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ABSTRACT 

We discuss the equivalence of the S-matrix in the R- and 

U-gauge formulations of spontaneously broken gauge theories. 

We give definitions of the U-gauge Green’s functions in terms 

of the R-gauge ones, for both abelian and nonabelian cases. Based 

on the equivalence theorem, we give a renormalization prescription 

of the U-gauge formulation. 
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1. INTRODUCTION 
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In this paper, we wish to demonstrate the equivalence of the 

S-matrix in the R- and U-gauge formulations of spontaneously 

broken gauge theories. We have discussed the advantages and 

disadvantages of the two formulations in a previous paper (Part II). 

We shall carry out this demonstration by expressing Green’s 

functions in the U-gauge in terms of those in the R-gauge. What we 

shall show in this paper is a concrete realization of the remarks made 

(1) (2) 
previously by Weinberg, and Salam and Strathdee about the 

equivalence of the two formulations. But more importantly, the 

present work gives definitions of the U-gauge Green’s functions in 

terms of the well-defined R-gauge ones. 

This paper is organized as follows. In the next section we 

consider the equivalence of the two formulations for the Abelian 

model considered previously. In Sec. III, we give some illustrations 

of the equivalence and formulate the renormalization prescription in 

the U-gauge. In Sec. IV, we deal with the generalization to 

nonabelian cases. 

It is empirically known that the T-matrix for the Abelian case 

computed in the U-gauge is finite. (1.3) This is a corroboration of 

our general arguments in this paper. 
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II. ABELIAN CASE 

We recall the model discussed in ref. (4). It consists of the 

gauge boson A 
P’ 

coupled to a complex scalar field 4: 

J!‘ :-$(+J, -a,Ar)‘+(a/,+~eAr)~*(a’-ieAr)~ 

- r’lff ) - J w4T- +=cs*f 1 , (2.1) 

withk2< 0. The symmetric vacuum is unstable, and an asymmetric 

vacuum becomes stable. Let v be the vacuum expectation of r$. We 

can adjust the phase of $ so that v is real. 

The R-gauge formulation is suggested by the parametrization 

9 - &(-++q~, 

where $and x are real fields with null vacuum expectation value>and 

requires the subsidiary condition 

apAr 12) = 0 . 
(2.3) 

The U-gauge formulation, on the other hand, is based on the 

choice of fields 

4= ;z &b+p)e , 

(2.4) 
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where p and 5 are real. Under the gauge transformation of the 

second kind, we have 

The constant u is to be so adjusted that (p>, = (S>, = 0. (Only in 

the tree approximation, does one have u = v). The gauge condition 

is chosen to be 

5 =c 

where c is a constant, which we shall choose to be zero. 

Since 

(2.6) 

I C&e3 T m”(q1 = f 
we may write the generating functional of the U-gauge Green’s 

functions as 

.w-/ ; Z’,C~,Kl = ~Sc<rz11 Tfpl 

where Su is the action expressed in terms of the U-gauge variables, 

and J [ p] is the Jacobian of the functional transformation 

(JI>X)--(P> 5): 
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Jrp - cy{&~J:,i!,&+ i;pJ} 

We may restrict the source JP to be transverse in Eq. (2.7): 

Since 

(2.8) 

(2. 9) 

(2.10) 

independent of A 
P’ 

we may insert the factor (2. 10) on the right hand 

side of Eq. (2. 7), and revert to the R-gauge variables. We obtain 

thereby 

Q~i,&$,K1 =jrdAr~i+‘q~ 7j- Z(a’Ap,) 

(2.11) 

Equation (2. ii) allows us to evaluate the U-gauge Green’s functions 

by the Feynman rules of the R-gauge. 

It follows immediately from Eq. (2. 11) that the transverse 

parts of the vector meson propagators are the same in both gauges. 

In particular, if we write 
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we have 

x3 = z3 (2.12) 

Let us examine the scalar source term in Eq. (2. 11). It is 

<( hr+fJb 7(Y- 4 

= Klw-+ f + +j$.X’ -.&Af+ ---I (2 13) 

The scalar propagators behave near k2 = p2 like 

$$ % A&R) = -m-k ‘+ k”-p I (2.14) 

The ratio (X2/Z2)$ is not equal to one, due to the possibility of 

exciting the physical scalar meson by the nonlinear terms in Eq. (2. 14). 

