8a. The magnetic
l(r crv
form factor appears as a coefficient of (—ie¢ ) ;I[‘ e /QIL}u_
For other diagrams Feynman rules depend on the model. MWe just list them

below

(8) GG (cesme)p ¥, (=5 )p

. (C-43)
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FIGURE CAPTIONS

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7
Fig. 8.

¥ boson and scalar boson contributions to weak correction
to the muon magnetic moment. These give contributions

in all three models.

Z and y boson contribution to the weak correction to the
muon magnetic moment. These diagrams are for Weinberg's

model. Similar sets of diagrams exist for the LPZ model.

' Tepton contribution to the weak correction to the
muon magnetic moment. These diagrams are for Georgi-

Glashow model.

Predictions of Ea. 3.12. Sets of contours corresnond
to constant auw and constant MYo on the Mv+' M plane.

If we take -2 x 1077

< auW <0 , for example,

the experimentally allowed region lies below the }ine
labled - 2 x 1077, If we further take M+ > .5 GeV,
the allowed reaion is bounded from below. The unper

bound for MY+, in any case, 1s approximately 5 fev,
Example of diagrams contributing to muon elastic scattering.

Diagrams which contribute to the static charge of the

neutrino in the Georgi-Glashow model.
Diagrams contributing to the neutron static charge.

Several vertex diagrams for lower order calculations.
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of diagrams shown in Fig. 1. To obtain the answer

o
should be multiplied by GF/swiZ .

of diaarams shown in Fig. 2. To obtain the answer

should be multiplied by GP/ gz |

of diagrams shown in Fig. 3. To obtain the answer

should be multipled by Gﬂ%w’ﬁg;ﬁ‘e ,
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Diagram

NN\ N
WS W W\?,S + s‘r/w S 'S Total

Gauge (a) {b) (c) (d)
10 10
U-Gauge 3 0 0 3
‘t Hooft- o
Feynman- %— | 0 =

Gauge

R- Gauge % i 1 —l-g—

Table |




Diagram VA X
]

Gauge y (a) y (b)
U-Gauge %[(3-40032 9)2-5] 0 %[(3-4 00529)2-5]
't Hooft-
| Mezog.ni2 m [ RPEN-Y-S
Feynman- 3[(3 4cos” ) 5] 0 3[(3 4cos-8) 5]
Gauge

[(3-ﬂ=}cos2 9)2 —5]
+ i

(3] R

R- Gauge [(3~4c0529)2-5]

LIV ] R

Table o



Diagram y® IR A2 o Vad
Wo| WW'S | w s\{’s Total
Gauge (a) (b) (c (d)
U-Gauge - 0 o -1
't Hooft- . '
Feynman- ry vy 0 -1
Gauge
R-Gauge L L -4 -
ug 2 2 3
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