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I am very sorry (we all are, I know, and I’m sure I speak for us 

all) that Dr. Gribov was unable to be here to deliver his talk. I am sure 

that our Soviet colleagues will convey to him our fraternal greetings, our 

deep disappointment, and our firm hope that we will see him at our next 

meeting in two years. I am glad to hear that Dr. Gribov is sending a 

manuscript, which will be in the proceedings of the meeting. 

I will first make some general comments, and then turn to a few 

specific topics which have been actively discussed during the parallel 

sessions. 

Unfortunately, the theory of strong interactions is excessively 

fragmented, and it is therefore very hard to see it whole. 

It has become the custom at these meetings to make a virtue of 

confusion by showing a picture, so I have one too, intended to illustrate 

the connectivity properties of the different approaches which physicists 

have developed. The idea\ figure would be different from Fig. 1; the basic 

theory would be in the center - and all other fields on spokes’. 

Figure 1 shows field theory in a central position, since (a) there 

is one such theory that works remarkably and puts together about all 

microscopic phenomena, i. e. quantum electrodynamics, and (b) field 

theory is the only way we have so far of systematically, order by order, 

constructing an S-matrix that is covariant, unitary, and appropriately 

analytic in all its variables. All the boxes in the picture are derived 

or abstracted from field theory, with the exception of the non-relativistic 
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quark model. I have put gravitational, weak and electromagnetic 

interactions off-scale far away only because they are not immediately 

relevant to this session. 

All the other boxes are relevant, or should be relevant to this 

session, but the two on the right have been discussed by other speakers, 

so I will leave them with only one comment. Lf nature simply used its old 

methods over again, we would expect to unify weak + electromagnetic 

phenomena with strong interactions by introducing hadronic fields, from 

which we could form currents, etc., and proceed as inthe previous lectures. 

The success of the non-relativistic quark model suggested that real quarks 

might correspond to these fields. However, real quarks themselves have 

not been seen, so that, if they exist, either 

(a) they are heavy, and then why does the simple non-relativistic 

model work? or 

(b) they are light, and then what mysterious mechanism holds 

them in, with a potential barrier so high that the excited states seem to 

be on straight trajectories? or real quarks do not exist, and the quark 

quantum numbers must be accounted for by 

(c) something other -- which must be very different from our 

conventional ideas. So probably natures is proceeding quite differently 

than a simple-moded ex-trapolation from q- e. d. would indicate. 

We now circle (not necessarily in historic order) the lower left 

closed loop. Field theory suggests Mandelstam like analyticity properties 
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for S-matrix elements via Feynman graphs; from these one may deduce 

dispersion relations and Regge, or j plane analyticity (of course, axiomatic 

field theory was very helpful for the former, and the Schroedinger 

equation for both the former and the latter; in fact, in the old N over D 

days I once heard a theorist remark that the Schroedinger equation was 

a devilishly clever way of calculating the left-hand cut of a partial wave 

amplitude ). 

By S-matrix theory, I mean the attempt to use only Lorentz covar- 

ante, analyticity, and unitarity to calculate S matrix-elements. 

This can frequently be a matter of convenience, involving no commitment 

as to the underlying degrees of freedom (such as quantum fields 1. There 

is a school, led by Chew, which assumes that there are no underlying 

degrees of freedom, and that all S matrix-elements are uniquely 

determined by the above assunp tions, together with Regge asymptotic 

behavior. That is, they would break the arrow connecting the field 

theory and analyticity boxes. Once this arrow is broken, the link to 

our wor L d (q.e.d. ) is broken. My position is neutral on this with 

respect to the strong interactions; however, the electromagnetic field 

requires a local current with which to interact, so that a pure S matrix 

theory will have trouble accommodating electromagnetic, as well as, 

probably, weak and gravitational interactions. 

