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I. INTRODUCTION
The parton model1 and its formal companion, the light-cone

13)

algebra, were invented to expiain the scaling behavior of deep
inelastic electroproduction. Both models relate scattering on physical,
structured hadrons to scattering from some underlying point-like
constituent hadrons (”partqns"). It is by now common knowledge that
in vsuch schemes, scaling k;ehavior for photon-induced reactions implies
similar behavior for neutrino-iﬁduced‘ reactions and that if a sufficiently
simple internal-symmetry structure is assigned to the partons, sum
rules exist relating the various possible photon-nucleon and neutrino-
nucleon cross-sections to one another. Indeed, these predictions are
regarded as the major test of the parton model/light-cone algebra and
everybody is breathlessly awaiting the advent of the deep-inelastic
neutrino data to see if they are satisfied.

In the meantime, attempts have been made to push the model beyond
the simple applications to total inelastic cross-sections described above.
On the whole, the motivation for this attempt is "because it’s there, "
but in some measure it is stimulated by the hope that a crucial test not
involving neutrinos can be found. Two sorts of result have been obtained:
(a) inequalities on the total inelastic cross-sections and (b) extensions of
the model to semi-inclusive cross-sections (in which some final state

particles are observed). The inequalities are based on exactly the same

physics as the classic tests; but were explicitly noted only recently.
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They turn out in some cases to be quite stringent and, in one example,
near to being violated by experiment. The extension to semi~inclusive
reactions requires some new physics and turns out to have interesting
implications concerning the physical reality of the underlying "partons'.
Both developments taken together form a largish body of new results,
not yet generally familiar (hence the designation "exotic' in our title)
but of considerable importance to both experimentalists and theoreticians
interested in the problem of scélmg. ;I‘hey will be the subject of our
lectures.

II WHY THE LIGHT CONE?

As far as the "classic' applications to total inelastic reactions are
concerned, the parton model and the light-cone algebra are fully equivalent.
In my opinion, however, the light-cone algebra is pedagogically advantageous
in that the fundamental assumption can be stated precisely, as can the
circumstances in which it may be applied. Therefore, throughout these
lectures, we shall take the light-cone algebra point of view, noting, where
necessary, divergences from the parton model.

Let us begin by reviewing what we mean by the light-cone algebra and
how it is applied to total inelastic cross-sections. We are interested
eitherin £ + N~ £7 + X or v + N~ £+ X where £ is a charged lepton,

N a nucleon, and -_}E stands for unobserved hadrons. If q is the four-

momentum transfer to the leptons and JH the current (either electromagnetic

or weak) to which the leptons couple, then the unknown hadronic part of
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the cross-section is

where the latter equality holds if,' as it always the case, 9, > 0., If
we are interested in cross-sections on an unpolarized nucleon target,
we may average over the nucleon spin (this spin average is implicitly
assumed henceforth). Then pr may be Wfitten ip terms of scalar

structure functions as

where the Wi are functions of q2 and g-p (the mass and lab energy,
respectively, carried by the current). The structure functions VV4

and W5 are essentially irrevelant because the leptonic tensor, LHV’ by

which we multiply va to get the cross-section, is conserved in the

limit of zero lepton mass and so satisfies qH LIJ-V = O(mﬂ ). W3 is a

parity-violating object and so will be zero when Jp is the electromagnetic
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current. Therefore, inelastic electron scattering is determined by
two structure functiouns, W1 and WZ’ and one can easily work out the

explicit formula

where 6 is the lab scattering angle of the electron. It is also convenient
to consider the cross-sections induced by transversely and longitudinally

polarized photons. If we choose the target rest frame,

and define virtual photon polarization vectors by q-€¢ =0, f e’zl =1, a

natural choice is

Then the 1ongitudinalb and transverse combinations of structure functions

are
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Reference to Eq. 2.1 shows that both WT and W_ must be positive!

