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AESTRACT 

The suontaneously broken gauge theory is formulated in the generalized 

renormalizable gauge (RE-gauge). A parameter : can be adjusted to include 

existing gauges, U-gauge, R-gauge, and 't Hooft-Feynman gauge as soecial 

cases. Three aoplications of the RS-gauge formulation are given. First 

we compute the weak correction to the muon magnetic moment unambiguously 

in the existing models for leptons. Secondly, we discuss the large momentum 

transfer limit of the Pauli-magnetic form factor of the muon. Finally, 

we discuss the static charge of the neutrino, and show that an aoprooriate 

regularization makes it vanish. 

. 



I. INTRODUCTION 

. 
The possibility of constructing a unified theory of weak and eiX&tro- 

magnetic interactions in terms of a spontaneously broken gauge symmetry has 

attracted a great deal of attention lately, following the works of Weinberg' 

and 't Hooft. 2 In this paper we shall present a formulatiokof spontaneously 

broken gauge theories (SBGT) which is particularly~ suited for practical 

calculations. In this formulation the gauge condition one adopts is a 

generalization of the one used by 't Hooft and depends on a parameter 5 

which can vary continuously from 0 to =. In this gauge, which we shall 

call generically as the Rg -gauge, the massive vector boson propagator is 

precisely the one invented by Lee and Yang in their discussion3 of the 

c-limiting process 

+ i p> 1) = -L [ $4 - (I- lj’-$$-+ ] p L’. :,,” 

= -* . t 
5 Ita0 *I - $rr Iv) $-$; - 2. $q ‘iQb-+~ (1.1) 

The difference between the Rg-gauge formulation of SBGT and the 

c-limiting process applied to the electrodynamics of massive vector bosons 

is this: in the former, the negative metric scalar boson pole of the vector 

boson propagator at p2 = @/c is cancelled by the pole of the unphysical 

scalar boson propagator 

-i __._~_., Cl .21 
: /’ - -& $,jL 

x !’ 
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in the S-matrix, and the S-matrix of the former is indeoendent of the oarameter 

5 and is unitary, whereas in the latter, one recovers the unitarity of the 

S-matrix only in the limit 5 + 0. The c-independence of the S-matrix' in 

the former is a direct consequence of the nonabelian gauge invariance of 

the relevant Lagrangian. 

it is worthwhile to note the connection between the Rg -gauge and 

other gauges discussed in the literature. 

(1) The R -Gauqe: In the proof of renormalizability of SBGT by Lee and 
. 

Zinn-Justin , and also in the discussion of Salam and Strathdee6, a 

generalization of the Landau gauge in quantum electrodynamics, the so-called 

R-gauge, was used. The R-gauge is obtained from the Rggauge for 5 = -. 

(2) The 't Hooft-Feynmann Gauge: This gauge, which was discussed by 

't Hooft, is obtained when we set 5 = 1. In this gauge the vector boson 

propagator is proportional to g 
r 
v, and the unohysical scalar boson orooagator 

of Eq. (1.2) has a pole at p2 ='W. 

(31 The U-Gauge: In this formulation, the unphysical scalar bosons are absent 

and the vector boson propagator is the canonical one. 



Ar,(p, = -A 
(1.3) 

In this gauge, the unitarity of the S-matrix is manifest since there are no 

spurious singularities at p* = M2/c. However, Green's functions are 

unrenormalizable in this gauge: it is only the S-matrix that can be defined 

in this gauge. The U-gauge is formally equivalent to the R 5 -gauge in the 

limit 5 + 0. The equivalence here is "formal", in the sense that Feynman. 

amplitudes in the two formulations are equal if the limit 5 + 0 is taken 

before the Feynman integral is performed. 

The U-gauge formulation of SBGT deserves some more discussion. 

Because the quantization of SBGT in this gauge is most straightforward, 

most of the existing calculations were performed in this formulation, despite 

the divergence difficulties unique to this gauge. The cancellation of divergences 

in the S-matrix (but not in Green's functions) has been demonstrated by 

various authors in a number of case 1. However, the isolation of the finite 

part of an S-matrix element in this gauge may prove ambiguous. In fact, 

Jackiw and Weinberg and Bars and Yoshimura' have commented on an ambiguity 

that exists in the calculation of the weak-interaction contribution to the 

anomalous magnetic moment of the muon. We claim that, based on our own 

experiences, the computation of Feynman amplitudes is enormously simplified 

in the R 
5 -gauge. 

It is also easier to check the c-independence of the S- 

matrix (thereby verifying the unitarity of the S-matrix) in the R 5 -gauge, 
than to establish the cancellation of higher order divergences. When there 

are ambiguities in fixing the finite part of an S-matrix element in the U- 

gauge, the Rg -gauge formulation provides a gauge invariant (with respect 

to the nonabelian gauge group) way of circumventing such difficulties. In 

fact, we shall resolve the ambiguity in the computation of the anomalous 
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magnetic moment of the muon by evaluating it in the Rg-gauge. Our study 

explains also why the c-limiting process used by Jackirr and Weinberg, 

and Bars and Yoshimura yields the correct result.' 

This paper is organized as follows: In Section II we formulate 

the generalized renormalizable gauge (Rg-gauge). In Section III, we 

apply the Rg-gauge to the calculation of weak correction to the magnetic 

moment of the muon. We will present unambiguous answers for three 

existing models of Weinberg,' of Georgi and Glashow 10 and of B. Lee, 

and Prentki and Zumino. 11 In Section IV, we show that the naive calcu- 

lation of the neutrino static charge gives a non-vanishing result and 

we discuss how to remedy this situation. In Appendix A, we give 

details of Section III. In Appendix B we point out the reasons for 

ambiguities present in the b-gauge calculations of the weak correction 

to the muon magnetic moment. Finally, in Appendix C, we give the 

Lagrangians and necessary Feynman rules for our calculations. 

After the completion of this paper, we received a paper by Y. P. Yao 

in which a formulation similar to ours is discussed in the context of an 

abelian gauge theory. 
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II. FORMllLATION OF THE RC-GAUGE. 

In this Section we shall discuss the formulation of SBGT in a general 

class of covariant linear gauge conditions. We shall consider, for definite- 

ness, the Georgi-Glashow model based on the O(3) gauge symmetry without 

fermions. In Apoendix, we will extend our considerations of this Section 

to all three models mentioned in the Introduction, with fermions. 

In the absence of fermions, the Georgi-Glashow model consists of 

a triplet ofgauge bosons and a triplet of scalar mesons. The Lagrangian is 

of the form 

oif. = -j- (Jr& “$ -t 2 &i-c, )’ 

+ * [[“pj ~rx)cj~z - V[& (2.1) 

where V(q) is an isospin invariantquartic polynomial of the scalar fields $. 

The potential is assumed to have an absolute minimum at {= G# 0. We 

can always choose the isospin z-axis to coincide with the direction of: . 