It should definitely be understood that the use of S matrix lagnuage, 
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the assumption of Regge asymptotic behavior, and the study of j plane 

properties can be useful whether or not there are underlying degrees of 

freedom. There is in our particle physics community a widespread 

hostility to j plane language - - based on the fact that the description of 

some phenomena appears complicated in that language. In fact, the 

variable j/i is conjugate to log z (where z is proportional to the crossed 

channel energy) in almost the way that p is conjugate to x. One mustn’t 

fight the x representation or the p representation; some ideas are more 

simply expressed in p language, some in x. More important, some 

requirements are mose simply seen in p space (for exanp le, threshold 

dependence), some in x space (for example, cluster properties). Similarly, 

it pays to look in both j and log z space. For example, the very simple 

formula’for the invariant elastic scattering amplitude at high S 

M -is f(t), 

s - m, t fixed 

so dear to the hearts of many of us, has, in the j plane, a fixed pole at j-i, 

and contradicts t channel unitarity; thus it is frowned upon by those who 

use j plane language. Its problems in Is, t) language are much harder to 

see, but they will be there in a complete theory possessing t and s 

analyticity and unitarity, and their cure will require complications in 

any language. This is the first of many unpleasant results of Regge theory, 

which Murray Gell-Mann has characterized as proving that any simple 

theory that agrees with experiment must be wrong. However, I believe 
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it is not the j plane analysis that is at fault but the formula. I will, 

incidentally, return to the problem of diffraction scattering later. 

We finally close the loop with models. Appropriately, the two 

parallel sessions labeled dynamics of strong interactions were sub- 

headed (I) dual nodels, which originated four years ago as pure S-matrix 

theories, and (II) Multiperipheral models, which originated eleven years 

ago as a summation of a certain clan Feynman diagrams in field theory. 

By now, of course, it is all mixed up, including the meaning of the word 

multiperipheral. 

I shall report a small fraction of the work discussed in those 

sessions, with the choice hopefully made so as to give you a feeling for 

where the action is now, and where it may be going: I will also add other 

material, not specifically submitted to this conference, which I think will 

be helpful in achieving perspective. This is in accord with the instructions 

contained in the letter of invitation to Dr. Gribov. I apologize for the 

ommision of important new material. 

I. I discuss first the present status of dual models. 

The simplest dual model for a four-point function describing 

scattering of spin zero particles is 

B4(s’t) = g 
2 I-[-c&)1 I -&)I. 

I-[ -a(s)-&)I 

with U(S) = w. + r~/s. The properties of this function are: 
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1. 

Fort CO, B4 =Zn 
l$C;l't) 
2 

Mn - S 

with En a polynomial of order n, hence containing angular momenta 
En (t) 

n,n-1, . * 0; similarly for s < 0, B4 = C 
n M; - t 

2. Regge behavior: for fixed t, and s - a, 

B4 
+ gz r[ -&)I [ -LY(SP 

and similarly for fixed s, t - m. 

3. For fixed z = cos 8, s -m (i.e. p - m). 
I 

B4 - 
exp [ -ds f(z)1 , 

where f(z) = 
2 

9 log - 
I+2 2 

1-z 
+ 2 log - 

1+z ’ 

thus producing an exponential fall-off at large pI 

The formula was rapidly generalized to i7 point functions, which 

have the same spectrum, and factorize at poles. These functions 

may be and have been used in three ways: 

1. with insertion of specific trajectories, to fit multi-particle 

production processes, and to check out ideas on such things as 

early scaling. Formulas of this type leave out a lot (I will come 

to this shortly) but seem to describe remarkably well some phenomena. 

7 -. As a theoretical laboratory, to investigate, for example, the 

high energy Regge structure of multiparticle amplitudes. 

3. Finally, the most ambitious, as a first approximation to an 
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exact theory. This first approximation is a strong one compared 

to the usual field theoretic perturbation theory, since it already 

contains an infinite spectrum of states. It turns out that a Feynman 

like interaction scheme exists, so that given a “correct” first 

approximation and weak coupling (which is really the basis of the whole 

scheme the weak coupling, that is) one can systematically go on order 

by order. 