L
" 5

It was suggested some time ago by Bjorken that the limit qz» -,

-q2/2p-q = w fixed, would be an especially useful one for the study of

structure functions of the type we are interested in. The reason can be

seen if we adopt the reference frome of Eq. 2.2 and rewrite Eq. 2.1 as

In the Bjorken limit, q - (@°p/m) » © and g _~ - wm/2,, so that
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Since g:p - «», the asymptotic ‘behavior of va is determined entirely
by the discontinuities of F. These in turn must come from singularities
of the integrand, <p I JH+(X) JV(O) ] p>. Barring pathological behavior,
the product of two local operators, A(x) B(y), is éxpected to be singular
only at light-like separation, (x - y)2 = 0, Therefore, in the Bjorken
limit, the behavior of WHY is determined by the singularity of JH+(X) JV(O)
on the light-cone, xz = 0, °

We have, of course, no a pﬁori iﬁforma tion about this singularity:
The singularity at the tip of the light-cone, x = 0, is related to equal-time
commutators of the currents, about which we might have canonical
information. However, the singularity at finite distances from the tip
is important in the Bjorken limit and unconstrained by canonical
commutators.

III THE LIGHT CONE ALGEBRA
To proceed, we evidently need a sensible hypothesis about the singularity

on the light cone of current products or commutators. Fritzsch and

2
Gell-Mann~ have suggested that we assume the operator structure of

this singularity to be the same as in free field theory. The matrix
elements of the relevant operators would of course not be given by free
field theory, only certain algebraic relations between operators.

More concretely, let us imagine that the uhderlying field theory
of the world is one of standard quarks interacting via neutral vector

gluons. Then the SU3 Q SU3 currents are
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ybeing the quark field, A" the SU3 generating matrix and : the usual
normal-ordering instruction. Although JH itself is normal-ordered,
the pfoduct JH(X) Jv(y) is not and therefore has singularities. These
singularities can be explicitly brought out by using the Wick expansion
to reduce the product to fully normal-ordered form.

With this end in view, we define

where M is a numerical matrix. Then our problem is to reduce the

product JM(X) JN(y). Wick's theorem states that

where the contraction is defined by
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If we throw out the pure c-number piece in Eq. 3,2 along with the finite

parts, we have

The operator in brackets has finite matrix elements, because it is
fully normal-ordered, and the entire singularity is contained in the
explicit c-number functions. If we substitute appropriate values for

M and N, we finally obtain

with
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In order to perform this expansion, we have worked within free
field theory, and in that context, the bilocal operatorsj@vc and &% o5
have finite matrix elements. ! The light-cone algebra proposal is that
the relations, Egn. 3.3, bétween currents and bilocal operators be
assumed to hold in the real world as well, regarding the bilocal
operators as independent new entities about which one knows only that
their matrix elements are finite.

This assumption has imﬁediate consequences for total inelastic
cross-sections. Since we are interested in the spin-averaged nucleon
matrix element of the current product, we need the corresponding
matrix elements of the bilocal operators. Using the various available

invariance principles, we find that

where f and g are unknown functions. The finiteness of the matrix
elements of F guarantee that we may expand f and g about xZ = 0.
Since we are interested in the leading singularity at xz = 0, we may
simply set XZ =0 in f and g. Furthermore, it is a matte;' of simple
algebra to shovvt that the g form factor does not contribute to leading

order in the Bjorken limit. Consequently, in the Bjorken limit,
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and

~

where f is the Fourier transform of f(p-x) and w is, as usual, —q2/2p-q.
. A number of consequences follow from this result. First of all,
it is apparent that the quantities having a finite scaling limit are

W,, (ap) W, and (q:p) W, (quantities conventionally called F,, F, and F,).

and F_, ZmF1 - F2 = 0, which

Second of all, there is a relation between F1 5

is recognized from Eq. 2.4 to be the statement that the scaling limit of

the longitudinal structure function, W

I, (defined in Eq. 2.4), is zero.
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Finally, the otherwise independent structure functions F 1 and F3 have
a dependence on the SU3 quantum numbers of the currents involved

which is restricted by

If we refer to the definition (Eqn. 3.5) of f::, we see that hypercharge
conservation together with the choice of the isospin 1/2 nucleon as

~

target particle guarantee that fi = 0 except for ¢ = 0, 8, 1,2,3. Isospin

12’

conservation then guarantees that are all described by the
same form factor. Therefore there are a total of 2X 3 = 6 independent
unknown functions describing the scaling limit of all possible lepton-

induced reactions on nucleons. Since there are more reactions than 6,

this implies sum rules, of which the Llewellyn-Smith relation, 8

is one.
So far, we have used only the Lorentz and internal symmetry structure
.

of the bilocal operators % ", We may want to take the explicit structure

of Eq. 3.3 more seriously to the extend of accepting that
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where Vp. and Ap are the SU:,,(X)SU3 generating currents. Then the

form factor gbc, defined by

is given by

Insofar as d)c is known (as it is for baryon number, hypercharge and
“isospin current) this yields integral sum rules on the scaling limit of
the structure functions.