It is convenient to define a unit vector f along the z-axis: 

3L Lr 

We also define 6 and # by 

T- 

a'= 91 + +-+fj, 

&&O. 
(2.2) 

The gauge condition we shall adopt is (see also AppendixB) 

?r e” 
o r 

where 7 is a non-negative real parameter. 

(2.3) 
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It was shown by 't Hooft 
12 that the gauge condition (2.3) may be taken care 

of by defining the effective action 
13 ,' 

Where,&?is defined by 

[(-a’+ iC) Sub - pr~~l’(~,b-~~~a)](bixI~ Icjj) 
(2.5) 

= 

and 'd. is defined by 

(a,%/ ‘ft b,‘d) 

and Tr denotes the trace ooeration over the space-time variables X, y. 

as well as over the isospin indices a, b. In Eq. (2.4!, 7 and ct are in general 

arbitrary non-negative real numbers. 

The effective action S of Eq. (2.4) is to be used in defining the 

generating functional of connected Green's functions. Thus, if we define 

Q+~~,a 
= 1.4pp3 UT 1 I 

-4-i J’x I 

(2.7) 



functional derivatives of Z at yr=c = o give connected Green's functions 

of the theory. The generating functional Z depends on two oarameters d 

and 3 . Note that the choice d-l, J= cg leads to the R-gauge discussed 

in references 5 and 6. 

The effective Lagrangian can be written as 

of - 5 (a’$- .;$&*(&-g ($$j2 
= ~[+~$+&i;;,l’-g 6” 

+fb-.;ig.&(cg++;j, -v& 
- &&- J,i$ -+ ;f p g x -g,r +wQC; 1’ 

2 

- $-(ariZ;)'- 5 (yp2. 
(2.8) 

The terms proportional to zP 0 ,JrT have disappeared from Eq. (2.8). 

The propagators for various fields are obtained by inverting the matrix of 

the quadratic form Lo of the above expression: 

where 

and they are 14 
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s’= +(&;Q’) * ’ 

q--g cq 7; 8;) 

and 

. * $z- a /p+ ;c 

. ’ + k’-fl”,+ :e 

* r 
-I jFV - kJL /?I-; /$ P-q kL: M’+i c 

(2.10) 

0 
-* /.' '- I++ (I-d)) hi+ i t- 

. 
I 

We see that our gauge interpolates between the R-gauge (E - m) and the 

U-gauge (5 + 0). For 5 = 1, we recover the 't Hooft-Fevnman gauge, in 

which the vector boson oropagators are proportional to gU,, 

In the Weinberg model (and also in the model df B. Lee, and 

Prentki and Zumino) we have another gauge boson ZU. We fix the gauge 

for this boson by adding the following term to the Lagrangian 

J “‘= - i (a, 2 r + $=/I,;) gj ~ZJjTy 
(2.11) 

where n is a parameter that can vary over the range 

(2.12) 

. 
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and G andx are the coupling constant of Zr and the corresponding unphysical 

neutral scalar boson, respectively. We must also modify the last term 

-;xL [I- $fJ 

propagator for z and x are given by 
f 

zr : 

x : 

in Eq. (2.4) accordingly. The 

-; pi,,- \,)i’$j 
k’- M; + ;f 

.i k’ ~ ~ rzf ii~ 

(2.13) 

(2.14) 

where Mzz Gv. 

In an S-matrix element, the pole at k2 = L 
3 

M2 of the vector boson 

propagator is cancelled by the similar pole at m2/s of the sX -propagator. 

Neither scalar particles implied by these poles are physical. (In the R- 

gauge formulation the st are the would-be Goldstone fields). In fact the 

couplings of s' to other particles can be determined based on the above 

considerations. As an example, let us determine the coupling of s-to the 

e y pair. We write the coupling of 

to the e V pair as 

d WZLJ 
Now consider theT -matrix element for the process 

H/Y+ II(%) -r t’(f) + t%(y’J. 

To lowest order, the W-exchange gives 

(jJ)'(-i) [Ge(fJ a"‘(i-$,) u,~,J[ii,q’, a”‘[+-) q(p)] 
f (Y i kk- $, $ b,;\’ * $$ ,:+J 
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where k = o'-q=p-q', and we have used the vector boson orooagator of Eq. 

(2.10). The pole term at k2=*Mz: 

[ LC$!i)‘(-i) i.~,cp’,(ca;lil,rg’][~~18’) I~+&)~~ ckj] ’ 
k’-tk=j 

must be cancelled by the s- exchange contribution. This requires the 

Seti coupling to be 

c.?Ts-eu - f m?? Z ii-d,) 2, s- 

(The sign ambiguity is superficial, since the sign of Vis indeterminate . 

Once a definite sign convention is made here, all other couplings are uniquely 

determined). 

We note that the above cancellation is one of the consequences of 

the following two fundamental relations: 

(i) The S-matrix is gauge independent, namely 

(ii) The propagator D ,, 
P 

for W 
P- 

and the propagator D for s+ satisfy 

the identity 
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III. MAGNETIC FORM FACTOR OF THE MUON 

a. Weak Correction to the Magnetic Moment of the Muon. 

In a unified theory of weak and electromagnetic interactions, one- 

loop contributions to the anomalous magnetic moment au of the muon are formally 

of order ~1, whether they derive from photon exchange or weak vector boson 

exchanges. It can be written to this order as 

G = a c 
t‘ - 1 ’ r ($x(~Jq-q] iTi (3.1) 

where u=muon mass, M = W boson mass, f is a function of the mass ratios 

(~ 0) and (m o/u), and Y 
"you is the mass of a neutral heavy leoton Y? that 

might exist in such a theory. The second term in Eq. (3.1) is timmagnitude 

of order (9MZ),fi2 - 4,/J= and we shall call it the 

weak correction to a 
u 

and denote it by 

(3.2) 

In addition, there are contributions of massive Higgs scalar bosons in such 

a theory to a 
IJ' 

However, they are of order (/U/n+ )' compared to 

Eq. (3.2), where mf is a typical Higgs scalar mass, and since the masses 

of these scalars are presumably very large, we shall ignore them in the following 

discussion. 

The weak correction to a' u has been computed by several authors 
8 

in the U-gauge previously. In this gauge, the electromagnetic vertex of the 

muon is quadratically divergent, so that its separation into the electric 

and anomalous (Pauli) magnetic form factors is ambiguous. As a consequence, 

one finds that a' ~ computed in this gauge depends on the way the internal 

momentum is routed in a diaqram, even though it is finite. 
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In the R -gauge, 
2 

the electromagnetic vertex of the muon is only 

logarithmically divergent, and there is no such ambiguity in evaluating 

a' 
u . 

In order to verify the gauge invariance we have evaluated it in three 

different gauges: 5 = m, 1 and 0. In this section we will present the 

results of these calculations. In Appendix A, we will present a general 

proof that the value of a; is independent of 5. In the following we shall 

refer to the result obtained in the limit 5 + 0 after the Feynman integration 

as the U-gauge result. For those diagrams involving unphysical scalars 

in this particular case, the limit 5 -f 0 and the integration commute. 

