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ABSTRACT 

This is the first of a series of papers addressed to the renorma- 

lizability question of spontaneous broken gauge theories. We give a 

brief outline of the motiviation for such an investigation and describe 

the manner in which the renormalizability of such theories will be 

proved in the sequel. Put briefly, we will show that in an appropriate 

gauge, ultraviolet divergences of a spontaneously broken gauge theory 

are removed completely by the gauge invariant counter terms in the 

Lagrangian which would make Green’s functions of the corresponding 

unbroken gauge theory finite; that the S-matrix computed in this gauge 

is unitary, and that the S-matrix is independent of the gauge chosen. 

In this paper, the renormalizability question of the unbroken 

gauge theory is considered. We derive the Ward-Takahashi identities 

of the theory. We discuss several ways of regulating divergent Feyn- 

man integrals of the theory without destroying gauge invariance. 

Infrared divergences are avoided by the device of intermediate 

renormalization, wherein we choose as subtraction points some points 

where external momenta are Euclidean. This suffices to establish that 

the BPH renormalization will give renormalized Green’s functions 

which satisfy the Ward-Takahashi identities. 
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The existence of finite, renormalized Green’s functions satisfy- 

ing the Ward-Takahashi identities provides us with the means of prov- 

ing the renormalizability of the spontaneous broken symmetry case. 

The Ward-Takahashi identities were previously derived for the gauge 

bosons by Slavnov. We present here a new derivation. The discus- 

sions on regularization methods and intermediate renormalization 

procedure and the renormalization conditions for matter fields, we 

believe, are new contributions of the present paper. 
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INTRODUCTION 

This is the first of a series of papers which will deal with the 

renormalizability of spontaneously broken gauge symmetries. The 

intriguing possibilities of unifying electromagnetic and weak inter- 

actions in terms of Yang-Mills gauge bosons, (i-9) whose masses are 

generated by spontaneous breakdown of gauge invariance of the 

second kind, (3’ 4, and of constructing a finite theory of weak inter- 

actions(” 7-9) prompt a closer examination of the quantization and 

renormalization questions of theories of this genre. 

In the sequel of this series, we wish to examine the following 

questions: (1) We will discuss both the group theoretic and field 

theoretic problems associated with the Higgs phenomenon. (10, ii, 12) 

This entails a careful study of the stability of the physical system 

which possesses the freedom associated with the gauge invariance: 

(2) We will also study the perturbative treatment of such theories. 

Here our aim is to show that, in an appropriate gauge, ultraviolet 

divergences of a spontaneous broken gauge theory are removed com- 

pletely by the counter terms in the Lagrangian which would make 

Green’s functions of the corresponding unbroken gauge theory finite. 

Thus the renormalizability of the unbroken Yang-Mills theory (to be 

defined below) implies the same for the spontaneously broken gauge 

theory. The philosophy and methodology we shall follow are the same 
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as those we employed in the study of the CJ -model; (13) (3) In the gauge 

in which the renormalizability can be proven, the unitarity of the 

S-matrix is not manifest, since the quantization in that gauge implies 

the use of an indefinite metric Hilbert space for the construction of 

Green’s functions. We will show that the physical S-matrix is none- 

theless unitarity; (4) We shall also discuss the equivalence of the S- 

matrix constructed in this gauge and in the gauge in which the unitariry 

of the S-matrix is manifest (but not the renormalization). 

In this paper, we shall give a discussion of the renormalization 

problem of the (unbroken) Yang-Mills field theory. It is not attempted 

in the present paper to establish that a renormalized Yang-Mills theory 

exists as a physically satisfactory theory of massless particles. Due 

to the infrared problem associated with massless quanta, such a 

theory may very well not exist at all. What we wish to demonstrate is 

that renormalized Green’s functions of the theory exist (without imply- 

ing the same for the S-matrix), which satisfy the Ward-Takahashi 

identities which will be derived. The existence of renormalized Green’s 

functions will prove to be a sufficient foundation for the discussion of 

the renormalizability of the spontaneously broken symmetry theory, 

which we shall discuss in the sequal. 

We will proceed in the following manner. After a brief review 

of the quantization of the nonabelian gauge theories, we shall derive 
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the Ward-Takahashi identities. We will then discuss ways of regular- 

izing divergent Feynman integrals in a gauge invariant manner. The 

regularized Feynman amplitude then satisfies the identities automati- 

cally. The Bogoliubov-Parasiuk-Hepp-Zimmerman renormalization 

procedure(f4-f7) requires specifying the values of primitively diver - 

gent ,vertices at some subtraction points. When these values are 

chosen in accordance with the Ward-Takahashi identities, and the cut- 

off parameters associated with the regularization are let go to infinity, 

the renormalized amplitudes are obtained which satisfy the Ward- 

Takahashi identities. Because of the infrared divergence, it is prudent 

to choose as subtraction points some points other then where all exter- 

nal momenta vanish. We shall describe in some detail this “intermed- 

iate” renormalization procedure. 

The Ward-Takaha.shi identities were previously deri~ved by 

Slavnov(~8’ for the gauge bosons. The deriviation we shall present is 

somewhat different from his. The discussions on regularization meth- 

ods and intermediate renormalization procedure, and renormalization 

conditions for matter fields, we believe, are new contributions of the 

present paper. 
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II. QUANTIZATION 

Following the works of Feynman, 
(49) de Witt, (20) Popov and 

Fadeev, (24) and ‘t Hooft(22) we define the generating functional 

Z[ ~~1 of connected Green’s functions by %^ 

,: z i 3-u ~1 
e *’ ; J .~ 

‘I$ a,@ &4+ 1 .ifq 
(2.1) 

._ L (+f)‘Y 
L<sz .& (1) 4~“h ) } , 

where [ dA] is the canonical functional metric for the vector fields LW 

(2.2) 

U,U,i 
where a is the internal symmetry label. We shall assume the internal 

symmetry is to be SU(2), so that a = 1, 2, 3, but the generalization 

to other groups are trivial and immediate. .X:‘(x) is the Lagrangian 

for the Yang-Mills fields 

‘L(Z) = - = fj’“” i;““, (2.3) 