The results summarized here are what is usually regarded as the
content of the light cone algebra as far as total inelastic reactions
are concerned, To a certain extent they depend on our choice, Eq, 3.1,
of the structure of the currents in terms of underlying fields. As a

rule one can say that: a) the result that Wi’ (q-p) W_ and (q'p) W3

2

have finite scaling limits does not depend on the underlying fields,



-14- THY - 56

b) the result WL = 0 depends only on the underlying fi‘elds being spin %,
and c¢) the relations, Eq. 3.7, between reactions initiated by different
currents depend on the specific choice of standard quarks for the under-
lying fields. At this point, it should be noted that the standard quark

parton model gives the same results as we have found via the light

cone algebra. The reason for this and the relevant translation formulae

will appear naturally in the next section.

IV POSITIVITY CONDITIONS

Any quantity of the type

{ }p, s > is a state of momentum p and internal symmetry index s ) is

obviously a'positive matrix in the sense that -

for an arbitrary vector £. The total inelastic lepton cross~sections

we have been dealing with are precisely of the above form (physically

we are only interested in the case r = g) and the scaling limit of the .
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structure functions, in particular, must satisfy constraints following
from Eq. 4.1. On the other hand, the light-cone algebra assumption
gives us a specific form for thése structure functions in terms of a
set of arbitrary form factors E: (w). In order for positivity and the
light-cone algebra to be consistent, we therefore expect the possible
range of variation of the’;: to be restricted, with corresponding
limitations on the independent measurable structure functions.

We have already seen a‘ 1‘imitedv application of this fact in the
observation that both WT and WL must be positive (Eq. 2.4). Much
stronger relations may however be found and it is to this development,
initiated by Nachimann, ? that we now turn.

We shall be interested in objects like Eq. 4.2 in the scaling limit
and shall accordingly make use of the light-cone results of the previous
section. First, we note that according to Egs. 3.3, 3.4, current
products of the form (V + A)}‘L (Vv - A)v vanish in the scaling limit.
Therefore we may study the products (V + A)p (V + A)v and !/

(V - A)IJL (V - A)v independently.

The relevant scaling limits of Eq. 4.1 are, according to Egs. 3. 6
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where the plus/minus sign refers to choosing J equalto V+AorV - A,

respectively, and f:’ S is defined by the obvious modification of Eq. 3.5:

If we work in the rest frame of p, it is easy to see that in the

Bjorken limit

where we have written the dependence on p and v in explicit matrix

form and

This four by four matrix has the eigenvectors (1,0,0,+ 1) and

(0,1,+1, 0) with eigenvalues 2A, 0, A + B, A - B, independent of the

form of the matrices A and B. Thus, the matrix Wii’bs is positive
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if and only if the matrices (A = B) are positive. If we make use

ar,bs

of Eq. 4.3 this can be further reduced to the requirement that

~ ~

£ f

be positive, where d):b =f + -

We are only interested in diagonal matrix elements in the spece
of nucleons, so that qbi’ S will appear in physical cross-sections only

for ¢ = 0, 8, 3 and r = s = neutron or proton. In fact, if we make use of

g,nn 3 3,pp
Lo, =6 =

8
, . - o _ ,0,PP _
SU2 invariance, it is apparent that qbi ¢:1: ¢:!.; N

_qu,rm. Thus, there are only 2X3 = 6 independent quantities out of

which all structure functions must be constructed. Typical relations are

+
On the other hand, the matrix Far bs’ thought of as a matrix in 8X2 = 16

3

dimensions (8 for currents, 2 for nucleons) must be positive. To
. ' . . 0,3,8 . .
determine the constraints this places on ¢>i , it is necessary to

+
diagonalize Fa Hypercharge and isospin conservation allow

r,bs
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one to cast F into block diagonal, as in Table I. Each entry is a linear