This explains why the procedure used by Jackiw and Weinberg8, and Bars and 

Yoshimura8, of replacing the vector propagator (1.3) by the regularized one 

(1.1) yielded the correct result, even though this replacement per se is 

not a gauge invariant procedure. 

Our results are given for three different models. These are the 

model of Weinberg' based on SU(2) x U(l), that of Georgi and Glashow lo 
and that of Lee and Prentki and Zumino (LPZ) based on 

based on 0(3 

O(3) x O(2). The diagrams shown in Figs. 1 and 2 contribute to the models 

given by Weinberg and LPZ, and the diagrams shown in Figs. 1 and 3 contribute 

t6 the model of Georgi and Glashow. In these figures s- and x are unphysical 

scalars and Y" is a neutral lepton. For the purpose of illustration let us 

evaluate the diagram shown in Fig. 2b. It gives the contribution 

_ e L !jZ+:“j ; JJ 
t4”II ,+ 

; (i) $1 (&l+jc)a&-$+~)al: u ‘PJ 
- j ,:zrj’ ~ir.&2][((~~)‘r’I~~] [ f:L- k/z+// ] 

(3.3) 

where p and p' are the incident and final muon momenta respectively and k 

is the internal momentum of x . We separate this expression into the charge 

and anomalous magnetic form factors: 
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-iC G. Lij [ 6 (1’) $ + F, (+$ cry f-i +y viky .b.-> ]ucp) ; 

p/‘-b l 

After the k integration F2(q2) of Eq. (3.4) is found to be 

(3.4) 

~(f)=-i%% J’Jxj’i; /;;Trxl ~~~ 0 0 t 2 (3.5) + 4 
,-x-yj . 

Integrations over x and y yield the desired result in the gauge characterized 

by n. For example, to obtain the R-gauge result, we take the limit n + = . 

Then 

._ 

aj?LJ~b)R = - --=$ 

To get from Eq. (3.3) to Eq. (3.6) we have used the relations 

y+p= I’& ,A 
fil' 

a = &F/$2 
[I M' 

To obtain U-gauge result , we let II + 0 and we find that the diagram 

does not contribute. 

a; CEy’b), = 0 

Finally in a t'Hooft-Feynman gauge, we let n = 1 and we see that 

“i” lhp)i/i-F .= c: (+4; 1 

(3.6) 

(3.7) 

(3.5) 
- . 
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Details of all other diagrams can be found in Appendix A. Tables 1, 2 and 

3 give:contributions from Figs 1, 2 and 3 respectivley. For example, contribu- 

tion of Fig. 2b can be found in Table 2 column b. We neglected terms of 

order u/M. In Table 3, terms of order myo/M, p'/myo were also neglected. 

It is amusing to see that individual diagrams are quite gauge dependent, 

but, as it must, the diagrams always add up to give a gauge independent 

> (~/ni,)~ but to all orders. result not only to the leading order in (P/M)~ 

(See Appendix A). 

To obtain the result of Weinberg's mode 

1 and 2 

1, we add the results of Tables 

cl; = w; { F T -;- f(1-4c&)2 - 53 -j 

(3.9) 

Note that this result is the same as those obtained previously in the U- 

gauge by the c-limiting regularization.8 

The result for the model proposed by LPZ can be obtained from 

that of Weinberg's model by merely changing the definition for the coupling 

constants. We obtain 

aw = 
r 

CTjF p’& 
i 

io 4 i4'* I; L 
s rz,;z 

-3-- 3 yiz 
( It Sk'<-1 Ci,;,Li: , II 

(3.10) 
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where e is related to the physical auantities by 

G- c’ 
-EZ LL=+L+ 
i7 4M’ A“i L’c; ‘Lb3 <I : 

‘LL 
;! !$ (,+h,%) (3.11) 

L 

u and v are the vacuum expectation values of t!iggs' scalars in this model. 

In Eq. (3.10), a: can be about the same order of magnitude as that of 

Eq. (3-g) if (biyij;) ib”’ - c”(l) . In that case both of these models 

predict the weak correction to the muon magnetic moment to be of order 10-f 

below the experimental detectability. In any case, the strong interaction 

correction a: has been estimated from the colliding beam exoeriment to 

be of order (6.5 ? 0.5) x 10-8, l5 so that the latter seems to be bigger 

than the former. 

The Georgi-Glashow model receives contributions from Figs. 1 and 2. 

The result of the calculation in the special case myo<< M are given 

in Table 3 and Table 1. Note that Fig. 3 gives contributions which are much 

larger than the previous two models by the factor rnv+/v'.We will thus concen- 

trate our attention on the contributions of order 4,pnBLy: in Fig. 3. 

Evaluating for arbitrary value of myo/M we obtain 

'F= - -~,z~z di,i2& iiT $I$ (kw2j*~ ~'-j'~~t$)] (3.12) 

-f+r (ml y* r/i )p 

where y = m2yo/M2 and sin29 = 4 ‘-,-tj&c 

Note also the relation 

2 tnyo (L(1 (. := .wiy~+ f 4 

In Fig. 4 we have olotted the prediction of Eq. (3.12). Two sets of curves 

*: 

~ 

correspond to contours of constant a, 
/ 

andrnyo at various values of my+ and M. 
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The present status on experimental and theoretical uncertainties in au 

places the limit15 

Ji// g -7 5. 6 X/C (3.13) 

where as 
u 

corresponds to the hadronic correction to the muon magnetic moment. 

Using the value for at quoted above, it seems quite safe to guess that 

-2A/~-7fc tiW'SO" 
r 

If we further demand, for example ,wy+ 3.5 6,$ Fig. 4 readily 

gives the allowed range of myo and M . The generaous lower limit 

-p" )I' /c-7=. q gives in + 5 5-&d, 
Y 

If we use ) awl 5 + 1. 1xlo-7, 
CL 

we get rn$ 2 2 GeV. In these estimates we assume my’ m /M 
2 

P Q 
cc 1. 

A charged heavy lepton of this mass range can be detected in the near future. 

A pair of Y+ and Y- can be produced in reactions such as 

‘Ii+ cz) - YT+YC+ tr) 

or 

e--cc- e )y'dy . 

The detection of coincident e-u+ from the decays 

‘r- r 
c -7 5.;~ -r e - 

‘Y’ --f 2-;.~ r’;., + p+ 

is a signature of theY+Y- pair production. 

It is important to recognize that a: in Eq. (3.12) does not vanish 

even in the limit m 
Y 

o+ m. If one performs a naive U-gauge calculation the 

first term in Eq. (3.12) is absent and a: + 0 for mYo + m. (i.e. we can 

make a 
u 
' arbitrarily small by letting myo be large). 
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b. Asymptotic Behavior of F,(q*). 

In this sub-section we discuss the behavior of the Pauli magnetic 

form factor F2(q2) as lq21 -f -. We caution the reader that F2(q2) for q2 # 0 

is not an on-shell S-matrix element (i.e., not measurable) and is not invariant 

under nonabelian gauge group (i.e., depends on the gauge). Fig. S,a gives 

a process in which F2(q2) is relevant. But Fig. S-b is of the same order. 