& - +A,, - J’$ -y&. ” (j” 1 l- 
which is invariant under local gauge transformations, the infinitesimal 

version of which is 

g -7 q + j’“” +I* + +Li 

= A,” r ( D )” Cob 
,’ ie 
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D being the covariant dirivative : 
P 

Tpp 
:t b i-i> b 

=b a !u 

( t; ),b = &y yb 

(2.6) 

(2.7) 

The Jacobian A,[ &I is essentially the determinant of the operator 

8 DP, and may be expressed as 
IA 

AL L$ z W/J 72 In ( I - ,j i-t a/;lr ?. ) 

(2.8) 

5/J% -2,) q Ay, h,..: -.- 5&., - ;L,,) .,,:;-fl+) -L) 

/I 

= LzyJ -Ti ,,L, ( q-i@+ $1 

where we have used the Feynman propagator DF(x-y) defined as 

.5+-A/) = (2Jj-JL+(.c )-’ ‘p (2.9) 

The Feynman rules for this theory we obtained in the usual manner 

if we regard 

.i 
,/f [>&) - .-- (+J!;l,)y -i L L (1 -jhik~+~ ‘i; > c2. i”) 

as the effective Lagrangian. The bare vector boson propagator is 

(2.11) _ $,(&“;,A) .z -2 ((++$p,, .p;-;; (2.11) 

fn Eq. (2. 8) and (2. 11) the ie prescription is dictated by the In Eq. (2. 8) and (2. 11) the ie prescription is dictated by the 

unituity considerations which we shall discuss in the sequel. The unitarity considerations which we shall discuss in the sequel. The 

term (i/2a) (aW&P)2 specifies the gauge one is employing and depends 
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on a parameter which can vary from -m to a. For (Y = 0, we obtain 

the transverse or Landau gauge, and for LY = 1, the Feynman gauge. 

The last, nonlocal term in Eq. (2.10) is the new feature of nonabelian 

gauge theories. It may be viewed 09) diagrammatically as the sum 

of closed loop contributions from fictitious complex massless scalar 

fields (ghosts) obeying Fermi statistics which are coupled to the 

gauge fields through the interaction 

(1 
[’ (:-(.&I y [ i , Jr !1) c (xl ] . (2.12) 

The connected Green’s functions of 5 ?s are obtained as the func- 
v 

tional derivatives of Z[ JPl : 

‘(-*I ;f,,j-,bcu, - 
” j 

(,.~r{~-~~“iny’l~,;~~~).,-,j; (2.13) 
‘ 

The Feynman rules are summarized in Figure 1. In addition, 

the following rules should be kept in mind: The ghost-ghost-,vector 

vertex is “dotted”, the dot indicating which ghost line is differentiated; 

a ghost line cannot be dotted at both ends; a ghost loop carries an extra 

minus sign. 

III. WARD-TAKAHASHI IDENTITIES - I 

The invariance of the Lagrangian under the local gauge transfor- 

mation (2. 5) gives rise to a hierachy of identities amoung the Green’s 

functions (2.13). Alternatively, these relations may be expressed 

globally as an equation satisfied by the generating functional zI_J~I 
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We will first rewrite Eq. (2. 1) as 

\1’@ ; /L++] zn,[++ ] 1~‘; [J.+‘, (3.1) 

where 

bqx ‘+j ; [dbl 6°F; /J~(L! -i; [J?Ipii~]‘- Li”)d ,lrh)) (3.2) 
. i 

We perform the gauge transformation (2. 5) on the ,variables of 

integration hP( x). Due to the invariance of the Lagrangian and the 

metric [ dAl , this transformation will affect only the source term 

and the gauge defining term: 

Since a transformation of integration variables does not change the 

,value of an integral, we may put the ,variation of WO with respect 

to 6~ (X ) equal to zero. We obtain thereby 

p’p/;gc‘” <IA ?+ i Chjt lib&) - D"['i 2/iTLL ]"b.i;:b(x) kvc .:z @ , (3.4) 

We note that (see Appendix A) 

where H is the solution of the equation i! 

(3.6) 

satisfying the outgoing boundary condition; it has the representation 

ii’:%, ; 4. ) = -- (TV jp JL+iG +y ’ ‘$ .)” .1 ~’ l;‘,rJ (3. 7) 
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Combining Eqs. (3.4) and (3. 5), and recalling Eq. (3. I), we obtain 

(3.8) 

of the matrices ta. Equation (3.8) may now be written as 

a”i~i;ii..C.pb~~ { I~~.~~~ - ~~~:! : ri”~~,l ;~~~~i !~“~;~/~:I: ]“‘~~~(d’:j~” 0 
<I ( 3 Ii) 

where the symbol :: denotes the normal product prescription that the 

616 J must stand to the right of the .I. 

We now define G by 

,;iDA [ fi ] *’ (; “~.(i (3.11) 

with the outgoing boundary condition, so that it may be represented as 

(yL(Jx / 4 ) = -(+I&3 p. =+[I;6 +p& rll’lj”,> =ff t‘j 1,.“!,)(3. 12) 

In terms of G, Eq. (3.10) may be considerably simplified. We finally 

obtain the desired identity: 

‘$ w’ 
,2 + ;, y 1: ~~, -----. - “1 ,rhr(~!~~~j-iilr!:~jL~b(;ha(:i~,~,,;~~~~~;) (3.13) 

.I, 
I’ ./ 
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The above Ward-Takahashi identity was previously derived by 

Slavnov. (*8) He consideres a restricted class of gauge transforma- 

tions which satisfy a .DPti = x where x is an arbitrary function. 
)I b. c /u 

He shows that the product [ dA]A, [A 2 remains invariant under 
L_. -I 

the nonlinear gauge transformation generated by w = w [A ,x 1 . 
- I., -I p _il. 

The point of the above derivation is to show that Slavnov’s form of 

the Ward-Takahashi identities is the most general form of the con- 

straint on W[ JPl that follows from the gauge invariance of the .IC 

Lagrangian. 