0,3,8

: ' +
combination of the parameters ¢ . Therefore positiveity of F

yields six 'linear' conditions of the form c; qs: =0 plus.one

i=0,3,8
"gquadratic'' condition (arising from diagonalizing the I = 1/2 block),

while positivity of F yields a corresponding set of conditions on the

¢

This looks (and is) very complicated. Fortunately, there is a trick
to reduce the complexity of these conditions and, as a side benefit,
| 10
establish a connection with the parton model. To see how this goes,

we rewrite Eq. 4.4 as

with

' +
Then the condition that Far bs be positive is equivalent to

H
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for an arbitrary octet of 3X3 matrices M®. It is of course trivial to
make a special choice of the matrices M° so that these conditions

become

with

e . ops .
So, if the 16 dimensional matrix Far bs is positive, then so is the
. . . ar, Bs .
2X3 = 6 dimensional matrix <I>:I: . Since « and p carry the same
isospin as quarks (I =0, I = 1/2) we see that, if r, s refer to nucleon, we
. . ar, Bs . .
can completely diagonalize @i and that it has three eigenvalues,
each of which is a linear combination of the quantities qS:?:’ 3,8
introduced before. Thus we actually have precisely as many linear
positivity conditions (6) as independent quantities determining the

structure functions. That these conditions are the entire content of

Eq. 4.7 is guaranteed by the fact that Eq. 4.8 implies Eq. 4.7.
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The extraction of the content of these equations is easy; We

have three conditions of the form §i ¢iz 0 and three
' i i=0, 8’—-5) + + + ~
similar conditions for ¢ . If we define ¢ = (¢O , qS8 , ¢3 and e =

(go, €8 s §3), then we have the geometrical problem of characterizing

=] - o —_
the three-vectors ¢  which satisfy e, - ¢ = 0 for given vectors

-~»
e i i=1,2,3. It is easy to show that the solution is

=k -~

~> &+
f. =e,.. e Xe, anda, = 0. If we go back to the expression of
i ijk j k i

individual structure functions as linear combinations of the components

of Ei, we can discover that they may be written in terms of the arbitrary
positive parameters a:ix: as in Table 2. Had we assumed SU3 symmetry
and taken the entire baryon octet as target, we would have gotten
slightly different results.

There are various ways of exploiting this result. Consider first of

all just F YP and FiYn. If we form pF{erl - Fiyp, we easily see that it

1

1 o
is positive for p > T By similar arguments one can show that

Fiyp/ Fiyn > ;1— so that in general

Had we used SU3, we would have been able to replace the lower bound

by 1/3! This relation is particularly interesting because experiment
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indicates that Fi\{n/ FiYP decreases rapidly as w approaches 1 (threshold)
and may well go below 1/4. This is obviously a crucial test for the
quark-based parton model.

In this context we note that, according to Table II,

Therefore,

This means that whenever Fiyani\{p is near its loWer bound of 1/4,
one must find that the vp structure functions approach zero.

For the moment the experimental data one needs to test these,
and other, relations following from Table 1 is not available, but we can
expect to have it before too long. It is to be remarked that the inequal-
ities we have so fa£ discussed are local relations - they are true for
each value of w. Table I, of course, still holds fqr integrals of the Fi
over positive weight functions. Since total cross sections are such
integrals, and are easier to measure than the Fi(w), more easily
‘testable inequalities can be found in this fashion.

Next, we propose to discuss how this problem appears in the
context of the parton model. In the parton model, one assumes the

existence of free point-like constituents within the target hadron and

assumes that the interaction with the current is entirely via these con-
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stituents. We have been discussion the process a+r-b+s where a and b
refer to the current and r and s to the target hadron. Evidently the

parton model result is

where qsar(gar) is the amplitude for finding a quark (antiquark), a, in
hadron, r, and the parentheses refer to the free quark-current scatter-
ing cross section. The elementary quark-current scattering cross-

sections are easily seen to be

Therefore, in the parton model, the structure functions for scattering

off hadron targets satisfy

with

This, of course, has exactly the form of Eq. 3.7 which was derived

from the ligh{-cone algebra, From this point of view, the positivity
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rs

of the matrices Gir’ ps = (Gri ) . in the 6-dimensional space spanned

ap
by the indices a, r is trivial - it follows from the positivity of the ele-
mentary quark-current cross-sections. It obviously implies, via the
arguments given earlier, the positivity of the physical cross sections.
Because of the formal identity of Eqs. 3.7 and 4.9 the positivity condi-
tions following from the.quark model and the light-cone algebra must be

the same.