We obtain the gauge invariant answer only when Fig. Sa and S-b and all other 

diagrams of the same order are added. F2(q2=O) = a\; is available for ex- 

perimental measurements only because of the pole due to the photon propa- 

gator. Still, the knowledge of the asymptotic behavior of F2(q2), though 

gauge dependent, is important in the question of renormalizability when 

diagrams of the type Fig. Sa is inserted in more complicated diagrams. 

Our conclusion is that F 2 
2 (q ) + 0 as /q2/ + - in all gauges except 

the U-gauge i.e. for all combinations n # 0, c # 0. This can be easily 

seen at least for off mass-shell muons, as follows: for n # 0, 5 # 0, 

the triangle diagram that we consider has the degree of divergence at most 

zero. Thus due to the kinematical factor 0 pvqv, the integral for F2(q2) 

has the degree of divergence -1. Therefore, by Weinberg's theorem 16 , 

F2(q2) ,c O(l/ G2). 

We have also done the calculation for the on-mass-sheT?O~mplitude and 

varified that F(q 2 
.A 

) + 0 as lq21 + - in all gauges except the U-gauge in 

the Weinberg model. In order to obtain the result for the U-gauge, we let 

5 + 0 and then let q2 i - m. The result is (for the Weinberg model) 

,F “6y -? s-L$ (+fJ ,A‘ &:‘) + constant for q2 + - m. 

.;c 
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These results indicate the gauge deoendence of the off-shell amplitude. 

In particular, for the renormalizable gauge (i.e. for 5 # 0), F2(q2) shows 

a manifestly renormalizable behavior. On the other hand, F(q2) in the 

U-gauge exhibits a divergent behavior at q2 = - m . As remarked in 

reference 17, the logarithmic growfth of F2(q2) for large q2 does not 

necessarily imply any trouble with S-matrix elements for physical processes. 

When all diagrams of the same order for a physical process are added 

the bad behavior of F2(q2) can be cancelled by those of other diagrams. 

The dispersion relation for F2 in the U-gauge reouires a sub- 

traction (which cannot be determined a priori) while its absorptive 

part may be computed by the standord Landau-Cutkosky rule. On the other 

hand, F2 in the Rg -gauge has an absorptive contribution from unphysical 

states, while it reouires no unknown subtraction. 

[After the completion of this paper, we received a oreprint 

of W. A. Bardeen et al, CERN 1485, in which they evaluate ap in the 

Weinberg model using the n regularization method of 't Hooft and 

Veltman (G. 't Hooft and M. T. Veltman, Nuclear Physics, to be published). 

Their answer agrees with ours. H. R. Quinn and J. Primack have computed 

ap for the Georgi-Glashow model. We appreciate Professor Quinn's exolaining 

their result to us]. 

- . 
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IV. STATIC CHARGE OF THE NEUTRINO. 

As in the case of Pauli-magnetic form factor discussed in Section III, 

the notion of the electric form factor of a (muon - ) neutrino is an un- 

physical one in the present theory: the electric form factor, for nonzero 

momentum transfer, is not an element of the S-matrix and, in the present 

theory, is not gauge invariant nor unitary for arbitrary 5. However, the 

electric charge, i.e., the value of the electric form factor F, at zero momentum 

transfer, is an element of the S-matrix and measurable. It must be zero 

if due care is exercised in evaluating Feynman integrals. 

In the Georgi-Glashow model, there are altogether 10 diagrams 

contributing to the electric charge of the neutrino. In Fig. 5, we show 

5 of them which involve internal muon lines. The other five are similar 

and involve internal yf lines. We shall evaluate the Feynman integrals in 

the R-gauge (c = -) for convenience. (We have also checked the 5 independence 

of our results). The contribution of each of the five diagrams in Fig.5 is: 

b: 

C: 

d ‘. 

q’bl= -t i #j sv ik;_MLIL 
- ,; 5 (iI2 j gjq -& (k:FM,)z 

f$:,, = ; { ($,'j$$ $ &z --+L 

(4.1) 

: 

C“W = - ,i f (+f j ‘$ $2 . iLd p.- 
2. { & /& 2 - F% = - .; i:(z) J (p)’ (‘,?;-b,2) ikz+z)r 
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e: F,“\oj = -; 5 I+)=! 1 f& :‘ikt!x2 

where n and M are the masses of the muon and the W boson, and f ~ is the coupling 

constant of the scalar meson to the muon and neutrino: 

In Eq. (4.1) we have written Fl(a) (0) as a sum of logarithmically divergent 

and convergent integrals. A simple computation shows that the sum of the 

second term of Fl(a), Fl(b) and Fl(d) are zero, after the integration so 

that if the sum F,(') t F,(e) vanishes, then the muon contribution to the 

electric charge of the neutrino is 

-2 2 s’ d’k I )S .? (a)+ (&‘)’ 
and is independent of the muon mass. They+ contribution to the electric 

charge of the neutrino is exactly opposite to the above mentioned 
r- 

contribu- 

tion, so the net charge of the neutrino is zero as it should be. 

Thus, the matter hinges entirely on whether the sum F, CC) + ,,(e) is 

zero. A naive evaluation of these two terms gives 

Ecc’i f 6 k = $ I 

LJa.c- ’ 1 = i j- 2 1 k’(F- f)2 - k-( k’-p’) 1 (4.2) 

‘Z ^ .L 
d ‘T; = I 
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which is not zero; it is significant that the value of I is independent of 

the muon mass P. Note that F, (c) + ,,ce) cannot be cancelled by the similar 

contribution of Y+, since the latter is proportional to(fy+)2, f,,+ being 

the coupling constant of the scalar meson to the muon-neutrino pair. That 

is, a naive evaluation of Feynman integrals leads to a nonzero electric charge 

of the neutrino! 

The above paradox has nothing to do with the nonabelian gauge invari- 

ance of the theory or the massless nature of the neutrino. The offending 

diagrams, Figs. 5c and 5e, are characteristic of a theory in which fennions 

are coupled to a scalar meson. The sum of the two diagrams shown in Fig 

7 may be written as 

p-” 
qr j f$ q&“lpj(kz~ *$, 

and if we can shift the contour of integration k--t k+q in the second term of 

the integrand, the integral vanishes identically. The integral is, however, 

linearly divergent, so that the change of the variable of integration is legiti- 

mate only after the integral is suitably regularized in a gauge invariant 

manner. A simple regularization scheme is to replace the pion prooagators 

in (4 .3) by 

I 
.~, -- I I 
l-- ix; (4.4) 

I 
(pg~~t”; - y&G; - lk-+ ,\: , 
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In this case, the naive evaluation of the charge of the neutron gives a result 

independent of the mass mL internal oion lines so that the regularization 

imolied by Eq. (4.4) yields to a zero neutron charge. The result here is 

counter to the folklore which says that convergent Feynman integrals need not 

be regulated: if we oerform the differentiation with respect to q orior 

to integration in Eq. (4.3), as one would to recover the original Feynman 

integral, then the integral becomes convergent and the conventional wisdom 

would say that it is not necessary to regulate the integral. What we have 

learned is that to keeo the charge of a neutral fermion zero, it is necessary 

to regularize Feynman integrals in a gauge invariant way, even if the inte- 

grals are convergent. 

