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ABSTRACT 

Predictions are given for the isospin and SU(3) dependence 

of single-particle and multiparticle inclusive cross sections in hadronic 

and photoproduction processes. Hadronic isospin relations can test 

consistency of experimental data. SU(3) relations measure SU(3) 

symmetry breaking. In photoproduction and electroproduction, isospin 

relations can be used to look for isotensor electromagnetic currents. For 

example, in the reaction y t d - 2rr + X, inequalities relate the cross 

sections for the different 2rr charge states. These must hold at all values 

of pion momenta if the photon has only isoscalar and isovector components. 
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We wish to call attention to a class of model-independent 

symmetry relations for inclusive reaction cross sections. Relations 

that depend only upon isospin invariance of strong interactions are 

expected to be satisfied experimentally and may be useful to test the 

internal consistency of experimental data. Relations for electromagnetic 

processes may test the assumption that the electromagnetic current 

contains only isoscalar and isovector components. Relations that 

follow from SU(3) symmetry may give information about SU(3) 

symmetry breaking. 

The symmetry relations discussed here can be obtained 

by straight-forward application of a “maximum-complexity” theorem’ 

to specific cases. The physical content of the maximum-complexity 

theorem is analogous to the statement that an initial state that contains 

only s and p waves cannot produce a final-state angular distribution 

more complicated than A t B cos 0 t C cos 2e. F or isospin, consider 

the inclusive reaction 

A t B - CIM f X, (1) 

where C IM denotes the set of states within an isospin multiplet having 

isospin I, the subscript M is the eigenvalue of I , and X is everything 
z 

else. The maximum-complexity theorem requires the isospin 

dependence of the cross section CT* for the inclusive reaction (1) to 

be given by a polynomial in M, 



(max’ in the initial of degree equal to twice the maximum isospin I 
AB 

state. Relations between the cross sections are then 

obtained if the number of free parameters is less than the number of 

(max! For independent experimental cross sections; i.e., if I > I 
AB 

initial states involving available beams on nucleon targets, g-’ 

is at least 1, and relations are obtained only for states 

having I Z s. Such isospin multiplets are available only as resonances 

(m=x) 
and not as stable particles. For deuteron targets, I 

AB 
can be as 

low as +, and relations are obtainable for inc~lusive single-pion 

production as well as for resonance production. Such relations can 

therefore be used as consistency tests on separation of resonances 

from background and on unscrambling of deuteron data. 

The multiplet CIM need not be a single particle or 

resonance. It could be a multiparticle system such as a nucleon- 

pion or multipion state. Then the cross sections vIM for the production 

of a given isospin eigenstate are not directly measurable, except for 

the cases of maximum and minimum charge. However, the sums of 

cross sections for a given value of M and all possible values of I 

are expressible in terms of observable cross sections as shown below. 

For these sums, inequalities can be obtained from Eq. (2). For example, 
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uM - ;r uIM >- uI,M = 
h=x’ 

21AB 

where I 
max 

is the maximum isospin obtainable for the multiparticle 

system and I’ is any value of I between M and I 
max’ 

Isospin equalities. We first consider equalities obtained 

b==) 
by applying Eq. (2) to initial states with IAB = i. The inclusive cross 

section (r 
IM 

must then be a linear function of M. The relations obtained 

are 

r(K*d -n’Xj t v(K*d -n-X) = Zrr(K’d 
0 

- nx), (4=) 

VW - rr+X) t u(pd - n-X) = Zo(pd - x0X ), (4b’ 

- 
o(pd - JT~X) t &d -n-X) = 2&d - rr”X) > (4c) 

o(A 
1/2d 

- X,‘X) t u(A 
l/zd 

- Z-X) = 2u(A 
1/2d 

-2x,, (44 

dA l,2d - A,X = a0 t aiM, (4e) 

where C can also be any Y resonance, A 
ii2 

is any particle with 

isospin i, 
t - 

such as K , K-, p, or p, and A 
M 

is the A state with I = M. 
z 

(m=x’ 
For IAB = 1, the cross section is a quadratic 

function of M, and relations for inclusive A-production can be obtained. 