As a final remark, we want to show how sirriply the bound on

Fiyn/ Fivp can be understood in the parton model. Let the densities

in the parton of the p,n and N\ quarks (charges 2/3, -1/3, -1/3 respectively)
1.2 1.2

}"b + (=) c. Since the neutron

Yp _ 2.2 1
bea, bandc. TheyF, (3) a+(3 3

is a 180 ° isospin rotation of the proton, the roles of n and p quarks are
1.2

interchanged and FivN = (3) a + (%)Zb + (%)Zc. Thus

and since a, b and c are all positive,

V SEMI INCLUSIVE REACTIONS
The total inelastic cross-sections we have been considering so
far are interesting enough, but rather limited in scope: after all, there
are only two possible targets (neutron and proton) and two possible pro-

jectiles (electi'on and neutrino)! It was first suggested by Ellis that,
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with modest extensions of the hypothesis stated in Section 2, one could
discuss processes of the type (current) + (target) - (specific observed
hadrons) + (unobserved hadrons). Experimentally, such reactions are
the next easiest thing to do after the total cross~section experiments
and will be done in the near future. It is therefore most appropriate at
this time to discuss whatfesﬂts might be expected,

For definiteness, we shall consider the reaction J(q) + N(p) —
w(r) + z where: J, N and 7 are the incoming current, target nucleon and
outgoing obvserved pion, respectively; q,p and r are the respectivé mo-
menta of these objects; and E stands for unobserved hadrons. Nothing
stops us from observing more than one outgoing hadron, and the extension
of the arguments which follow to such a case will be easy.

The cross-section for this reaction will be given by

the obvious analog of the hadron tensor measured in the total inelastic
reactions. We shall take Jp to be the electromagentic current in order
to. simplify the kinematics somewhat: va then satisfies Q"W b
q“Wv " = 0 and parity conservation holds. In order to measure WHV
one performs the reaction e(£) + N{p) ~ e(£') + w(r) + X If the
one-photon-exchange approximation is valid, this cross-section is

proportional o
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M

lep can be expressed as a known linear combination of

The vector €
+ - 0 ' ,

the complete set qp, € , GH’ EH’ where the €'s are the right-handed,

left-handed and longitudinal polarization vectors associated with q.

Since q"LWHv = 0, I may be expressed as a linear combination of the

helicity cross-sections

Parity invariance (Wab = (—)a—bWba) reduces the number of independent

quantities from 9 to 4: W++, WOO’ W+O’ W+_.

The experimentally measurable quantity, I, is then a linear
combination of these helicity cross-sections with known coeificients.
If one deals with unpolarized electron beams, the relation turns out

12
to be 43

where: v =q-p/m, 0 is the lab scattering angle of the lepton and ¢

is basically the rotation angle of the plane containing the leptons about
their momentum transfer to the hadrons. The important point is that

if you bodily rotate the lepton plane about q, so that q stays fixed,

then all the arguments on which I depends, except ¢, remain unchanged.
Thus, one can experimentally separate the helicity flip 0 (¢ indep. )
helicity flip 1 (cos ‘(‘f: dependent) and helicity flip 2 (cos 2¢ dependent)

cross sections.
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Before proceeding to our light-cone analysis, we say a word about
what we expect to happen in the scaling limit: Since the total longitudinal
cross-section vanishes (Sec. 3), so must any partial longitudinal cross-
section. Hence, both W and W _ should vanish relative to W and

00 +0 ++
W+_. Neither positivity nor our work on total cross-sections leads us

to expect that W++ and W+ should behave differently from one another.

Hence, we expect some cos 2¢ dependence in 1.
To see what the light-cone has to say about this, we first note

that the matrix element <N(p)] JM(O)I w(r )E{_S may be written in the

form

where JTr is the pion source in the usual sense of field theory. Con-

sequently, WH (pgr) may be written
. v

- To follow the argument of Section 2 as closely as possible, let us
consider a limit in which r and p are held fixed and g gets large
in such a way that both qz/p- q and qz/r- g are held fixed (we shall
again call this the Bjorken limit). This is achieved by the choice
p = (m, o, o, 0)
r = ( fixed )

q = (qo, o, o, q3).
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Then the analysis of the asymptotic behavior of W V(qp) which follows
M
Eq. 2.5 is directly applicable here. Consequently, the Bjorken limit

of Wlw(p, q,r) is determined by the singularities in x of

This in the end boils down to looking at the singularities of multiple
operator products such as JH(X) JTr(z) Jv (o) Jﬁ(z') and relevant
permutations.thereof.