Let us return now to our problem. he can regularize the scalar 

meson line in a gauge invariant manner as in thee'-model: we insert in the 

Lagrangian the regulator term: 

and replace the untranslated scalar fields? by the sum C/ + +'in all inter- 

action terms.18'1g This modification of the Lagrangian is clearly gauge 

invariant (with respect to the nonabelian gauge group), and the integral 

I in Eq. (4.2) is now regulated to read 

~,=;~.;~J*(t2 - -&) 

- k’ k’- p= i 
& - 

(i- /I; 1’ ) ] 
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which is zero for all values of A:. Thus, a gauge invariant regularization 

of the Feynman integral does give the physically correct result F, Cc) + 

F1 
(e) = 0, We remind the reader that F, ('I + FiCe) is nonabelian gauge 

invariant by itself. Thus the regularization procedure stated above is 

sufficient to remove the neutrino static charge for arbitrary gauge. 
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\I CONCLUSION 

We have given a formulation of the convenient gauge for actual 

applications of SBGT (RE -gauge). Based on this formulation, ewe have 

verified the gauge independence of several simple S-matrix elements. This 

indicates that the ghost killing mechanism is indeed working in examples 

we have considered. It is important to show that the gauge independence 

properties of the S-matrix are preserved at every stage of the renormaliza- 

tion program. 

In our formulation, the finite part of the S-matrix is uniquely 

determined. Results of our calculation of weak correction to the muon mag- 

netic moment agree with U-gauge calculations with the E-limiting regularization 

procedure. An experimental implication of our results is that the charged 

heavy lepton in the Georgi-Glashow model is required to be small (of the 

order of .5 % 5 GeV.) It is therefore worthwhile searching for this lepton 

in the existing accelerators. 

A naive calculation of the neutrino static charge in SBGT gives 

a non-vanishing result. This difficulty, however, also exists in the abelian 

gauge theory. A prescription to remove the static charge in a manifestly 

gauge invariant (non-abelian) manner was given. To check the self-consistencey 

of SBGT, it is desirable to evaluate other lower order diagrams and to confirm 

the absence of any other unexpected "anomalous" behaviors. 
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APPENDIX A: Formulas for the Muon Maqnetic Form Factor and the Proof of 

the Gauge Independence of the g -Factor. 

In this aopendix we give the general formulae for the weak corrections 

to the anomalous magnetic moment of the muon based on.our f?<-gauge 

in Section II. We calculate the neutral vector meson contribution in 

the Weinberg model and the massive neutral lepton contribution in the Georgi- 

Glashow model. The Feynman rules are given in Appendix C. From these two 

results one can easily derive the magnetic moment for other schemes of 

lepton interactions. 

P-1, Neutral Vector Meson in the Weinberg Model. 

We have two diagrams shown in Figs. 2a and 2b for the neutral vector and scalar 

meson contribution in the Weinberg model. Fig. 2b has been discussed in 

Section III. (See Eq. (3.5)). 

For Fig. 2a we have 

-e ;cp 

where 

&Z tj 
g-p- 

1 

i= 2 fi 
(A -2) 
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pd?(k, = 1 “Is- k”k” (i-21 

M: - ‘1k’ 

(A-3) 

The result is given by 

’ .ld~*-~ ’ ’ ; a 
@-+Mt(i-W-3) 

+ /“2 ia-&)= 
BrL x J My [3ti*y)-2] ,R, ~'*A/\cI-x-')) ] 

~‘4 M;( ~-n-y) 
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where 
. 

Note the relation 

(A-5) 

with M the mass of the W-boson. 

Based on Eqs. (3.5), (A-4) and (A-5) we prove the gauge independence 

condition for the physical S-matrix element, 2-- GiGj : 0 
a1 

or equivalently 

i!e F’ 
JA 2 (0) z 0 

(~-6) 

Eq. (A-6) demands the follow6ng relation 

.+ 2pL tZ(l-t) 
l/p tl+ /t(r-t)J* = * 

where we changed the Feynman variables to 

t = (x+y) 

z= ix-Y)/* k-8) 
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Eq. (A-7) is indeed satisfied if one notices the relation 

2 L 
i-t 

I 
zt-t' 

Lg i"'fl+ /j(l-4-j 
= -r2ir' tz+ A Cl-t) 1' * 

(A-9) 

Therefore the sum of the neutral vector and scalar meson contributions is 
gauge independent: 
and consequently it is free of ghost contributions. Eq. (A-6) allows us 

to use any gauge we want to calculate the matrix element. In particular 

if one takes the limit n + 0 in Eq. (h.4) one recovers the results based 

on the c-limiting procedure (scalar meson contribution vanishes in this 

limit). 

In passing we note that the Higgs neutral scalar mesons (which is 

independent of the gauge) in the Weinberg model (see Fig. 7) gives the 

magnetic form factor 

drdy Ix+?) Ix+?-21 
p=cx+YiL - ‘b’( Xl) ‘+ /A; (t-x-y) (A-10) 

This gives a small contribution to F,to) for (pa/M\ ) L'L 1. 

A-II.Neutral Massive Leoton in the Georgi-Glashow Model. 

The neutral massive lepton in the Georgi-Glashow scheme contains 

four diagrams. See Figs. 3a - d. Fig. 3d gives 



31 

e.L[(p- tq iLno)*+ (pl‘~~oa-M)q iiL~))c4i((p, IL++ 
(k'-,*1') (IL-A) (P-A) 

(A-11) 

and the result is 

Fcr) = - -$$-&- t,w+,w~~-~~J l&d, (‘-x-Y) 
f +I 1 

h-12) 

‘Z 
- .Q-&= [cp - M cae) + ~p~~~s-my-] \dkiy (“;:;;yj 

1 

where we defined 

%l= mass of the neutral massive lepton Y" 

3(QlhJ = Q’.+ x (cl--/q+ “j (b-p’) + (j-xmu) -2 

(A-13) 

a= = ylr+y)~ - ‘fq 
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Note that F(s2) in Eq. (A-12) vanishes in the U-gauge limit, 5 + 0 

(or .n, + m ). 

Figs. 3b and 3c give rise to 

- fg[pc Itcd'G) -2*1 cule] 
i 

lzcpi f& k(p) r,"(f) 

(k'-m')p-n)(r~nl 

+ M+$3,x ii((I) p,“li’, 
(~‘-mz)(BL-A)( &A) 

i e’ 2 nn[ lnii+r-Lg)-2y3] f ~~pidq) ikz~l.$~A)(lz~n) 

-+ .uq 7i, “‘p, $WJ 
i 

(k’-hqw- A\ (P-A) I (A-14) 

where 

i ky k"' (i-1) 

jr- A 

The result is given by 

Fh=) = &[,‘++ <abbe., -.an~ozQ 
Jc J 

2/V= &dy :(A M’) 
, 

(A-15) 

- s dXd3 (rtj-i 1 [Q2-/-q]]&-, - & 
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For the first group in Eq. (A-14). The second group in Eq. (A-14) gives 

F(f) -= & e* l.+nn(,+ca%) - 2/-‘J,t 

I dwd;l irtg-17 I &2) - f&l 1 
(A-16) 

Note that F(q2) in Eqs. (A-15) and (~-16) both vanishes in the U-gauge 

limit A + m. 