For the purpose of renormalization, it is usually much more 

convenient to study the Ward-Takahashi identities connecting single 

particle irreducible (proper) ,vertices, as was done for the D- 

model(*3> 23) and the spontaneously broken abelian gauge theories. (8) 

However, in the present instance, the Ward-Takahashi identities 

for the proper vertices are extremely complicated, being non- 

linear relations in them. The Ward-Takahashi identity satisfied by 

the generating functional of the proper vertices is nevertheless 

derived and analyzed in Appendix C. The renormalization conditions 

will be analyzed on the basis of Eq. (3.13) in the following Sections. 

IV. WARD-TAKAHASHI IDENTITIES - II 

We shall study the implications of Eq. (3.13) on the primitively 

divergent ,vertices. 
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A. Two Point Functions 

Differentiating Eq. (3. 13) with respect to J:(y) and then letting 

J,= 0, we obtain 

remembering the equation satisfied by G, we see that 

t 3. L. tZw 
A rJr”,) 

7 

j= ;5” 
‘# y,~‘&p$ ail 

b i-;, ,.I ) (4.2) 
:, 

which shows that the longitudmal part of the propagator Apv, 
;?,“:/: [I ,- ‘/ 

.!~ ..._,_ j 
1’ c ~1 

(4.3) 
;d 3’ ;q 

/” 
Ti ,~p(, 

_ 2”” /1:’ /7..A,, i 

1 
,) 1 f” :. 0 -Y ” i 1’ .I 

is not renormalized: The *vector propagator has the form 

,;;,.+ ;!’ :: b&a, -“?a,/;:ji(z.;: +Jq.~,,;‘$)~~~-~‘, (4.4) ,’ 

In the momentum space, the inverse of the vector propagator, 

therefore, takes the form 

fA-‘Ckji z 

,’ / ‘A (4.5) 
_~ d P Y 

(“.Y, - 

/ ip 1 
A,, by) J(P) + 2- i;:,, k, 

/ 

Were it not for the n particle thresholds at k2 = 0, J(k’) would be 

regular at k‘ = 0 (at least in perturbation theory), and the transverse 

part of the vector meson propagator would have a simple pole at 

k2 =O. 

Equation (4.1), when combined with Eq. (4.4) gives 
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< yLa,, .,;;; [z _ ,j , 
z I 

f + g’b(2ad i ; F/F:?.) 

or 

- if i ,‘:: . +r) jii; G”i‘(y j ; + ?; ) / p/ 1 -0 
,.I. ;i’ 

f .~ Cl 

tp(cc,.y j _ ~caL<~F (.~. 

I 
7 l I + $ 1 &j(,“.7,-.) ‘iC 

\, 
>$+ [t, I $~(~~ j LLL 

\., 

(4.5) 

(4.6) 

x ri’[;ql Gcb’z,$ ; L +J-) w ‘5,tj jJ, ,~ .: o 
..,,,’ 

where dJ. IS the ghost propagator: 

~$“k,, ~. - ji:$J G”Li,,i -;;:‘c) ‘“‘j’~;,,‘]j~ ,:* 
-$ 

We may define the self-energy part Cg of the ghost by 

-- “‘y(i,y ,; 6 \I 

&:.j ., ( i(=;E ,‘[, _ Z’U(g,.&&J 
(4.7) 

The structure of Eq. (4. 6) implies that Zg(k2) is of the form 

-kpZz(k). Again, were it not for the fact that k2 = 0 is the onsets of 

n particle intermediate states, 

k2 = 0, so that &k2) would h 

Zg(k2) would behave like k2 near 

ave just a simple pole there. 

B. Three Point Vertices 

From Eq. (3.13) we obtain 

(4.8) 

We note that 
-2 0 G”~~z~ ,~i I (’ ;ir;i ) ~ ~~ ~~~~j i 

c: y/’ ,f~. \I x r 
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-I I. 
6) 1v j.,~!,, +JJG j 

> id& 

I' 

2.,2 ; i Z/(:?f) iW/5Ji(jj If _ ,~ 

-: f&q y,:~~~~,;l.,d(~.,~~)~~~~;.,.;i 

4 

I I (4.9) 

i ,$ r&pzg~,]y 
I _j i g ( “) Jr :: 

2” z$&&‘p ‘-L’y_i,x,, ,~<)&zj~i~; __~ \ 
1 %’ 

where . . ,hr 
‘4i (%,lj j 2,) I: ~- ; 

I: 

, is the proper vertex for the coupling of a $ector m, eson of momentum 

r, polarization p and isospin index c, with two ghosts, of momenta 

p and q and isospin indices a and b, respectively (we define the 

momenta outward from the ,vertex). See Figure 1. We have 

q’ippj = pA);;ypp’,) (4.10) 

*A 
The quantity Z 

g 
is defined by the equation 

I 
qy’ _. -‘t 

22 . . . . 2;; iz<:,; 
&, 

where 

(4.11) 

(4.12) 

and satisfies the unrenormalized equation 

We consider the part which is transverse with respect to the index 

Xof Eq. (4.8 ). Noting that 
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i3 k,, ;’ .; ./ 
“;‘pJq -F.-4’j: :..r” ;, ,,.~~Ir: 1 

$5 J+’ mg.j z J-A, i,q $:. c 

: --,‘:j ~&,K, d’t, 
i ‘_ 

p&. - 1:‘) p’lx .~ IQ z1 “iz. :i::j i;;.“,: (z’, ‘f!,, ‘.T,r 
,I 

‘-abc where F ~’ (x, y, z) is the proper three-point ‘vertex of vector mesons, 

and taking the Fourier tramsform we obtain 

J f”:‘p i jvp &/f(y)]- (f- R.‘:.‘~/h.ij r.q; ‘/, i, h) (4. 14) 

= ‘1” /,-I$ (/?;j ip- h~+(., [jA.‘.~) jp( e,, j ; ; ) ) 
u 

/ ,r p t :I 1: ” . 