Let us imagine that the underlying fields of the theory are
spin 1/2 and take the attitude advocated by Fritzsch and Gell-Mann
for the study of operator products: calculate the free-field operator
structure of the leading singularity and assume it to be frue of the
physical currents. The calculation is a bit more complicated in this

case, but the underlying assumption seems no more radical.

Let us set

and use the Wick theorem to serch for singularities in the product
J (x)J (z)J (y)J (z'). There are two relevant kinds of contraction

in the complete expansion of the product: those which connect J (x) and
- "

J Y (y) only,
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and those in which the connection between fields at x and y is indirect,

Terms in the first category have exactly the same structure as

the singularities of the pfoduct JH(X) Jv(y) - the JTr's are just spectators
as far as the singularity structure is cohcerned. The second type of
term is more complicatnd and will not in general have the same lLorentz
or internal symmetry structure as the first type. On the other hand,

it will be 1ess singular: For arbitrary z, Eq.l (5. 3) has no singularity in
x-y. Only if z lies along the line joining x and y will there be a singu-~
-larity. In the matrix element, Eq. (5.2), one integrates over all z,
thereby including such points, but since they have volume zero the degree
of singularity of their contribution to the matrix element is reduced below
that of Eq. (5.5). Therefore, the leading singulavrity is given by contrac-
tions between the currents themselves, and its Lorentz and SU3 structure
- will be precisely as calculated in Section 3 in the study of the simple
product Jp(x)Jv(y). The spectator particle serves only to pﬁ:‘ovide new
variables on which the matrix elements of the "bilocal operators’’ may
depend. One gets the correct answer by going back to Eq. (5.2) and

pretending that one can reduce the JTr back into the states,

and then using the expressions of Eq. (3. 3) for the leading light-cone

singularity of the current product.
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Following this prescription, we find that, in the limit qz - -,

2
with q /q'p and qz/q-r fixed,

We have neglected to writ,e‘the SU3 content oﬁ/@?tf5 and have used the
fact that since no spin variables are present, there is no possible

B

matrix element of.F . This can then be written in terms of scalar

structure functions:

2
The scalar form factors depend on x as well, but since we want the
2
leading light-cone singularity, we are entitled to set x = 0. There is

p

another covariant, x', but it does not contribute at the same level as the
two we have explicitly written. Finally, if’ we make the obvious Fourier

decomposition of f and g, we may write,

where we have dropped terms in the delta-function which do not survive
in the Bjorken limit,

This result now should be converted to statements about the
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helicity cross-sections defined earlier. We work in the target rest

frame so that

and find that

The vanishing cross-sections are expected to vanish like 1/q2. The

- 3 » 0 - - » s .
cross-section W, _satisfies the positivity bound | W+O[ N W, '\/—WOO

0
and so presumably vanishes like 1'\/—q2.

These results are all as expected, except for the prediction that
W+_ vanishes. If we refer back to the expression (Eq. 5. 1) for the
electron scattering cross-section, we see that the vanishing of W+O and
W+_ means that this cross-section is independent of the angle ¢ describ-
ing the orientation of the electron plane about q. This is a reasonably

clear experimental signal and a non-trivial test of the model. The vanishing

of W+ is rather clearly related to the assumption that the underlying field
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is spin 1/2: If the absoprtion and re-emission in the forward direction
of the virtual photon takes place on a spin-1/2 particle, helicity change
2 is impossible. Presumably, any light-cone or parton model with
underlying fields of spin less than 1 would yield the result W+_ -0,
although if spih 0 fields are present, it will no longer be true that WOO
and WO+ vanish,

One may feel uneasy about this derivation because, on top of the
assumption that the singularity structure of operator products is as in
free field theory, we have had to make a specific assumption about the

structure of the pion source (Jn) in terms of underlying fields. Since

x SU_ currents, are only defined

particle sources, as opposed to SU3 3

on mass shell one is unhappy about an argument which relies on a choice
of their off-mass-shell behavior.