~(-4 I /zN 
t 1 

-A W +7dAi,2N - A-X) = cr(A 
0 

1 /zN 
1 

-AX) +Tu(Ai,2N - A++X) 

(5.3) 
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cr(nkd - Akk, + $ .b*d - A-X) = Ir(n*d _ AoX, + 4 o(rr*d _ A++X) (SW 

m(yd - A+X) t $ u(yd - A-X) = cr(yd - AoX, t $ u(yd - a++xx). (SC) 

U-spin equalities. The same arguments can be applied 

to U spin or V spin if SU(3) symmetry is assumed. Because the photon 

is a U-spin scalar, the condition analogous to (2) for relations 

with U spin is most easily satisfied in photoproduction experiments on 

(mad 
protons, for which UAB = i. However, simple equalities involving 

0 
octet particles in the final state are not available because the A, C , 

0 
TT , and TJ are not eigenstates of U spin or V spin. Thus the most 

useful relations are those for decuplet baryon production, namely 

*0 
U(YP - A0W + U(YP - E X) = 2u(yp - Y*Ox), (64 

o(yp - {A-, Y*-, $-n-}X) = a0 t aiUz, 
(6b) 

:> _ 
o(Yn - Y X) ++l - n-x) = o(yn - $‘X) t $yn - A-X), (6~) 

u(K*p - Y+:-x) t +s+p - n-X) = c(K*p -z *<-x) t $r(K+p - A-X), 

u(n*P 
*- 

- Y X) t +T*p - n-x) = iJ(lT*p 
:: _ 

- z X) t $i(lr*p - A-X). 

(64 

(be) 

When the same approach is applied to multiparticle 

inclusive processes, equalities are not usually obtained, but useful 

inequalities can be derived. For example, relations (4e) and (5) hold 

when the A is replaced by any nucleon-pion system in the I = $ state. 
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only the p”+ 
0 

However, and nn states are pure I = $ states: the prr , prr-, 

0 t 
nrr and I-IV states are mixtures of isospin $ and *O Thus the equalities 

(4e) and (5) are not valid unless the NT~ system is known to be in a 

resonance with I = $. To obtain inequalities, we first note that the 

sums of the cross sections over all states having the same charge are 

simply expressed in terms of the cross sections for the isospin 

eigenstates. The sum contains no interference terms between different 

isospins because I and M are simultaneously measurable. Then Eq. 

(3) gives 

r 1,2 = ++na + dnOpX) = u3,2 i/2 + r,,2 1/2 3 u3,2 l/2’ (7a) 

-dnOnX) +dn-Pw = [r3/2 -1/2+(rl/2 -l,2 2 u3,2 -i,2’ 
(W 

m-i/2 

The inequalities (7) can be combined with the relations 

(4e) and (5) for r3,2,M to obtain inequalities relating multiparticle 

cross sections. (m=x) In the simplest case, IAB = $ and 

the cross sections LT~,~, M lie on a straight line when plotted against 

M, as shown in Fig. l(a). The sums v*i,2 must then lie above this 

straight line, which can be determined by the two points r 312, -t3/2’ 

Thus we obtain the inequalities 

o(K*d - ‘~+nx) t o~(K*d - ,~‘px) 3% $,(K*d + --pat3 L o(K*d - n-do,), (84 

(8b) 
o(K*d 

2 * 
- n’,X,) t r(K’d - tr-px) 2. ?u(K d -n-S) t $r(K*d - n+pX) 
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(mad 
When IAB = 1, the curve of (T~/~,M vs M is a parabola, 

which is not completely determined by the two points r 
312 and r-3/2’ 

However, inequalities are still obtainable by using the inequalities (7) 

and noting that all cross sections must be positive. This is easily seen 

in the extreme case in which cr -312 
= 0, shown in Fig. i(b). The lowest 

parabola that passes through the point w3,2 -3,2 = 0 and keeps 

r3/2, -i/2 
2 0 passes through the point w 

312, -i/2 
= 0 and has the form 

r3/2, M = $~3,2, 3/2(M + $)W + i). 
(9) 

This gives the inequality 

1 
F1/2 = v3/2, 112 + r1/2, i/2 a T”3/2’ (10) 

We now apply this approach to the general case for 

reactions where I 
Cm=4 
AB 

= 1, for example 

K*tp--tNtXX, PfP- rrtN+X, (ii=,b) 

P+p- irt N t X, rrtd-rr+N+X, (iic,d) 

ytd- irtN+X. (lie) 

The equalities (5) apply to these reactions when the A is replaced by 

the rrN system in the I = $ state. Thus the inequalities (7) give 
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e+=m + cr(*OpX) 2 3 [r(lrtpx) - LT(lT-nX)], (12=) 

Ir(nOnX) + cr(llpX) a f [[T(TI-nx) - Ir(rrtpx)]. (12b) 

The procedure used to obtain the inequalities (12) can be 

applied to any multiparticle inclusive process from initial states with 

ILY’ = 
1, such as multipion production. The experimental cross sections 

cM at two conjugate values M = &I can be used to determine two of the 

three parameters of the parabola. The third parameter cannot be 

determined completely, but bounds are obtained by requiring all cross 

sections to be positive. The equation for the parabola can be written 

oM(I;~x) = 1) >- f(qo,,, t a-Lm)(M~/-‘m)2 + :b, - y,))(M/411) + di - M21d9 (13) 

where x is an undetermined parameter, M < I?fii, and Iv[l need not be the 

maximum value of IM 1 f or the system under consideration. For three- 

pion production, the cases lml = 2 and )@[I = 3 give nontrivial relations. 