Let me list for you know the standard problems of the Ist order 

dual model, viewed as a first approximation to the real world. There are: 

1. Ghosts: Since one has n particle amplitudes, one can use factori- 

zation to study the degeneracy and coupling constants of each level. In 

2 
general, some will have negative g , 1. e. ghosts. Brower, and inde- 

pendently Goddard and Thorn, have shown that if theJeading trajectory 

passes through a = 1 at t = 0, the ghosts decouple. However, one would 

then have a tachyon at M2 = -1, and a zero mass vector. 

2. The tachyon: Neveu and Schwarz have introduced a new model 

in which one can eliminate the tachyon. However, (3) + (4). a correct 

spectrum, including spin l/2, does not come close to emerging. 

5. Absence of exotics of course implies absence of a vacuum pole-- 

but this will be cured by dual loops, it is assumed, once the “correct” 

Ist order model is found. 

6. The most obvious problem is, of cource, unitarity, since the 
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resonance poles are on the real axis, corresponding to the straight, real 

trajectories. A sum over dual loops (an infinite number, to be sure) is 

the suggested solution. This is analogous to the situation in ordinary 

field theory, where an unstable particle is introduced with a real mass, 

and an infinite order damping (a la Wigner-Weisshopf) calculation is re- 

quired to give it its imaginary part. 

7. Finally, the problem of introducing local currents has success- 

fully resisted all attacks. 

I turn now to the higher order corrections, i. e., the dual loops. 

Again, these may be viewed as 

1. guides to phenomenology 

2. theoretical laboratories 

3. the “true” theory. 

Use (3) of course requires a correct Ist order. However, (i) and (2) do 

not--that is, one can hope to distinguish correct general features from 

specific calculations, even though the underlying theory is wrong 

(remember perturbation theory teaching us analyticity). 

What are the new features introduced by the loops? 

1. Iteration of poles (in j or in s or ti of course produce cuts 

(threshold in s, t i Regge in j). The Regge cuts have slope Q-/Z, as 

expected. 

2. A new j plane singularity, with vacuum quantum numbers, emerges, 
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but not as a Regge-Regge cut. - One would like to interpret this singularity 

as the Pomeron; however, it has unacceptable t analyticity except in a 

space of d = 26 dimensions (25 space and 1 time) where it is a new 

linear trajectory with a’ = i/2 and a0 = 2 (in the Neveu-Schwarz model, 

d goes down to 10 dimensions 1. Again, presumably in the correct theory 

it will go down to four. 

In spite of these problems. Lovelace, in a contributed paper, has 

described how one uses these results as a model t,o study various Pomeron 

properties, such as t or s channel helicity conservation, the sing of the p 

pomeronpomeron cut (to which subject I will return). 

Another interesting application is suggested by Ellis and Freund 

who observe that in each order, the leading elastic scattering at fixed 

z is given by Veneziano’s formula 

exp - dn f(z)s, 

where u’ 
n 

is the slope of the highest singularity (they also give somewhat 

more general arguments for this form). Since cu’ = &in, we have a 
n 

succession of decreasing pI dependencies, whose true asymptotic limit 

is a power, the power dependency on the details of coupling as n - m. 

Figure 3 is a list of difficulties of the dual loops, viewed as a 

“true” theory. 

In this figure, 26 - 10 for the Neveu-Schwarz model. Presumably, 

the contradiction between (1) and (2! will be resolved by the correction 

first order theory, for which d will also equal 4. Thus, the dimensionality 



of space will be boot-strapped! 

If this program works, we will have a complete S matrix theory, 

with, nowever, one free parameter (the coupling constant). Evidently, 

one is still quite far from a correct beginning, but the number of sensible 

properties is impressive. 

A very interesting new development, based on independent Susskind, 

work by Mansouri and Nambu, and Goldstone, was reported in the 

parallel session, and promises a great simplication of what is at 

present an exceedingly complex formalism, and thus, may make the 

introduction of the correct initial theory much simpler. This is a 

Lagrangian for the uncoupled dual system, based on the excitations of a 

relativistic string. 