Equation (4.14) is a constraint amongst the propagators and tkree- 

point proper vertices. Equation (4. 14) was first derived by Slavnov. ($8) 

C. Four Point Vertices 

It follows from Eq. (3.13) that 

aa a a _ __-.. - - 
&X &f” tn,- 2 off 

(4.15) 

f! 
from which one obtains a constraint on the four point vertex P abc 

xpvp: 

1, 
> /L,~~:; ~ /” LibCiC 
f y 1 > f (ppq 

+ c y;: (p:?, -p, Ll”’ +p (4. 16) 
” a 

1 I, i ,r ‘i .# c ‘: 0 
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where I’$$ is defined as 

; ii ‘22 E+? 
7-a _..,_ ~~~._. .~ ~,~, ._,;;_ ..I -.-- i -..., -- J (-; j.‘; 
t-r, (2, F I\, “1,) c,.i &, (Z,] 5 j-)(&Y) 

j pyd:<Y&/ (4 *7) 

* r L L.c& ~dL 

and / 

~i;:,.,,~~,;~;.~,,::,I 
,, 

e+*-yf+‘-t L.Lcp) f+;l(+, ,,!- /) 
(i 

(4.18) 

The ghost-ghost-,vector-vector vertex is superficially convergent 

and requires no discussion. 
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V. REGULARIZATION 

They Feynman amplitudes constructed from the expression (2. 1) 

would automatically satisfy the Ward-Takahashi identities discussed in 

the last two sections, if it were not for the ultraviolet divergences in 

their construction. A standard procedure of constructing the renorm- 

alized amplitudes satisfying the Ward-Takahashi identities is to 

regularize the Feynman integrals in a gauge invariant manner, and 

then perform the R-operation 
(14-17) of Bogoliubov, Parasuik and 

Hepp (BPH). The resulting amplitudes are cutoff independent, and if 

the values of primitively divergent ,vertices at subtraction points are 

chosen in accordance with the Ward-Takahashi identities, then the 

full amplitudes satisfy them too. Furthermore, under such circum- 

stances, the R-operation may be formally implemented by a gauge 

invariant set of counter terms in the Lagrangian. 

In this section we will discuss a few gauge invariant regularization 

methods which can be implemented by adding gauge invariant terms in 

the Lagrangian (e. g., Pauli-Villors regularization). ‘t Hooft(22) 

discussed a method which works for one loop diagrams, but which 

does not appear to be implementable by modifying the Iagrangian. 

We choose as regulator fields both scalar and spinor fields. 

They have all positive masses. They may belong to arbitrary represen- 

tations (in general reducible) of the symmetry group. They are coupled 
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to the gauge fields by the minimal gauge invariant coupling. They 

may, however, be quantized by the wrong spin-statistics connections 

(i. e. , some scalar field multiplets may be quantized by the anti- 

commutation relation). Let us show that the addition of these regulator 

fields to the Lagrangian renders the divergent Feynman integrals 

with one loop finite. 

Let us first consider the self energy of the gauge boson in the 

one loop approximation. We will carry out the computations in the 

Feynman gauge. There are three diagrams (one is a ghost loop), 

and the sum of the contributions from these is 

xe !’ “jr A> 
I,.“,+ = - yv ,brr’ j --: 2,)3 e (52 “*& 1 ;;A& p+) 

0 
(5.1) 

.,w 
~I- ;!g ; !“& (& 

J 
&Lt.., ~ ;-$?y p’ 

o (q * iT2.)5 
“2;;=y”.,, 

The first term on the right is gauge non-invariant and quadratically 

di~vergent; the second term, which is gauge invariant, is logarithmi- 

cally divergent. We shall regulate 2: by the replacement 
vv 

qv --.) x,Iys) = zp4 + fl ) qy 
(5.2) 

where XL:’ 1s the sum of the scalar regulator contributions: 

Ix) 

p ~~ J’f. i-?g 4 ! 
i 

dz dc 
; p-T;; ..y*. (z( &) m; ] 

r’ iv 
-L-,,’ .,,. 6 

L i tb7+ IPVo (Z,+2,:,;* 
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- $., i tip\, -frpv) /o+e:s ~ i -jf$-,i”- I’ LzJ ~2;; I~I~‘~, ($2ji 

1 -zj: 
i. IL??“,’ 

4 ~ [ -$--% + ; (f!!? f-f;) J - ,$$ I (fk,” ,” ‘. /; ry j -$?z~; 1 

The coefficients Ci and Di depend on the representations to which 

the regulators belong, and also on whether they obey the normal or 

abnormal statistics. In any case, if we choose 

2 c Jy c; - 2 a. r 0 
; 

and i E 

(5.3) 

2 c; ml,.:. ~^. 2:: Dj $ ; 0 (5.4) 

then the gauge noninvariant term ,vanishes identically. Furthermore 

if we choose 

IO - 2: c; + 2 2: Dd = 0 (5.5) 

; d 
the logarithmic divergence in the gauge invariant part may be elimin- 

ated. The introduction of two kinds of regulators is necessitated by 

the requirement that both quadratic and logarithmic divergences be 

eliminated. 

Next, we consider the three-point vertex l?xPy(p, q,r) of three 

gauge bosons in the one loop approximation. The integral is linearly 

divergent and has the asymptotic structure, in the Feynman gauge, 

(5.6) 
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when all diagrams, including the one with a ghost loop, are added. 

Again, by taking a suitable combination of scalar and spinor regulators, 

it is possible to eliminate all divergences from the Feynman integral 

for the three-point .vertex. 

The four point vertex is logarithmically divergent and offers no 

special difficulty. We have not verified that this method works for 

higher order diagrams. In any case, when there are matter fields 

present in the Lagrangian, the method presented above is insufficient 

and it becomes necessary to dampen the high energy behavior of the 

gauge boson propagator itself. The method described below will do 

just this, and when combined with the spinor-scalar regulators, will 

render all Feynman integrals finite. 