Fortunateiy, an alternate appr'oach'14 to the problem, which avoids
this difficulty, can be found. It is most simply discussed in the frame;
work of the reaction e+té —» Tr '+ g (semi=-inclusive annihilation). On-
the assumption thét this proceeds via one-photon exchange, the cross-

section is determined by the hadron tensor

where q is the total lepton momentum and v = q*p. This is kinematically

very similar to the total cross-section discussed in Section 3 except that

in this case q? > 0 and the allowed range of w = qz/ 2p+q is
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1< ws= r\/_qz/zm., The cross-section is

where 6 is the c. m. angle of the observed pion with respect to the

incoming electron and FT are transverse and longitudinal cross- -

».L

sections defined by

Now WHV is the discontinuity of the forward virtual Compton scatter-
ing amplitude, Tpv’ across the cut in (q-pz). Since q2 > 0, the full
discontinuity of TH.V contains other pieces which are not experimentally
interesting and are represented, together with the interesting one, in
Fig. 1

Since T " is just a matrix element of a product of currents, its
scaling limit (qz - +o, qZ/ 2q- p fixed) may be studied with the help of
the techniques of Section 3. Naturally one finds that 51 and vTEZ
scale and that their longitudinal combination vanishes. One's natural
inclination is to assume that each piece of the discontinuity must have
the same behavior as the amplitude itself and to carry these results
over th W y without further ado.

This would be wrong, however, because the discontinuity of

T " in the scaling limit and for w > 1 is actually zero'?4 If we consider,
M
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for example, the full discontinuity, t , or T , we find that it has support..

1’ 1

properties

while being symmetric under crossing: ‘_tti(v, w) = ‘?1(-1), -w). In the

scaling limit, v - o, ?1(% w)'“"?i(w)'* On the other hand, if we let v — ~o,

t (v, w) should approach the same function t,(w). Hence, crossing implies

1 1

that .1:_1(m) is even in w and the support properties of t (v, w) imply that

1
t, (@) =0for [w] > 1.

To get around this difficulty, it is necessary to identify the individ-
ual pieces of the discontinuity of the scaling limit of Tpv. This is trivially
possible if we are willing to assert that the bilocal L?i:(x, y) appearing in
Eq. (3.5) is actually the product of local operators at the points x and y.
Once this is the case, we can insert complete sets of intermediate states
inside the bilocal and pick off the relevant discontinuity without ever
having to say anything specific about the source function of the observed
pion. The actual predictions for the scaling limit of Wi and WZ are as
expec{ed. rI“he virtue of this approach is that instead of having to make
a new assumption for each process one wants to consider one needs only
one universal hypothesis about the nature of the bilocal operator,

Positivity constraints exist for these semi-inclusive cross-sections

1 : ' .
also.’ > Indeed, according to Eq. (5. 6) the situation for reactions of the
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of the type vy +A =B (unobserved) is the same as for total cross-sections
of the type v + (Aﬁ) -» (unobserved), The simple quark-model argument

given in the last paragraph of Sec. 4 indicates that

for any target a, where a, is the 180° isospin rotation of a. Consequently,

for semi-inclusive crosstsections we will find positivity constraints

such as

Many other testable relations can be found, and'it'will be interesting

to see how they compare with experiment.
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TABLE 1

JaN  @"e@N)y, ['aN),, Fan, awowzv\O~ am@z: GW@ZVO
J"eN - - 0 0 0 0
aq@zviw --- --- 0 0 0 0
aﬂ@sz\N 0 0 --- 0 0 0
am@z: 0 0 0 - 0 0
aW@zvc 0 0 0" 0 - 0
am@z: 0 0 0 0 0
am®zvo 0 0 0 0 0 0
TABLE II

P .NIQ.W ' WQN+ ¥ Mlmgw+ ¥ WQ»- * wmmgw- + mmu Ty

P e |t P e | |t WQN- * »l»mnaw

F,P =] Qp+ + 0 aww + 0 Qw+ tda, v 0a, |+ 0a

H.J»<: = WQ»+ + .W._Q.N+ + 0 Qw+ + .\m.fl + WQN- + Oa,

Hﬂwé = -?:+ + oQN+ + 0 Qw+ tla |+ OQN- + 0 Qw-

P -,wé:+ i :w. QN+ o Qw+ i w.a»- * W..QN; v Oay
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FIGURE CAPTIONS

Figure 1: The four independent contributions to the discontinuity

of the virtual Compton scattering amplitude.

Table I: Block diagonalization, via isospin and hypercharge,
+
of Far, bs
Table II: Measurable structure functions in terms of the positive

+
parameners a; .
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