II. Multiperipheral models: The so-called multiperipheral (I say “so-called” 

because the work multiperipheral has taken on many different meanings) 

session was devoted almost exclusively to high-energy processes. Here 

the most interesting new techniques are based on the generalized optical 

theorem of Mueller. This has let to im~pressive empirical success, but 

has also raised new problems. 

Slide 4 shows the conventional optical theorem for elastic scattering: 

unitarity requires that the total cross-section o ab be proportional 

to the imagninary part of the forward scattering ampltiude, Im fab, 

with known kinematic factors. The imaginary part is in turn given by 

the discontinuity across the s cut. The usefulness of this theorem is 



well known. Nevertheless, let me point out one major theoretical beauty: 

it replaces the calculation of an infinite, non-linear functional of all 

production amplitude (cab) with linear functional of the elastic amplitude 

(disc fab). Thus, for example, Regge behavior s u(t) m an elastic ampli- 

tude implies s 
a(O)-1 

In the total cross-section. 

The Mueller theorem has the same advantage: if we have amodel 

for 3 - 3 amplitudes, we immediately get, by a linear operation, a model 

for an inclusive cross-section. (Note the difference here from the two 

body case, that the Mueller relation does not connect observables, since 

our experimental colleagues have not yet been clever enough to devise 

methods of neasureing 3 - 3 amplitudes. ) 

Now Regge theory does make predictions for many particle amplitudes 

is some regions of phase space. These were systematically studied many 

years ago by Toiler, and generalized more recently by Misheloff and 

others. Thus Toller plus Mueller puts Regge analysis puts inclusive 

reactions on almost the same footing as that of two body cross-sections, with 

with two very important caveats. 

(i) As I said before M 
3-3 

is not measureable, so there is no 

measurable analogue here to the differential corss-section. 

(ii) The connectivity and analyticity properties of multiparticle 

amplitudes are much more complicated than those of two particle ones; 

thus, probebility of error is greatly increased, and most conch usions in 

this field should be considered with that in mind. 
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(In what follows, I will take the point of view that at high-energy, 

amplitudes can be described by factorizable Regge poles, the leading 

one, cy (t), passing near (Y = 1 at t = 0. I shall come later to some of 
P 

the problems connected with g(O) = 1; for the moment, in order to avoid 

them, let me assume ~~(0) = 1 - f, where E is small but finite. 

To continue with Mueller: Mueller applied his relation to the 

a-c fragmentation region, for which the Regge diagram is 

c 

and thus showed that limiting fragmentation or Feynman scaling holds 

in Regge theory; the dependence drop out by factorization after dividing 

by oaab’ for which the Regge diagram is 

t;o 

The approach to the limit should come via the next trajectory, and thus 

be - s 
a&p) -cup(O) 

or - sml”. Here cy M is an average meson trajectory. 

We have heard that all this fits quite well, with the possibile exception 
+ 

of the processes pr+ ?r 
+ 

“S P E ri+. 

In the tri~ple Regge limit, s/M2 - a, or i-x becomes small (but not 

too small overall); the blob 



is opened up to 

and the triple-Regge coupling IY is introduced. 

I mention here a related report by Ter-Martirosian on a deduction 

from experiment of a different quantity, the pomeron-particle total cross- 

section, opb(M2,t) deduced from the inclusive process 

LE 
daab 

m- 2UPYp(t)-i (t, M2) + -- 
0 

ac dpc Opb 

as 9 
for S/M‘ sufficiently large and particle c = a. Here one must pick out 

the coefficient of CS/ M2) 2LYP(t)-i . The momentum transfer t becomes 

the mass squared of the pomeron. As M2 - m, o 
Ly (0)-l 

2 P 
pb 

-(M 1 r(O,t,t) 

where r is now the triple pomeron coupling. (Note that phase space 

factors and t dependent definitions are being treated very cavalierly. ) 

He finds roughly a curve of the form &,x ,, 

l!I!Li 

Q 

.tkat 
1 

) EC 
1.q Ii L 

We shall see later that this cross-section is of importance in 

evaluating the Pomeron-Pomeron cut . 