We will add gauge invariant higher derivative terms to the Lagran- 

gian. Consider for example the Lagrangian 

‘4 = - ;jL y: F,, 
-xi - i(“;i-> wf~~~v)* (DC &, ) 

(5.7) 

- 2; (-f-d. (+ t,r”‘, 

The ,vector boson propagator is now 
‘7 

Li..,(i; A=) = (fpv _ k,i,,/k.‘) (kl+/c j’ [ I + 31 -j:’ ’ iJj+j’j 
(, 

+ gauge dependent term 
-3 

and behaves like (p2) asymptotically. The maximum dimension 

of ,various new couplings ( in powers of mass ) is eight. A power 

counting argument (see Appendix D) shows that in this case only the 
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two-, three- and four-point vertices with one loop are primitively 

divergent (quadratically, linearly, and logarithmically, respectively). 

Other proper vertices, including two-, three- and four point vertices 

with more than one loop are at least superficially convergent. As one 

adds still higher gauge covariant derivatives, the propagator becomes 

more convergent at larger momentum, but the maximum dimensions of 

the interaction terms increase also, in such as way that the two-, three- 

and four-point vertices with one loop remain always divergent (see 

Appendix D). Note also that ghost loops for these vertices remain 

divergent. 

Therefore, by the addition of the last two terms to the Lagrangian 

(5.7), the divergences of the theory have now been isolated to those 

diagrams for which the spinor-scalar regularization was shown to 

work. 

The BPH R-operation is to be applied to the entire two-, three- 

and four -point proper vertices. The resulting vertices are cutoff 

independent, in the sense that the limits A‘ + m .of these amplitudes 

are finite and independent of cy and (3 of Eq. (5.7). This can be seen 

as follows. A proper amplitude with two, three or four external 

lines which is proportional to some powers of (Y and p has in general 

an ambiguous limit as A2 + a. However, the finite part of such an 

integral vanishes like A-2(1nA2fn,s A2 -a. A proper Feynman 
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diagram with n external lines, n > 4, with one of more vertices pro- 

portional to (Y or p which are not contained in any subdiagrams with 

two, three or four external lines vanishes at least as fast as 

*-(n-4) (pnA2)m as n2 * m, after the R-operations are applied to the 

subdiagrams. (The above is a summary of a rather lengthy analysis. ) 

The results of regulating the Feynman integral by the method 

described above, applying the R-operation and then letting the cut- 

off A2 go to infinity is identical to applying the R-operation directly 

to the Feynman integral. This shows that the BPH R-operation is in 

fact a gauge invariant procedure. 

A similar regularization procedure has been applied to nonlinear 

chiral Lagrangians by Slavnov. (23) We understand from R. Jackiev 

and L. D. Fadeev that Slavnov has considered the regularization meth 

method of Eq. (5. 7) for the gauge fields also. (After the completion 

of this work we received a preprint of Slavnov. (24) ) This possibility 

has also been known to K. Johnson. (25) 

VI. RENORMALIZATION CONDITIONS 

AND INFRARED DIVERGENCES 

Let us first discuss briefly how the values of primiti~vely divergent 

,vertices are determined from the considerations of Sec. IV, ignoring 

the problems associated with infrared divergences. Under such cir- 

cumstances, we may choose as subtraction points the points at which 
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all external momenta vanish. Later we will discuss the nature of 

infrared divergences in gauge theories and give a set of renormali- 

zation conditions which avoid the infrared difficulties. 

We may by convention choose, in Eq. (4. 5), 

J(O) = 1 

which amounts to 

.$.,, A , (A.) cc if,., -- .p.. j 1 
fh ” ki /p 

+ 3( +!A> 

The normalization of the ghost propagator is arbitrary. The ghost 

propagator has a simple pole at k2 = 0, [ see the discussion following 

Eq. (4.7)1 , and we write 

.#;c $j(&) 5 22;. (6.2) 

where Zg is an arbitrary (finite) constant. 

In the limit p. q and r = -p-q all go to zero, the three point vertex 

abc 
rb$p.q,r) has the form 

j/i..;-. .-, d's 

1~~~ i/;.;i,hj = -l G 6 
(6.3) 

j:. :. 1, -- 0 

as follows from Lorentz covariance, isospin conservation and Bose 
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symmetry. Likewise, the low energy form of the vertex cab y x, (ram) 

is given by 

so that 

,c.&,;> r *L 1 b 

p/,y) k /a (+p = -; G’f&~ 
r 

--, 3 

Equation (4. 14) then tells us that 

In the Green’s functions, only the combination G’Zg enters, because 

the ghost never appears as an external line, so that it is convenient to 

set Z =iandG=G’. 
g 

The low energy form of the four point ,vertex is given by 

(6.5) 

+ cace 6 “h~. Q”)‘, f “/o - ,4A) p J + cc iidcl<. .r& (p+j “I ,.. :I ,i/&,.;)r< jj 
, L 

’ r .-nb (d 
+ r’ ia So’ 

jv?‘? +- 
Equation (4. 6) tells us that 

F=G’andF’=O (6.6) 

The conditions (6. i), (6.4) and (6.6) allow us to express all primitive- 

ly divergent vertices in terms of only one constant G. 
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As we have stated before, the foregoing discussion is of heuristic 

value only because of the infrared divergences that the Feynman 

integrals experience when all external momenta are set equal to zero. 

More precisely, a Feynman integral of the theory becomes divergent 

if two or more external lines are set on the mass shell. We assert 

that a Feynman integral suffers no infrared catastrophe if all of the 

external lines are kept off the mass shell. One can easily see this 

for diagrams with one loop. As long as all of the external lines are 

off the mass shell, infrared divergences in any subintegrations can 

occur only in the measure zero of the space of all integration variables 

where the rest of the integrand is nonsingular. Therefore, by choos- 

ing subtraction points to be somewhere other than where all external 

lines are on the mass shell, we can circumbent the infrared difficul- 

ties in the construction of Green’s functions (but not the S-matrix! ) 

altogether. 

Aconvenient convention for the subtraction points is given by 

Symanzik. (26) We choose as such the points where the squares of 

2 external momenta are all equal to a negative number, say -a . 