The inequality becomes an equality when the cross sections 

come from a pure isospin eigenstate, e.g., a resonance; however, these 

are not of great physical interest because of the experimental difficulties 

of separating resonances from background. By requiring the cross 

section (13) to be positive for some value of Mu, which we denote for 

convenience by -m, we find a lower bound on x. 

LT -m(*j;yx) = 1) > Q(I~~,~’ t rsrr,:) (m/.1s,.1)2 - t(Cw - u_nr)(m!W) t X 1 - (m2/%‘i2) 
C 1 2 0. 

(14) 
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Thus for any allowed value of 1-1 < Iw/, the condition on x is 

2 -1 
x a*(l-m’/WI) 

[ (ryq - )(mlW) - (r + r r.+; _ iIl)(m l’h.))2 
3 

. (15) 
--r-o 

Substituting Eq. (15) into Eq. (13) gives 

crM(Ig=x) = 1) 2 
(?XJ: ) [“W (TbI :~)-m-f~($i :z)]J (lb) 

where m should be chosen to give the best inequality and, as before, 

lM\ < I%?/ ==d b < I’%/. 

Setting@{ = *$ and m = M = rti gives the inequalities (12). 

For (q = 2, the next case of interest, we find 

uM(lAB 
tmax) = 1) a +($A t m) ~~(2 t M)/(2 t m) - lrs2(2 - M)/(2 - m) 1 , (17) 

where IM\ < 2 and 1-1 < 2. This relation applies to multipion 

inclusive processes, such as the two-pion reactions 

K* t p - rr(ki) + r(k2) + X, P+P - rr(ki) t n(k2) t X, (i&b) 

P+p- +J + G2) + X, ytd- n(ki) t n(k2) + X, (lgc,d) 

where the momenta ki and k2 are specified to distinguish between the 

two pions. The choice I%] = 2 1s convenient experimentally, since the 

doubly charged states are most easily identified. Substituting M 

values into Eq. (17) and trying m = 0 and m = &i gives the inequalities 

(m=x) 
‘i(IAB 

= 1) 2 $[02 - Uw2]’ = 1) 3 i[r 
-2 - u21 9 <19=, b) 
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v (1 
(max) 

0 AB (T 
- 2021’ 

where, for the case of the two-pion reactions (18), 

uf2 
E u(AB - rr*v*X). 

“* 1 
E F(AB - n*rr’X) t u(AB - rr’rr*X), 

0 0 is o E u(AB - ntn-X) t (r(AB - rr-n+X) t u(AB -n lr X). 

The inequalities (19) also hold for the multipion 

inclusive processes 

AtB-nnrr+X; 

(19c, 4 

(19c, f) 

(2Oa, b) 

WC) 

(21) 

provided that rM includes all the n-pion states of charge M. 

Additional inequalities are obtainable for the n-pion case by substituting 

p /= 3, 4, - - .) n into Eq. (17) and trying different values for m. 

All the relations derived here hold for any set of fixed 

values of the momenta of the outgoing particles. Thus in a given 

experiment they can be tested at each point in the energy spectrum 

and angular distribution. Note that the inequalities (lie) and (18d) 

could test for the presence of an isotensor component in the 

electromagnetic current. Such equalities as Eq. (SC), which involve 

resonance production, are useless for such tests because ambiguities 



in separating resonances from background are always greater than 

the effect tested. Pais has recently suggested extensive tests of 

isospin properties of currents by inequalities in exclusive reactions. 

These model-independent relations follow from isospin 

and U-spin invariance, respectively, and will hold in any model (e.g., 

in the Mueller-Regge model) if the model does not violate isospin or 

SU(3) symmetry. Additional model-dependent symmetry relations 

have been obtained from particular models.4 Those usually follow from 

assumptions that limit the quantum numbers in a particular channel 

to those of allowed (non-exotic) Regge trajectories, or to be those of 

the Pomeron in the case of a diffractive process. 
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FIGURE CAPTION 

Fig. 1. Cross section vs. M. In (a), Iiy) = $. 
(mad 

In (b), IAB = 1. 
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