Finally Figs. 3a gives the expression 

- e3+i ~UZ e iic(p’ja’,~1/, k(p) 2 Q:, L&r ?-h 
/ (k’- in’ )( p- /4/‘) I ~‘-M’) 

(A-17) 

- $(dQ) uryq! “4 fq, 7 %) v+, 7 r 6 ) 

lkt ma > Cn ?p$) (1-5 fd) 
where 

if& = jr, ll+$ - /l,$ r- 4; 2 F 

and 

-? $-A -%yg, 
(A -18) 
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The result is rather lengthy. The first group in Eq. (A-17) gives rise to 

Fig’) = - J-+ + w cu>e f 3b2 1 drdj x+y 
M” f (bl; bl’J 

(A-19) 

-t % $ j ddy IX+3-l) [QL-2rzIXty) if’] x 

and the second group in Eq. (A-17) gives 
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FJy2) z L L* ( i + (yLL?G) g’riz 4 riL 
(Y~ty )[ 2(x+‘)] +I J -. 

f’ IMa, I%+ ) 
. 

-.2 1 dxJy [qlatqf- qcx+ 3) + 2 + q] j& 

+2 drdyd:~‘rwtr-i)‘~ric;l+r,(~ty-i)1 - tzizzy [~l+~~~x-9~2~x~y~j, /i s 

% ;h;bfj - I A,m 3 

-G.-L + I h-20) 
;fc’$ h) j$~ ),I’ ) fGvd 

We would like to discuss the gauge independence condition 

or 
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From Eqs. (K-12), (~-15)~ (R~l61, (A-19) and (A-20) we readily recognize 

that F(q2) consists of two groups; one of which is proportional 

to m C%J@ and the other proportional to (1+Leo2a). These two groups 

separately satisfy Equation (A-21). TRe oroof of Eq. (A-21) can be made 

as in Eqs. (A-7) - (A-9) by the repeated use of partial integration. 

We note that the contributions with f(A, M' ) factor and the contribu- 

tion with -f-(h,A) factor in Eqs. (A-12)-(A-20) separately satisfy 

Equation (A-12). We do not write down this lengthy but straightforward 

proof. 

Ejq. (A-21) ensures the absence of the ghost contribution to the 

anormalous magnetic moment. Eq. (A-21) also allows us to use the most 

convenient gauge when we. calculate. numerical values. We also note that 

in the limit 5 + 0 we recover the result based on the c-limiting process. 

The neutrino contribution is obtained from the above result by 

setting m=O. The coupling constant should be adjusted according to the 

specific model one uses. 

A-III. Large o2 Behavior of F(q2) 

From the above general results for F(q2) it is easy to see 

that all the contributions to Fh2) from scalar mesons vanish 

in the U-gauge limit, 5 = 0 and n = 0. They also vanish at q2 = - - (i.e., 

large space-like momentum transfer). It is also not difficult to see that 

-& -contribution in Eq. (A-4) also vanishes at q2 = - - independently 

of the value of 11. 
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In the following we discuss the large q2-behavior of the W-contribution 

in Eos. (A-19) and (A-20). Those equations show that all the contributions 

+ZO F(q2) vanishes at q2 = - m for 5 = 1 (i.e., 't-Hooft-Feynman gauge). 

However the gauge independence of the off-shell amplitude cannot be proved. 

We expect that F(q2) at q2 = - m may depend on the gauge one chooses. 

We show this explicitly in the case of the neutrino contribution in the 

Weinberg model. We thus put m=O in Eqs. (A-l?) and (A-20). 

We first note the following relations 

QL -1 X t/t-f )+ yI M’-r”) 

(A-22) 

and 

-1' \ Ax03 J'(J,~) & f(M:A) 

$ -‘c 1.’ dt Jqt) t ,iLt 
@I -23) + (ATM’4,p s ’ ,J* f (t) AL C-‘bl-*) b 

4. ~(A-M’) 1 ’ 4t f(t) JL [r‘*; M=-q p *A-/“’ _ $ j--y, f(+; [p -p” A~~~E(r’ttM~-~.)~~~~A-rz~) 

-it,,+ ,qL-+j J’A+ QL+, J 
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where S(K,-a) = 4(X++ 'j(x+r)' 4 

and 
fit, = 4t'- ‘it t 4. 

Using these two relations in Ea. (A-20) we can readily show that 

FqL)+o k p-* Lir\d 3 +o 
” 

6 ” 
4d IL’ 

t ‘b I FC;i’) 3 ,k2 5 (4 - $z ) L [-I;=) .+ cosi ’ 8a2 g)/j ) ) .+ co52 (H-L‘t, (A-24) 

k ‘a’--* +A -+ 

(A-25) 

Eqs. (A-24) and (A-25) indicate the gauge independence of the off-shell 

amplitude. 

We also point out an interesting large 02-behavior obtained if 

one uses (incorrect) reqularization schemes other than the c-limiting procedure 

in the U-gauge. The last two terms in Eq. (A-20) show that the linear divergence 

in q2 at large q2 could exist. For the gauge invariant calculation this 

linear divergence cancels. Rut if one uses other regularization schemes such 
. 

as the "proper time" (see Appendix 5) or the "Pauli-Villors" regularization 

with a massive neutrino in the U-gauge, this linear divergence indeed survives. 
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APPENDIX B. Ambiquities in the U-gauge 

In this appendix we briefly review the ambiguity Jackiw and blein- 

berg, and also Bars and Yoshimura8encountered in their calculation of the 

muon g-factor. 

The logarithmic term i!; the parametric integral fork F(D) in the U-gauge limit (i.e 

6 + 0) causes an ambiguity: Eq. (A-20) in Appendix A contains the foljowing 

logarithmic term 

FM - - -$I -gG j @j [4hyf- ‘](xty\ + 
2+631x 

AL c X 
~z(x+y)‘+ (x+yl CM’-y’i’ I ’ 

. oh- LKP . h -1) 

This is the correct answer. On the other hand if one regulates the neutrino 

propagator we get 

F(O) - - -f+ s s =!Kdy b (X+y)=-- q(x+y) +1+6y] A 

Lc 

I-X-7 
;( /-t’ti+y j’+ (xty Y/$-p’) 

I 
f c.fL L,w , (A-2) 

If one first exponentiates the Feynman amplitude (a sort of "proper time") 

and performs a loop integral, the following result is obtained 

F(o) = - $ j$ 1 k$ [4(x++qwy)-t 2+ 633 x 

h -3) 

u 
I 

i 1 p3)z+ Ix + 7) (by) 3 i .L-Lw.9 . 
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All these expressions give rise to different answers. This kind of ambiguity 

is absent in the general R-gauge calculation. Naive (!-gauge calculations 

are plagued by this k,%nd of ambiguity. Some existing oroofs of cancellations 

of divergences in higher order diagrams are based on the exoonential para- 

metrization of nrooagators that leads to (B-3). Hhile such a method is 

acceptable in establishing the absence of divergences, it will not provide 

a reliable finite part. 
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APPENDIX C. Lagrangians and Feynman Rules. 