Defining all external momenta outward from the ‘vertex, we have at 

the subtraction point pi2 = -a2, 1 2 
‘i”j = -a ’ n-l 

As an example, we will work out the renormalization conditions for 

two and three point vertices. 
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We shall normalize the fields A and c so that 
P 

and 

Then we have 

A-+ &A = (,,+Jti/p)Tt;r 
/P--a% 7 

8 

+ gauge dependent terms, 

G(a2) = -$ 
-a 

At the symmetric point p2 = q2 = r2 = -a2, the three point vertices 

I- 
abc 
Xl”V(~,q.r) and yTb k, p;q) have the structures: 

.b- 
f*+& -A= i, &“: (p, i> 4 =[G kp~~vtl”r + q-y + @,,g~] 

+ t&‘+$~~v + c,-h),/d, + $-p’q br] 

(6.7) 

/.L* 
pp h’= -5. + 

x/G),, + “,phhr, + I(;f+ k& /‘alp 

+ L, 
l “hp + LyA,, +qq (6.8) 
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where the omitted terms (---) are of no interest to the present problem. 

The quantities G and G’ require subtractions whereas the other form 

factors J, J, Ki --- are superficially convergnet. Substituting Eqs. 

(6. 7) and (6. 8) into Eq. (4. 14) and taking the limit p2=q2=r2 = -a’, 

we obtain 

CT - ?..H ,-J) = & ?& ,L, -;rI,~-i(;-li,+2K~~(6.9) 

which gives G’ in terms of G. 
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VII. RENORMALIZATION OF MATTER FIELDS 

So far our discussion was based on the Lagrangian (2. 3) which 

contains only the Yang- Mills quanta. As an illustration of the renor - 

malization procedure in the presence of matter fields, we consider 

the case in which a triplet of real scalar fields $a is added to the 

Lagrangian by the minimal gauge invariant coupling. 

Let Ka(x) be the sources of the scalar fields c$~“. It is not difficult 

to derive the generalization of Eq. (3. 13). It is 

;+-- 
z r SJ”ifl 

r 
j;;xJ$ [i F//ss JLb G"‘+; ; s,l/n) vV 

GdA$>x ; dSZ 1 i”/ 

C 0 . (7.1) 
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In this theory the AllCh2 - , A,2$2 - , $2 - and $4 - vertices are primi- 

tively divergent. The renormalization of the $ - vertex has nothing 

to do with the local gauge invariance and presents no problem. In order 

to regularize Feynman integrals for these ,vertices, it becomes 

necessary to regularize the gauge boson propagators in a gauge invar- 

iant manner, for example, by the use of the Lagrangian (5. 7). The 

renormalization conditions for the $2 -, APij2 - and AP2$2 - vertices 

are obtained from Eq. 

complications. Later, 

which take due account 

(7.1). First, though, let us ignore the infrared 

we will detail the renormalization conditions 

of the infrared difficulties. 

From Eq. (7.1) we obtain 

‘“J J ‘9 1 
( ) 2 aTr a7 

*zf+,ig 

l 
i&W I eFe = -L 

1 
6- pvs’z/& G’*(~,z; i~/o?J5&-$ d b vzII 

B d v 
?=-“=” 

+ (cd, z <-+a.Y ). (7-d 
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If we amputate the scalar propagators and go to the mass shells of 

two scalar particles qz = qt = p2 in Eq. (7. 2), the right hand side 

of the equation vanishes. Let us define the primitively divergent 

vertices: 

and 

J 
fAjdk e ~+~jTp &a6L(z~;y:n’) 

= c, y”“+p (al# npg/*ga)~ 

c-yp p, fa ) = cadL c, c&5 f +) ’ 
abed 

and similarly for C 
PV ’ 

Then we have from Eq. (7. 2) and the 
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subsequent discussion that 

finite. The low energy forms of the vertices above are 

L.. 
p g >/$‘2 i;- ‘p p , ‘p ) = 4 c: $. (7.4) 

)f,- /-( ‘..A C~ 

&t”” ,,=vA q,j2, .L) ,= -L 6 i$+ )Ai(/,.” ~I p+ q,, + ,r:;I.p] 

where G is defined previously and r + pt + pz = 0; 

‘>.” ‘-dc‘p,,p; c/ ,I>) r: ,““r--*‘(A;:ii” + niiG;&) 

(7.6) 

The factors C, A and A’ require subtractions. We may renormalize 

the e fields so that 

,/@- ,, A(/,‘-) ; (f-‘* j’ 
/’ -T 

(7.7) 

Substituting Eqs. (7. 4) - (7. 7) in Eq. (7. 3) and isolating the part 

antisymmetric in a and b, we get 
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GC =C2 

or 

G=C 

Next looking at the part symmetric in a and b, we obtain 

(7.8) 

and 

A = -2G’ 

A’ =G2 
(7.9) 

The above treatment is careless, since the ,vertices C C 
EL P*y 

2 
exhibit infrared divergence in the limit q1 or qi = p2. We must, 

therefore, determine the renormalization conditions A, CP and C 
P*v 

without going to the mass shells of the scalar fields. For this purpose, 

we will return to Eq. (7. 1). From Eq. (7. 1) follows the relation: 

,’ ,-I ,; 3 iz 
i( ;j,,:-” ~~~./..:.:-;I-~.-~..~;~~‘. 

I: :j;,%~ 2 i; fJi II i i, ir) ; ,. I, .Ji;; K’ ~> &. 

.;! [ p(-Ic Gi: + y 
, ,;:K’e(j, $(z, “+,z, L “;/;:j: ) ‘WI (7 lo) 

)- iLeA, 7 :-> z,] ,-’ 

In order to discuss this equation, 

Jr :< ; i’ 
a. 

it is necessary to define a new 

proper vertex R abc 
. We write 

~ Lii w -’ .-4 >In;;-;;~p;;; “i”(?’ z, i’“P,I: ) IV I, :~ - L7 
: -‘- (7.11) 

* 7 ‘ .i 
- ,L. i 

,i”z’,l”..~ R~ (;~,“‘“~) &&L) iii+-z, 
t? 