The .Mueller approach to scaling in the pionization region of c is 
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d, In) c 01+ib) 
ii 

;L _ [ ap(O~-aM(0)] -i/4 
slower, like s 2 

,or-s , since the Regge diagram there 

is with si and s2 - .&-. The relevant trajectories for scaling are ui = 

(y 
5= P’ 

for the next correction areivi = LY , a2 = aM and vice-versa. As 
P 

we saw in the Ferbel plot, this also seems to work quite well. Thus the 

data are consistent with a Regge picture of factorized poles, and a leading 

pole at LY = 1. Wrobleski’s formula is inconsistent with Regge picture, but 

the i/s’/4 approach to scaling could be very slow in 2 part distribution. 

Still keeping our assumption of a,(O) = i- e, we next ask about cuts. 

If (Yp = 1- E + a’t, the two pomeron cut is at 
. 

(Y = 
C 

zap(t/4)-i = i-2e +y 

and will contribute a term of order s -e smaller than the pole at t = 0. 

It is therefore of considerable importance to find a way of calculating 

the sign and magnitude of this contribution. 

This is a subject that has been controversial for many years, and 

I have to report with some embarassment that the controversy is still 

raging. 

The cross-section will have the form 

‘ab 

= pa, gp(0)-l + 
at(O) 

s 
sJ-i 

-m 
pabUM + - 1 

and the question concerns the function p(J), the cut discontinuity. 

The first approximate calculation using s channel unitarity, by 



Amati, Fubini and Stanshellini, gave p(.J = dc) = P A - the next also 
32rrd ’ 

P 
approximate, by Mandelstam, using t channel unitarity, changed the 

sign; we remark that the minus sign would be obtained by a Schroedinger 

equation iteration. Gribov, using Feynman diagrams, agrees with the 

Mandelstam sign, and Gribov and Misdal have given a purportedly exact 

formula based on Grobiv’s earlier work 

piJ = P 
ac) = - 3Zrrcu’ (1 + rj + correction) 

P 
1 

triple pomeron 

where 

and o 
DIF 

is the single plus double dikfraction cross-section of a on b, 

and o EL the corresponding elastic cross-section. The correction 

depends on the explicit presence of P-particle diffraction scattering, i. e. , 

the P pole itself in 0 
p-particles’ 

or the triple Kegge vertex. This 

correction has also been considered by Muysnich, Pasye, Treiman and 

L. L. Wang. Ter-Martirosyan and Kaibolob have attempted an evaluation 

of q using the P-particle cross-section given earlier and found . 2i. 2 

for nn, 4*. 2 for niN and 6*. 3 for KN. The numerical importance of 

the entire effect is perhaps 20 70 in the total cross-sect,ion, but at present 

energies is indistinguishable from a pole. It is already t,he case that the 

emperical success of factorization raises difficulty for large cuts. 

IMPORTANT: Cannot yet separate until s - 104~ 
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Within the last few months two more purportedly exact formulae 

for p(J) have been derived, one by White, of Cambridge, and one by 

Abarbanel of NAL, both using s matrix-mentods, W1it.e is the t 

channel, Abarbanel on the s channel. They obtain re suits which differ 

from each other; White agrees with Grobiv, thus White has the minus 

sign, Abarbanel the plus sign. All three calculations involve extreme13 

subtle points, Gribov and Abarbanel of possible double counting, and 

White of analytic continuation. 

I am afraid I cannot give you a judgment, although I have an 

opinoin. I am sure we will have a unaminous decision before our 

next meeting. 