In this Appendix we present Lagrangians for the existing models 
down 

of leptons mentioned in the Introduction. We also write/\necessary Feynman 

rules for our calculations in Sections III and IV. In the Rg-gauge 

discussed in Section II, we have unphysical scalars in the Lagran- 

gian. The Feynman rules are therefore more complicated than those in the 

U-gauge limit. The Feynman rules for those unphysical scalars and also 

the relative signs for various amplitudes can be conveniently checked 

based on the gauge independence of the T-matrix element as we discussed 

in Section II. 
CI. Georgi-Glashow Model 

This model is based on the group Q(3). We have a triplet of leptons 

and also a singlet of neutral massive lepton. The mass is generated by 

a triplet of real scalars. A part of this Lagrangian has been given in 

Section II (We follow the notation of Bjorken and Drelj6).The total La- 

grangian has the following form: 

Jy .= Jr -i 2% i J-3& - v 

k-1 1 

+I;(tp-wtr)r -r Y, ijUL i e L a/‘(y,Z)rL 

+ e c y’(f,+ __ ++;sa- my) [I (‘T-;)R +r,.c.] 

_ emp Sin0 

PI I 
pi*, 0 7: - cenoL’J~s~- ~‘(Rf 4. s+rR -qu;] +“,cj 
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where 

with 

i .=_ “LT 

I” 1 

case yLo+ &I 8 y, ) 

P 

yf, 5 ( I*;+ ) cL, 

I? = ;I 

: I 

R 

ru 

(c-2) 

(C'-3) 



a3 

3' = unphysical scalars k-5) 

and ~~ = (e’scnZe/4M2) 

There is a constraint : ~&y,oco50= '"y'+y* k-6) 

Note that the covariant derivative is given by Vrq z [ ar-+ &?l.~)$~ 

with g E - e. 

where q = Higgs scalar 

d, 5 2 \ ap f ;< [y--‘- +-, /= k-7) 

-i VT+ i ;).jHl; --;e /lpS’* ;q.%~ 1 z 

The quadratic term of LII is given by 

gy.= 1 +sy -i- $( “f/JjZ + j$ I++ I’ 
(C-8) 

_ ;M [ +&,j-r - ~-WV] 

This LII quad. suggests the following gauge term 

d' = - h ("rA")' 

.- 5 j “y+ y! p 1% 
(C-9) 
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See also Section II . 

. 

2, = ~- 2 1 +hj':.- 2, v,j;+- r sic [ti;A, - d;"& I= 

(c-10) 

-4iJa,A,-a,Ay.-irCw,-~~-IJ;~~]j' 

The mass of WV' is given in Eq. (c-8). 

The potential is given by 

V[cf, = $ fc j+ hl@’ 

= $ ?n; .+l ~7 h c 4iry (2~‘s~+y)‘) + (55-s-c qL)’ 1 (C-11) 

+ [jd’+ Lcv%j p--f J-Y] 

where 
%I; : pl, 12xv' 

/ho and we have the condition PO” 4ir’/c ‘0. 

The field is the unshifted field, and it is expressed as 

+ = $1 = :; 
0 ( ) 

4+,, = “, 
f- s- ) 0 0 . k-13) 
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The gauge compensating term for Eq. (C-9) is given by (see also Section II) 

where 

I- 
and 

0 

0 

j” a 
-3’4 ;r 0 

0 - P Lt M’ ,-& 
3 ) 

(C-14) 

,&L-y) (C-15) 

;p+p’- A+ .+p& + 
0 

/ 
- xp-r 0 ,;u 3 I,+'+ 

g+(x-9) 
r 

0 ,;ca \Iljer, ebi - 
(P-16) 

f T’ -it +A’- Y+! 

The divergence in this matrix stands for an operator, e.g., >\ A'r(a 
t r /API+ A',J r” 

The lowest order contribution from Eq. (C-14) is a "# -vacuum-tadpole 

diagram. For 5 = - (Landau-gauge), for example, Eq. (C-14) becomes 

-i IL/ ’ d I+ -iI t +A a,(l&gr) 
1 

( 3-17) 
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C II kleinberg Fnodel 

The detailed form of this Lagrangian is found in references 

1, 6. We briefly summarize it in the following 

dcz. hz~ cf,-v 

- qip;p - *[cipp + id,] - 2 -Y;$Y‘ 

+c;r.#l ‘e.y ( I$) - s;nZO (I*) J p 
(C-18) 

where 

S"& X = ,$uy;.~ scei~h , .zt, = i-';cjy :ccAcn 

+pjq- 

c&& = 2, = &!.- G (C-19) 

G + ' F 
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For notational convenience we defined the charge e with an extra minus 

sign. 

&fiL = 

-t J a SO.-; k!i~z 1 
r fir - ; L+- f + 2 $- '; + 1 (C -20) 

wlwa 50 -z + (lj+ix), 
The quadratic part of 

LII is given by 

2:“; 1 pq’ +. 2 [ y,jy+ carn12J + M’i$.+(’ 

+ t$(~y)~.-; ,q[ar~+~'-r- +s-~+r] - M, +d-*'I 

The gauge term is given as 

if = - h (y.Ar)= 
- z i+.uri ; pq2 

- 1 (ar zr + f4 -pd 

(C -22) 

The gauge compensating term will be discussed later. 



~~,i-a,vJ;t.crt![~r~A,- ~~~r]-~4'~s'Urw,'z,-w~~~] j2 

a,&- JvAr - ;e [y)J;- idfq- Ji2 

-$ I+%- &Zr + Xcoh [v++W+-- lli,,T@J\’ 
r 
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The masses for W r and z P 
are given in Eq. (C-21). 

l/z /, p- T (s@+&~c~ii)-~~2 

= t ,I; If -i k [.Ij m+ ", (s~s-.~ sdso j t [S+S- t ~~i-3~~~~~) 

The gauge compensating term is given by 

-i-i-i ~.tn [,+ ,$.y] 
(C-25) 

where 

c- (f-f &) 0 0 0 

0 -(a'+?-it) o o 

0 
,"d = S"cX-~, 

6 - J'i,i t 0 1 

G 0 0 - (g+ie' 
4 
.-I (C-26) 
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and the matrix y is defined by 

Jf’ 
II 

i-f $ I&ifl’) a$- - _R- ijfA ‘I- 163 
.j 11 nA - 'li ,&(d 4q c 3 

6fS R2 7 
a3 d - rR‘ 1 ; A3 + $z" (C-27) 