-r i q - z, ) &/ _ z ) ~‘&L 
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R, 
abc 

(q,p,r) (2~)~ 6(p+q+r) = 
J 

4 4 4 @abc 
d xd yd 2 R (x,Y, z) e 

i(px+qy+rz ) 

R 
abc 

(p,q,r) = eabc R(p, q, r ) 

The new ,vertex does not arise in the pertubative construction of the 

Green’s functions. It is, however, relevant to our discussion of the 

renormalization of Eq. (7. 2). The .vertex R 
abc has the superficial 

degree of divergence equal to zero, and therefore, requires one sub- 

traction. The value of this vertex at the subtraction point is related 

to that of C tbc through Eq. (7. ii). Let us again choose as subtrac- 

tion point the point where p2 = q2 = p2 = -,2, p,q =q-r =r.p =a2/2. 

The quantity R abc(qi, p, q2) may be written in the neighborhood of 

the subtraction point as 

L‘LC i ‘I 
g’“‘(f,/,21s, : t LKt yr’LI1Ti r ~jh’ir, (7,,2) 

where R requires a subtraction and I;, G,, ri, are finite. 

We now transform Eq. (7. 10) into the momentum space. It reads 

then 

L pp I ” kf’) <,* ‘J’; l, , p Z~ L-y - q) 

‘t i: <if,/, p ja-‘yI - q. p> 1’ ) qxll 

Adopting the field normalization conventions: 

Ip2&jq 1 Jtq”;;” z i 

,)+ 

f = -c1s 

A.-‘( 
%I 

‘) = FL + ‘12 - bj’ 

(7.131 

(7.14) 

(7.15) 
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and defining C by 

, tL..- (7.16) 
8”; f ‘:. j.1 : -az 

we have from Eq. (7.13) 

c : /r < - M'(r; -rz), (7.17) 

which is the required relation. 

Now we turn to Eq. (7. 2). We need again to define a still new 

proper vertex. We write 

6; CjL Iv-l ,,+ 6 b(. 
i; x, h 

z ,x ; ; ‘./“/) &&- .;c,:; 1 
;\K 14 ?\I,+ Ij-r z _K =c 

t; c~fct z(.. .;I 

‘= 7 
J 

.i 
</!L’L/qzuc/’ ,<iq, ,jdti 2’ “& .;,>z’; & cu, $(y 1. z”) 

(7.18) 

:r 

A $$; u, :A i 

4 
) L! k’(j-p $&) 

.t ‘;r & l~yj ;‘“-& ‘l~~,,i~~~;~(~.~;)xc,-.,~~rjy.!~i~~@.tl~;z;Y.i 

which defines the ,vertex S abed, ’ 
EL ’ 
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The fact that SLbcd is superficially convergent is of importance in the 

ensuing discussion. 

Now going to the momentum space, we rewrite Eq. (7. 2) as 

+ --- 
1 

= /c “‘y { 6 a% ~f~.LY@i+pyCI + R~g,,~lt8-i~)~a;~~+~~~;p, 

+ /=‘~CfdA(if~+f,jx)[I+ Kc~l~~~/~a~f~)]c,(p~~~t~~ la, 

where the expression in the curly bracket on the left is identical to 

that on the left of Eq. (7. 3). Equation (7. 20) is the generalization of 

Eq. (7. 3) and it allows us to determine the values of the vertices 

caib:d 
and C 

abc 
P 

at some subtraction points, in terms of that of the ver- 

tex r abc 
pvx 

It is so, because the structure constant for y, is known 

from Eq. (6.9); the subtraction constant for R is known in terms of 

the value of CPat the subtraction point through Eq. (7. 17); and S 
P 

is superficially convergent, so that the right hand side of the Eq. (7. 20) 

contains the ,value we seek and no other unknowns. 
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APPENDIX A 

Derivations of Eqs. (3. 5) and (3.9) 

We recall the definition 

(A.1) 

In evaluating AL [ i&/ 6ip1 p1 (~)a-: [ i6/ 6,~~ I it is convenient to 

make the following mapping: 

;‘/“.+i -3 - Jr- 
(A. 2) 

.I _ iA -3 5/i </& 
.A. 

which is canonical. We see that 

c 2 i’ 
i 

‘L. ;i, ( 

‘= +;;I - $1. 
;q 

2 
,,‘1, $-= (1, &I _-.... ~..A -- 

, (i , +l,“I t,y y + I-’ (A. 3) 

(pp g(,e &?) c’,^ <El $1 y > 

b- c ;- 
fQ;, - “; 3 

tc, t” [ $ tihj ; -ipI 
(y- 

which is Eq. (3.5). 

As for Eq. (3.9 ), we begin by noting that 

(A.4) 
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Since 

2’ -- 
21 ar” 

P 

t+‘+ ;j) = .“%z,,, -1 t’ 
~, 

we &n write the right hand side of Eq. (A. 4) as 

W.6) 

Equation (A. 6) is precisely the right hand side of Eq. (3.9). 
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APPENDIX B 

Generating Functional of Proper Vertices 

In the usual manner, the generating functional F[ ~,l may be 

obtained by a Legendre transformation from 21 J 1 . _.. P 

We define 

-. $ (z,) ; :i 2 ‘:.+ I,’ q& (~z~) 
and 

j’[$] i z [l$] + d”, 3 %, ~ i - tT, (Z~j ~, 
It follows that 

(B. 1) 

(B. 2) 

(B. 3) 

The expansion coefficients of F [ E3,1 in terms of Bp are the proper 

.vertices. The proof may be found in Jona-Lasinio. (27) It is possible to 

construct I[ B 1 perturbatively by the functional integration technique. 
--II 

First consider 

where S@[A 1 is the gauge-dependent action 
P 

,$, i ?4l4$ J z J& [ @f(z) - 2 W@4)i 1 

We can perform the functional integration by the steepest descent 

method. Let ki be defined by 

i.e., A0 is the solution of the classical equation of motion in the 
--w 
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presence of the external source, SO that 