Since the series on the right hand side of Eq. (2. 13) is infinite, X2 

contains high order divergences. The mass shifts of the scalar boson 

in both gauges are the same, however. 

From Eq. (2, 11) we can compute a Green’s function in the U-gauge. 
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After the amputation of external lines, and after letting external 

momenta on the mass shell, we obtain 

& es T(V) = Z,““T(R) 
(2. i-5) 

where Es is the number of external scalar lines and T(U) is the 

T-matrix in the U-gauge. Note that Eq. (2. 15) holds between the 

T-matrices. There are no such simple relations between proper 

vertices in the two formulations. 
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III. RENORMALIZATION 

The Lagrangian in the U-gauge is 

OI” =+pv-3~arf + $$a; 

The discussion in the last section implies that the T-matrix becomes 

finite if we choose 6~ 
2 

so that the vacuum expectation value of p is 

zero, and renormalize fields and constants according to 

a/& = Br-” x3 “: 
% 

e = p” x2’lz > -u :dqx; ) ) 

e = e, X, X2-’ &-‘f 

J = 1, xv x,-” * (3. 2) 

We will now discuss how Xi, X4 and X2’may be chosen. 

Let e2u r 1 2 (U) be the on-shell T-matrix element with one 

scalar and two vector particles. We will define Xi by 

q,=& $ 
i J 

‘/a 
, & a. (3.3) 

Then the renormalized T-matrix: 
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(3.4) 

is finite. Similarly, we write AUF 
3,dU f or the on-shell T-matrix 

for three scalar particles, and define X4 by 

r,o(v,) = ;t;, ($)” 2 (3. 5) 

We may choose Xi so that the renormalized vector propagator has the 

low energy limit: 

e, $- A$k) = - -!- 
“r 3 8’ P (4&fLyZ 

(3.6) 

The physical masses m2, and p2 are finite functions of e 
r’ A, and vr. 

The ratios (X,/Z,) i and (Xi/Z;)+ may be computed 

perturbatively from the structure of Eq. (2. 13). where Z2 is defined 

by Eq. (2. 13) and Zi by the relation v = v,(Zi)+ [ The ratio (Z,/Zi) 

is finite] We have 

c ) % “& 2141 2, 4 g4 + +] .-c&/g4 +, (3. 7) p-y’ 
in the one loop approximation. The requirement that ( p>, = 0 

translates into 

=o 

(3. 8) 

Combining Eqs. (3. 8), (2. 7) and (2. 13), we see that 
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” 
‘LL= .g .a .L 

i 

A4 L 

qflJ’ (3 k’ , 
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or 

in the one loop approximation. 

There is an interesting check on Eq. (3. 9). In the one loop 

approximation, the transverse self energy of the vector boson in the 

R-gauge is given by, with m2 2 2 2 =(ev) , p =hv, 

+ (p ; R ) = I dea(ec+!L - 
(any’ q,-;,‘-pz 

This difference between the self energies in the two gauges must be 

accountable by the difference in the first order expressions. From 

Eq. (3. 9) we see that 

e=,u= = e’d’+;e d+k 
(Z)J i? 
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IV. NON-ABELIAN CASE 

In this section we will derive the generalization of Eq. (2. ii) 

to the nonabelian case. We shall use the concepts and notations 

developed in Sec. III of Part II. Corresponding to the decomposition 

of generators (3.11), we can write a finite transformation as 

1 
[de- L 

=e =et 
;,.[ -t. 

p,T ) j c ‘2 
(4. 1) 

where {a} and {p, y) are parametrizations of the group manifold. 