With~f’s~;~ ,ri[~~‘=s”~iL\r~~~e~~~~ - .~(~tZ,n’- 

T rec05e Jr $[;LA+ ,,tep i II + ckllye s* [Z,2~-Lps~~JqzJ 

gs ;Gs,ne .ar [y-a+- bp-J 

if” 3 ,q jr [iqn-i - k++K 1 
+ Gg$z [ ,- qyp .+ s+fl- 4 s-,q+] (C-28) 

Another way to take care of this compensating term is to introduce four 

auxiliary complex scalar fields 12 
Y LL, a=(+,-,A,Z) . !de add 

the following extra piece to the effective Lagrangian 

2 ;- jy[jyT 2( JqJb yb (C-29) 

The ordinary perturbative treatment of?with an extra (-) sign for each 

closed loop of the fictitious scalar particles y&gives rise to Eo. (C-25) 
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c III The Lepton Model by Lee', Pcentki and Zumino 

The group structure of this model is close to that of the Weinberg 

model. We need two sets of scalar triplets to accomodate "ouarks" in this 

model. However only one triplet of complex scalars are sufficient for the 

lepton model. We present here this simplified lepton model. 

J =& *J zr‘Sj7L-V 

.=i& '= jip (;g.-,kL H'j p/f'+- z/L;+'i .+ji(+ml,)p 

-F L( 
iqM; +q - *[(~,s)pR 

" - f5 [uB(> _ /$(M'] 

-31 (uj&p -'fi+j&~) -+ j&j 

+ G jip{ COSLQ p$)- 5jk% (i';"))/4 

(c-30) 

where 

L.? ‘I4 

I 

z 
VL 
rL i 

SE 
, 

ST+ 
S+ 5-E 

i 1 

S<# 
.s - 

7 
SD 

5 ‘.- 

(C-31 I 

) M=$u j M~=m.+ 4 



s ++- ; 1 $sc .+ i ,;&A 
. 

-: M jj,S~ -; --tg + ;p&+- 
* *L 

I @ r r i 6 & so 1 
/ 

(c-32) 

The quadratic part of LII is given by 

&Y= j y I z + j +s’I= i > [(a,y)‘+ (+.Q ] 

‘+ M’l~+‘t’ -r $ M; (zJ 
I k-33) 

_ AlJl ars2 wr-- f,- $1 .- MS +Ur 

where we defined 

S” 2 ,& (I+;((] 

s* Qd;C = ti’H,$,~ ,i;Q.G 5 COLAS 

St’ 4 + = l-L+ 1 dc&Ju, 

(c-34) 



52 

The gauge term is the same as Eq. (C-22) in the Weinberg Model. The Yang- 

Mills Lagrangian is also given by Eq. (C-23). 

Finally we discuss the potential. 

v=pi;t) + f (7bxy)2 + #f)’ 

= $3kt+j=M 2 &, / Sf’J2 + Zj’;,\ti qJ [G+ 5+s-+ s++s--j 

4 
pp + s’s-- $‘t s-- 3 = ~- $ [ & k q2 (S”3.a + s’+s-- ) 

~+zus’(sy _ ys--) + 2~‘;~ (rcs+- j-j++ ) 

+ (SOS” _ j’+5-- )” 42 ( FG ~‘-~‘$++)(y~s-~ \‘I- -) 

J 

(C-35) 

where '; 
5 is the unshifted comolex scalar field 

r J 1:’ I 

i 1; 

o2 = ‘1 

LA+ S” 

ij 

t4 

(C-36) 

ml L= -2 P p+J ) w5:+ = v lLL 7 0 ,, 
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,& 
There is 

A 
followino constraint: 

1% $ + ( -..E j -= Lz [ c++ + nctT- J 
(C-37) 

We can make ,llty and jils,farbitrarily large. The gauge compensating term 

is also similar to that of the Weinberg model. We do not discuss it here. 

C IV Feynman Rules 

We summarize several Feynman rules we use in Sections III and IV. 

Propagators for vector bosons and also for scalars are found in Section II. 

The Fermion propagator has the standard form 

f-m 
(C-38) 

In the following we give, Feynman rules for the leoton models due to Georgi 

and Glashow (GG), Weinberg (W), and Lee, Prentki and Zumino (LPZ). We write 

the Feynman rules for the RE-gauge of Section II. 

All of these models give the identical Feynman rules for Figs. 8a h) 

8d. 

They are 

(8a) C-2) p b',p 

(8b) (.# ;e!) (A+ “‘/- 

(C-39) 

(C-40) 
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(8~) 

(it) ,( b 
.t c Jy (63 - i$+)j bl, I :.,tf-,e 

(C-41) 

(fJd) 

C--L(?) w=j 
T 

(C-42) 

Note that we normalized the sign of the charge by Fig. 8a. The magnetic 

form factor appears as a coefficient of (-pie ) LC -L i 7;~ 'Tzr-] U. 

For other diagrams Feynman rules deoend on the model. We just list them 

below 

(8e) 46; (,e Sk tj)p y’, f i* )p 

w : (-g, G*& (y-p 

(C-43) 

LPZ : (- iJ) F -g, ( $5 ) p 

(8f) 

(C-44) 
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(89) c;6 : 
(C-45) 

(8h) c;G ($) 7' ,j,)$‘Q~ - 'i",+)( q5) C (h"/,, - 'b+ h~)[i~r)] p 

(C-46) 

(8i) id', ; 

LPZ : i4 ,[&(l+) - sGl'0 [!$qd,p 
(C-47) 

(8j) hl: (-; g!$) p&r 

(C-48) 
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FIGURE CAPTIONS 

Fig. 1. kl boson and scalar boson contributions to weak correction 

to the muon ,magnetic moment. These give contributions 

in all three models. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Z and x boson contribution to the weak correction to the 

muon magnetic moment; These diagrams are for Weinberg's 

model. Similar sets of diagrams exist for the LPZ model. 

Y" lepton contribution to the weak correction to the 

muon magnetic moment. These diagrams are for Georgi- 

Glashow model. 

Predictions of Ea. 3.12. Sets of contours corresaond 

to constant auW and constant WY0 on the Fnv+, M plane. 

If we take -2 x 10e7< aVw C_ 0 , for example, 

the experimentally allowed region lies below the line 

labled - 2 x 10a7. If we further take MY+ 2 .5 GeV, 

the allowed region is bounded from below. The uooer 

bound for My+, in any case, is approximately 5 Gel!. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Example of diagrams contributing to muon elastic scattering. 

Diagrams which contribute to the static charge of the 

neutrino in the Georgi-Glashow model. 

Diagrams contributing to the neutron static charge. 

Fig. 8. Several vertex diagrams for lower order calculations. 
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Tables 

. 

1. Contributions of diagrams shown in Fig. 1. To obtain the answer 

these numbers should be multiplied by w/m'~ . 

2. Contributions of diagrams shown in Fig. 2. To obtain the answer 

these numbers should be multiplied by GP'y m'fi , 

3. Contributions of diagrams shown in Fig. 3. To obtain the answer 

these numbers should be multipled by G r'/2~i~fian'e , 
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