&: zT $h , L ) 

Now we may write, after de Witt, 
(20) 

<:y, :!qJ ,I (l+ 1 Sk rq1 - Jk $W’ rs, i~,i,:1/~:1,h) 

,q 
\ i 

r&Id‘ii~~:l 2%‘. c r ’ 1 s;&j - s,$] -j&k y$f ~:$w,$~~J} 

The tree approximation consists in approximating Z [ J+l by 

A I7 Lre*[:+j ; s, i,$J .- J4: X&$/r;.$px., ” $‘i)) 

pJp,,]~‘“; 5 ‘l, Trtrec Q] /Y+ (1) z $ (x) 

Therefore, in the tree approxmiation we have 

i q”;cQr.J ; Sd Q], 

The one-loop approximation consists in evaluating the functional 

integral by the steepest descent approxmiation. We then have 

tr.zc 
;; I”,,. ] 2 k: l+ 1 + j:?, IL .3iLQ . . . ,-; 

‘“l$ SC & 
/+; k (, _ ‘ i .,,/$ J“ ,$* ) 

J ’ 

and 

~qJ 2 SJ .i: I ‘-r ‘-r;;;-,~ l $ liL) _ /yiF)] 
-I , j‘z M~~j 

-F 

ti5 L IL ,jJ;‘s&$.$+:,:,] 

i ~%L. .I, (i -@P JJy) 

‘= s;“i+ J f ; Tb,kL] ;1‘SJ~pl/~/$ ~>(Ji} I.. 
-1 7% ,L (I -yg&‘) 

( 



-42- NALl THY- 31 

APPENDIX C 

Ward-Takahashi Identity for the Generating Functional 

Of Proper Vertices 

We begin by rewriting Eq. (3.8) as 

,TD;~ f ; i/Q 1 z;h { -j & Jr r&G) - S,bId j w 
I” (C. 1) 

iZ/.XL )J D.~~I.;&/L~ 1 ~~iz-. ,b\/ z 0 ir 

2 
be written as 

-c Ltu 1 yL H 5z 
-“(!I , j ; i Z/“;~;C )] 1if, 4 i 12/‘- 

*‘;, “$ It -77 
is J (2) 

cc. 2) 

Cl !I { h‘l‘. 1 23 1.j rL& ,Lj ;qh )/“+Jj~ 1. ;1 wMi’ ‘,I ~ 

i 
Noting that 

(“-t/j “~/$A)~ Ok7 IiCL(‘, 
(Y 

,: ji) = S”‘5”(y, 
<I 

Ol- 

tj’il,; :, h ) I - :Pjq (Z-j, 
Y (C. 3) 

-3 

+djj”, ;$ ~~.rl-z,~~~~*)~~.l:~, ; A_) 

d Y 

we can cast the second term of Eq. (C. 2) into 

Thus the last term on the left of Eq. (C. 1) can be written as 



-43- NALITHY-31 

where 

So finally, we obtain 

(C.4) 

-i. I: 2 1: L.k { LA, 
ti 

“, 

J”, ;3,’ *I /j iz &, 
L 

;r ;; E/ii ) ;l:Lz(,~- t) ri4y:J;‘(zj & = 0 
I, 

Equation (C. 4) may be translated into an expression involving the 

generating functional of the proper vertices. We recall that 

qJ = ixp : 2 fJi+j (B.1) 

and 

- $ : mp/c+q $. 41r'q.]/b,:r . (B. 3) 

Thus 

;:. 31$r;pq - ,f i ‘%A< k’,l>[$~) ()‘X ,,I’$ (,,, 

(c 5) 

i : 2. i AAL __ 
ZQL) 

‘+ 11 q+““$,t ;);ir’“y ~-:~~~~)~~~~-~ir..lifi*;ll!;j’-b’- 

;I <, 

This equation is somewhat simplified if we define Y” by 

r"i$J : r[gfsl f‘& jJ: I b"$UIj" (C.6) 

which satisfies 
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i .3, ;; b\c _ t ALL fi,h ] .;L&l _ &.) 

AX 

(C.7) 

If Ga(x) were identically zero, then Eq. (C. 7) would imply that 

r” [ ~~1 is invariant under the local gauge transformation 

By an explicit computation of 6 2Ga(x) / 6 B:(y) 6 B”,(z ), we have 

verified that Ga(x) cannot be identically zero, however. 
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APPENDIX D 

Power Counting 

Let N, m be the number of vertices of the form #am, i.e., m 

point vertices with n derivatives, and let I and E be, respectively, the 

number of internal and external lines in a proper diagram. ByLwe 

denote the number of loops in the diagram. 

We have two topological relations 

g + .TJ 1 = 1: .-hL. Iv&, nr (D.i) 

(D.2) 

The superficial degree of divergence D of the diagram is given by 

3 -= z Ia N,,.,, + i+ L - 2r.L 
4,m 

(D. 3) 

where the propagator is assumed to have the asymptotic behavior 

b2 )-r. Eliminating L and I in favor of E by the use of Eqs. (D. 1) 

and (D. 2), we write Eq. (D. 3) as 

n ~_ g,-I’o -~ ) , 4 + 2 N,,,,, ~~J)I. r (J. -,*,J- -Y J CD.41 

For the gauge invariant terms discussed in Sec. V, we have generally 

r/L + ,“iwL z .;j: c ;;1 ,L 

We, therefore, have 

(D. 5) 

3 = tc(h-3)r 4 + (i-Jq230/~~ (-2) (D. 6) 

,m>m 



-46- NAL/THY-31 

The two statements in Sec. V, for which we referred the reader 

to this Appendix, can be justified on the basis of Eq. (D. 6). 
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FIGURE CAPTIONS 

Figure 1. Feynman rules of the Yang-Mills theory. 

Figure 2. Diagrammatic Representation of Eq. (7. ii). 

Figure 3. Diagrammatic Representation of Eq. (7. 18) 
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Diagrammatic rep of Eq. (7.11) 
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