Under this transformation, 5 and pdefined by Eq. (II 3. ii): 

$Q)p.%pi~-~](“+p) 
transform nonlinearly(‘) a? 

r * i (E$ 
(4.2) 

where 5 ’ ( 5, g) is defined by 

1 
e 

ii-i L&J‘&, 1 
% 

Ia(C .w,- = e e PA , (4.3) 

f 3 p+ = ~~e”~-“q)Jf 
(4.4) 

The vector fields zp and C& defined by 

b -/I2 + 
(?+g = e-G*L $.i ,;-z” 

-L._z .,t ii.5 ‘ 
(4. 5) 
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transform like 

qA” -r $1 3 $j)._t +$y! 
(4. 6) 

5 e’2!... * .j [jr’-’ + $a”‘] e-+*~ 

-f I@ 
;(a k4) e-‘*: ) a =qj 

-cd 
We define the U-gauge Jacobian A by 

U 

Av+$ ] 
I 

yd I,$[ i!&f$kj ,) x(&j! ,,I = 1 (4. 7, 
1 

where dg is the invariant Hurwitz measure over the group manifold. 

The generating functional of the U-gauge Green’s functions is 

x qfig~ ~byu&w~) 
(4.8) 

r: Jy ; { S&r, $&, ,ol +Jd: l&p, -+*g- + *g1} 

where J+ [p. 61 is the Jacobian of the functional transformation 

d,-(p.5). Because of the delta functions in the integrand of Eq. (4.8) 

we may replace A 
U by 1, and J4 by J4i(p’01 . 

We may insert 

A, h$d cdl1 7J ~@+~I] - i 
(4.9) 



-14- NAL-THY-36 

in the integrand of Eq. (4,8) and revert to the original variable A 
P 

and $(which we shall assume to be real). We obtain, making use of 

the invariance of Au, AL and S under the transformation, 

a- i 2, = lrJ+IrdfJ 4‘ [+I j-~(aF,+(c,) e 
‘SK c+, #I 

)r Llv [+,z ] c 3 7p(Jy(j)) s(<$) h 
(4.io) 

x&C’ i tJ 4: c Gfy - p2;q) - ,Jr-. q$] 

where p, 5,Bw and CP on the right hand side are to be regarded as 

nonlinear functionals of AP and 4. 

Let go = g(po, yo) be such that 

and 

f_Cl:(li 
cl 

0) = 0. 

(4.11) 

(4.12) 

Then Eq. (4. 10) becomes 

where pigo), C;(go) and BL(go) need still be expressed in terms of A 
k 

and 4. Equation (4. 11) is satisfied if we choose 

(4. 14) 

‘a 
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in which case, we have also k($, go) =_P,. The parametersLio are 

then determined by the requirement that 2:: 

(4.15) 

be divergenceless. 

As an illustration, we shall derive the expressions for flgo), 

CG(go) and BG(go) for the model discussed in Sec. IV of Part II; SU(2) 

gauge bosons interesting with an isotriplet of scalar mesons $~, with 

< Q, = v. First, we have 

(4. 16) 

and 

The parameter p, is determined from 

so that 

f$‘(t j - J’(+ + iJkfL ) z O 

/!$ 1 -1 -$ f$& l 

The fields Cp and zEL may be computed from Eq. (4. 5): 

(4.17) 

(4. 18) 
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c 
r 

= ,i L t3 [,l’W j+.~ e lwl 

+ & ar(e-ip/2 ) e~~~~/q 
(4.19) 

1 
= A; +. (fx~,+)’ -$ii ‘+s- )‘+---- 

h 

and 

L 
7 

IT, tL =.2 e 
-,‘$--“b A ,T: e‘$d2 

-P - 
t yiar e 

-[,s.:/~ 1 .i$-Z/i ] (4. 20) 

= Ar' -qcL .+ (p+,'...- 
So, finally, we have 

~~pf =4--u 

$ ‘p = (jy - a, L/a’) c J (4. 21) 

and 

lt-pplL = a n‘ 
f 7 zrlI’ e;8@~d&5 <p&J 

where p,, Ck and BP are to be expressed in terms of AP and 4 by the 

use of Eqs. (4.16) - (4.20). 

Incidentally, 

PC - -1 $ @“,s x + ‘1-+ (5~ 2’s )3 J + __ _ 
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In the nonabelian case X3 # Z3 in general, and the equivanelce of 

the T-matrix in two gauges is expressed as 

&“” p y(u) r& 
$5 LG 

Z3” T(R) (4.22) 

where Ev is the number of external vector lines. Equation (4. 22) 

shows that the T-matrix in the U-gauge is finite after renormalization, 

and the T-matrix in the R-gauge is unitary and devoid of infrared 

diver gent es. 
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