Turning from bad to worse, I next examine the question of the 

consequences of (~~(0) =.1 exactly. It has been known for many years, 

based on approximate calculations, that this assumption seemed to lead 

to inconsistencies, However, in the last few years, these inconsistencies h 

have been sharpened by the use of the Mueller technique, and the use of 

energy-momentum conservation sum rules, such as 
do 

ab 
(pa+ pbipoab = Xc (pcip dp dp c 

C 
If you assume 

1. a factorizable Kegge pole with UP(O) = 1, Re up’(O) # a, 
P 

2. non-leading cuts, i.e. , no terms like log (logs) in D , , then it 

follows that 
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(11 the triple pomeron vertex vanishes at t = 0, that is, the 
Ly (t) 

2P 
* (0) 

triple Regge term (S/M) (M”) ’ in any inclusive cross-section 

vanishes at t = 0. This result emerges from the Gribov Reggeon calcu- 

lation; it was also shown more directly by Abarbanel, Chew, Goldber,ger 

and Saunder 

(211 from this it follows that the double Regge coupling 

r (up(O), an(t),c) vanishes for all trajectories R and comentum trans- 

fers t. This coupling is measured in the process a + b - a + b’ + c, as 

shown below: c 1’ 

-c&=Q 

3 

4&j+%&&~ 

a \ Lz t, 

The last step is continuation to any particle pole in the trajectory 

ap; this shows immediately that the coupling of a (0) to particles c and c’ 
P 

vanishes. For c = c’, there are special subtleties, connected with 

certain kinematic singularities that appear as t 
a 

-0, t+m ‘. However, 
C 

Brewer and Weis have studied the problem and have ashown that the 

elastic pomeron coupling must vanish. I should point out that this last 

conclusion (perhaps not surprisingly) is also controversial--the same 

Dr. White previously cited, together with Moen, claims that it is incor- 

rect. I would say, even if White is right, it is clear that the pole a 
P 

with up(O:l = 1 has great difficulties associated with it. For the benefit 
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of those who blame this on moving Regge poles, I remind them that the 

fixed ,pole at J = 1 [ is f(t) in the forward amplitude] makes things worse, 

not better. 

At this point, I should interject a warning. We insist in all this 

in talking about asymptotic limits; however, there may be no region in 

which an asymptotic limit of strong interactions makes sense, even for 

diffraction processes. For example, in a Fermi theory of weak inter - 

actions, as is well known, the weak interaction will complete with the 

strong at the unitarity cut-off so : $ r (300 BeVj2. The consistency- 

we are demanding (and which is violated by ~~(0) = 1) requires energies 

so high that log (logs) >> 1; that is, the inconsistancy is shown by deriving 

the inequality const. > log (logs); but log (log so) - e. Even if a renorm- 

alizable weak interaction theory of the type Dr. Lee has discussed holds, 

where the theory becomes strong at s - e 
137 

, one finds log log 137 is still 

< 61 Therefore, it may be that our asymptotic is unphysically far 

away, and that we have no right to demand a consistent theory without 

taking into account other interactions, since by the time our theory 

becomes inconsistent the strong, weak and electromagnetic interactions 

will have become mixed up. 

Nevertheless, one may whish to achieve an absolutely consistent 

theory of strong interactions. This is not so stupid as it seems; it only 

means that we solve equations consistently that do not include these weak 

and electromagnetic interactions. If we do, the equations will not give us 



a pole at (Y f (0) = 1. They will do something else. For example, they 

may give us (~~(0) = 1- E, as previously discussed. If so, there appears 

to be two ways out. The first,of course, is to have ap(0) = 1 - F, as pre- 

viously discussed. If the cuts are moderately weak, this theory could 

look a lot like a simple pole at cyp(0) = 1, approximately factorize, and 

account for present data. The only questions is, why is E so small? 

That is, why is cp( 0) so near 1? This is also not quite so ridiculous 

as it seems. A theory that gives an 1 - ap(Oi = E # 0 will have 

r c<p + OS and there will be some constants relating then. Chew 

reports calculations of Sorenson that do this. 

The second way out is to abandon the pomeron pole, and assume 

only cuts . The point here is that cuts do not factorize, and so invalidate - 

the theorems. They also seem hard to reconcile with experiment for 

the same reason. Schwarz suggested several years ago that a cut 

might generate itself self-consistentl>-, according to the equation 

us(t) = 2a&4)-1 (S for Schwarz) 

whose unique solutions are 

‘u&t) = 1 i c A, c arbitrary, but real; 

you see that this assumption naturally chooses the value J = 1 at t = 0. 

‘Notes written to yourself as follows: o v’s log s, singularity, F + Zach 

(logs 12, B + Zach log s A second natural way of arriving at J = 1 is 

the Froissart mechanism. Froissart showed that a potential that was 

exponential in r. i.e., e , -lJJ- and that grew like a ‘power of s, thus 
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V - sa emprdr), 

with a > 0 and P nonexponential, - would be cut down by unitarity to give 

a cross-section 

OT 
- Ilog sJ2. 

S-m 

Cheng and Wu, and independently Gribov and collaborators, have shown 

how to achieve such a potential by summing selected diagrams in field 

theory, and how to unitarize the potential by summing some more. 

Most interestingly, they find an amplitude whose leading singularity is 

precisely the Schwarz cut, with a singular discontinuity leading to the 

2 
expected log s) growth of the cross-section. Their model consists of 

spin 1/ 2 baryons coupled to a neutral vector gluon. I don’t think one 

can take the details of their calculation too literally; however, the general 

conclusions are very suggestive. Dr. Walker of NAL has fitted all pp 

elastic data with their parametrized version of the Cheng-Wu model and 

claims good agreement. In spite of the (log s )‘, the pp cross-section 

remains quite constant up to medium ISR energies. To give you an 

idea of what to expect from this kind of a model, o 
PP 

at T energies 

(400 BeV c-of-m. 1 should be pushing 50 mb, i.e. , an increase of 25% 

In summary, the cut models 

1. choose J=1 in a natural way 

2. they avoid the problem of a pole at J-1. 

However, they have only minimal factorization properties at best. 
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It may be that somehow the cut simulates a pole (and therefore factorizes 

approximately) at low energies. For example, in the Cheng and Wu model, 

it may be a good approximation to set a = 0. which could then have to 

have some factorization properties. 

In conclusion, there seems to be three possibilities: 

1. e(O) = 1, F P 0, and thus leading cuts like log (logs), and the 

contradiction resolved only by electromagnetic and weak interactions at 

very high energy, 

2. u(O) = l-e, with cuts, factorization of the pole, and 

as we have seen, calculabilit ies of cuts, Question: why is E so small? 

3. Essential cuts - no problem of principle, but why do high 

enerby processes factorize so nicely? 

Probably, the right answer is a fourth! 
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FIRST ORDER PROELEM OF DUAL MODELS 

PROBLEM SOLUTION 
I. GHOSTS (BROWER,GODDARD AND THOM) 
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4. CORRECT SPECTRUM II 
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O.H.WlTH DUAL LOOPS)' 
6. UNITARITY (PRESUMABLY OH. 
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PROBLEM 

1. d < 26: VACUUM SINGULARITY 
HAS UNACCEPTABLE T BEHAVIOR 

2. d=26: DUAL LlIOPS ARE 
NON-RENORMALIZABLE 

SOLUTION 

(CORRECT FIRST ORDER.(?); 

II II 



I. 
5‘6 ? 

OPTICAL THEOREM 
a’ bl 

Crab = = discs. 
H 

a b a b 

S=(a+b)” a: b’-ab 

2. GENERALIZED OPTICAL THEOREM 

a b 
c’ a’ b’ 

= disc 
Me 

%K C a b 
a b a:b:c’-a,b,c 

M2=(a+b-c)f! t =(a-cl2 

EC Ed=;;‘fd= . . . . ‘y... 
c ,. 

etc. 


